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Abstract—This paper aims to develop an implementation of
the standard map for random number generation. The design of
the random number generator algorithm is based on the values
generated by the standard map equations, with careful
considerations to avoid predictable patterns and ensure
consistency. The resulting algorithm displays high randomness
without discernible periodicity or repeating patterns, and the
distribution of the random numbers approximates a uniform
distribution with occasional deviations.

Keywords—Random number generation;
Chaotic systems

Standard map;

I. INTRODUCTION

Random number generation is crucial for uses and
applications such as simulation, modeling, statistical analysis,
cryptography, gaming, machine learning, and finance. In some
of these scenarios, there is a desire for a truly random number
generator, meaning that each value is equally likely to occur
without a perceivable pattern or periodicity. Achieving true
randomness is no small feat and is challenging, as it often
requires specialized hardware or sophisticated algorithms. In
the field of computer science itself, researchers extensively
seek random number generators that are efficient, easy to
implement, and unpredictable.

One approach to random number generation involves
incorporating chaotic systems. The study of chaotic systems
dates back to the late 1880s when Henri Poincaré attempted to
solve the long-standing three-body problem in -classical
mechanics. Poincaré observed that orbits can exhibit chaotic
behavior, characterized by their inability to converge or
diverge towards a specific point. Building upon Poincaré’s
groundbreaking work, other scientists such as Edward Lorenz
and Mitchell Feigenbaum delved deeper into the subfields of
chaotic systems, including dynamical systems, bifurcation
theory, and chaotic maps.

Given the apparent ubiquity of randomness in the universe,
chaos theory offers a suitable model for describing complex
systems characterized by seemingly unpredictable behavior.
Chaotic systems can be harnessed for random number
generation, offering several advantages over traditional
pseudo-random number generators. They generate values
iteratively based on their previous states, making them highly
sensitive to changes in initial conditions. Consequently, even
the slightest perturbation in the initial conditions can lead to

substantial differences in future system states, rendering
chaotic systems inherently unpredictable.

One prototypical example of a chaotic system that has
been extensively studied since its introduction in the 1960s is
the standard map. The standard map is a mathematical model
that has found diverse applications and has been the subject of
significant research. Its true chaotic nature has been
well-explored, and it has been observed that various systems
can be effectively reduced to the standard map. Examples
include the whisker map, which represents the chaotic layer
around the separatrix of a nonlinear resonance induced by a
monochromatic force, as studied by Chirikov. Additionally,
the standard map has been used to analyze particle dynamics
in accelerators, microwave ionization of Rydberg atoms, and
electron magnetotransport in resonant tunneling diodes,
among others.

Furthermore, the standard map has been widely discussed
in the context of cryptography. Several papers have explored
its potential for cryptographic purposes, highlighting its value
as a tool for secure information transmission. For instance,
Lian et al. proposed a symmetric block cipher using the
standard map, analyzing the sensitivity of its parameters.
Building upon this work, K.W. Wong et al. proposed an image
encryption scheme that employed the block cipher suggested
by Lian et al., albeit with a reduced number of diffusion
rounds. In another study, Hamdi et al. proposed a selective
compression-encryption scheme for images, utilizing the
standard map in the substitution and permutation processes.

The primary objective of this paper is to develop an
implementation of the standard map for random number
generation. The paper aims to analyze the chaotic nature of the
standard map and assess its suitability for producing random
numbers. The ultimate goal is to construct an efficient random
number generator based on the standard map.

By exploring the potential of chaotic systems, specifically
the standard map, for random number generation, this research
aims to contribute to the development of robust and reliable
methods for producing random numbers. The analysis of the
standard map’s chaotic behavior and its impact on the
generated numbers will provide valuable insights into the
efficacy of using chaotic systems as a source of randomness.
The findings of this study can have implications for various
fields in cryptography, where secure and unpredictable random
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numbers are essential for ensuring the integrity of sensitive
information.

II. BAasic THEORY

A. Random Number

A random number is a numerical value that cannot be
predicted in terms of its value or occurrence. These numbers
can take various forms including integers, real numbers, or
binary strings. Examples of a series of random numbers
include integers [285, 1241, 599, 2349, 7], real numbers
[0.297, 0.6726, 0.0302, 0.4401], and the binary string
‘11010100110°.

Random numbers play a crucial role in the field of
cryptography. They are used in various cryptographic
algorithms and systems. In public-key cryptography
algorithms, random numbers are utilized for generating key
parameter values. In the Diffie-Hellman Key Exchange, for
example, a party may generate their private key number
randomly. Similarly, the ElGamal encryption algorithm needs
a random integer as part of its encryption process. Several
other applications of random numbers are generating
initialization vectors (IV) for a block cipher, random strings in
challenge-and-response mechanisms used for authentication,
and client session keys for the Secure Sockets Layer (SSL)
protocol.

B. Random Number Generation

Random number generation is the creation of number
sequences that lack predictable patterns. A program that does
this task is called a random number generator (RNG). RNGs
can generate numbers using two main methods, -either
exhibiting a pseudo-random or truly random behavior.

Pseudo-random number generators (PRNGs) imitate the
properties of random numbers but are not genuinely random.
They rely on an initial value called the seed to produce their
sequence of numbers, which means their results can be
reproduced. The speed and efficiency of PRNGs make them
significant in various wuses such as simulations and
cryptography. However, cryptographic applications necessitate
PRNG output that is unpredictable and not easily replicated.
Therefore, more complex algorithms are required to ensure the
output is not easily predictable. The output of a PRNG must
possess good statistical properties, which necessitates careful
mathematical analysis to guarantee its suitability. In some
instances, common PRNGs may exhibit artifacts that fail
statistical tests, such as having shorter-than-expected periods,
lacking uniform distribution, showcasing correlation, poor
dimensional distribution, and displaying differences in value
occurrence distances.

Unlike their counterparts, true random number generators
(TRNGS) produce random numbers through the utilization of
physical processes instead of algorithms. These TRNGs are
based on phenomena such as thermal noise and quantum
effects, which are theoretically unpredictable. Hardware
TRNGs utilize transducers, amplifiers, and analog-to-digital
converters to convert physical phenomena into digital random
numbers. However, it is important to note that hardware
TRNGs often have limited output rates. Therefore, they are

frequently employed to generate seeds for faster

pseudorandom number generators.

Hardware random number generators find widespread use
in the field of cryptography, especially in generating
cryptographic keys for secure data transmission in protocols
like Transport Layer Security (TLS). The inherent randomness
of hardware TRNGs enhances the security of cryptographic
systems by providing an unpredictable foundation for key
generation. This unpredictability is crucial in cryptographic
protocols to prevent adversaries from easily deducing the
encryption keys and compromising the security of transmitted
data.

C. Chaos Theory

Chaos theory examines the behavior of systems governed
by deterministic laws that exhibit apparent randomness or
unpredictability. By exploring deterministic chaos, we can
reconcile the seemingly contradictory concepts of randomness
and determinism. Previously, randomness was perceived as
apparent and attributed to a lack of knowledge regarding the
multiple underlying causes. However, the success of scientific
predictions based on deterministic principles since Newton’s
era has proven that a seemingly complex and random system
can be predictable.

More recent investigations have revealed that even systems
governed by well-understood physical laws can exhibit
unpredictable behavior. Surprisingly, systems with simplicity
can give rise to seemingly chaotic outcomes. What makes
these systems behave unpredictably is their sensitivity to
initial conditions and how these conditions are set in motion.
This characteristic is a common thread among such systems.

The butterfly effect serves as a prominent illustration of the
intrinsic unpredictability found within a simple model of heat
convection. It demonstrates that a minute perturbation, such as
the flapping of a butterfly’s wings, can have far-reaching
consequences and lead to significant variations in the outcome
of the system. Sensitivity to initial conditions in systems like
this becomes the center of discussion in chaos theory.

Within classical mechanics, dynamical systems manifest
motion on attractors. Traditionally, there are three types of
attractors called single points, closed loops, and tori. However,
in the 1960s, Stephen Smale made a groundbreaking discovery
by uncovering a new class of attractors called strange
attractors that exhibit chaotic dynamics. These strange
attractors possess intricate structures at all scales, which has
contributed to the development of fractal geometry and paved
the way for advancements in computer graphics.

The advent of strange attractors and the subsequent
exploration of their complexity have given rise to a deeper
understanding of chaos theory. These intricate patterns,
discovered within the dynamics of chaotic systems, have
revealed a mesmerizing interplay between order and disorder
in fractal structures. The examination of fractals and their
self-similar properties has unlocked new avenues for studying
complex phenomena in various fields, including physics,
biology, economics, and even art.
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D. Standard Map

The standard map, also referred to as the Chirikov standard
map or Taylor-Greene-Chirikov map in older literature, is a
chaotic map that preserves area and maps a square with a side
length of 2m. Its origins can be traced back to Boris Chirikov
who developed it to describe the dynamics of magnetic field
lines. The standard map has been extensively studied as a
paradigm for chaotic Hamiltonian dynamics and has played a
major role in classical and quantum chaos research.

The standard map describes the Poincaré section of the
motion of the kicked rotator. The kicked rotator consists of a
frictionless stick that can rotate in a plane around one of its
tips, while also being periodically kicked on the other tip.
Mathematically, the standard map is defined by the equations

In+1 = In + k sin(en)

en+1 = en + In+1

or by incorporating the previous iteration of /, 6n+ | can also be

formulated as

9n+1 = Gn + In + k sm(en)
where / and 6 are computed with respect to mod 2m and kis a
positive constant. In the context of the system, / and 6
represent the angular momentum and angular position of the
stick respectively while k represents the strength of the
nonlinear kick and ultimately the system’s degree of chaos.

Below, examples of the Poincaré sections of the standard
map with different values of & are illustrated, plotting the
values of / and 6 on a two-dimensional plane. These visual
representations showcase the different behaviors and
structures that emerge as & varies.
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Fig. 2.1. Poincaré section for standard map of k= 0.5
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Fig. 2.2. Poincaré section for standard map of k= 0.971635
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Fig. 2.3. Poincaré section for standard map of k=5

Larger values of k increase the nonlinearity of the map and
thus allow for more chaotic behaviors when coupled with
appropriate initial conditions. Various authors have bounded
the value of & at which global chaos occurs. Hermann provides

a lower bound of k > 3—14, while MacKay and Percival

suggest an upper bound of k < %. However, the most
tested and accurate estimation to date comes from Greene’s
method, which approximates k = 0.971635.

111. DESIGN AND ALGORITHM

A. Design

The design of the random number generator algorithm is
based on the values generated by the standard map,
specifically the values 7 and 6. In each iteration, the values of /
and O are calculated using the standard map equations and are
bounded by the modulo of 2m. This ensures that the values
stay within a defined range for the periodicity of the sine
function in the formula of /.

To avoid getting stuck in a predictable pattern, a check is
implemented to ensure that the initial values of / and 6 cannot
both be 0. If both values are 0, subsequent iterations will
always yield 0 as the sine function will always return 0,
resulting in a non-random sequence made up entirely of zeros.
Therefore, the check prevents this scenario from occurring.

Another important check is performed on the parameter £,
which represents the crucial constant determining the chaotic
behavior in the standard map equations. It is necessary to
ensure that & is a positive value. If & is not greater than 0, the
behavior of the random number generator may become
unpredictable or undesirable.

Furthermore, since the iterations of the standard map
calculation will always produce values of / and 6 bounded
between 0 and 2m, it is necessary to check that the initial
values of / and Balso fall within this range. This ensures
consistency and prevents unexpected results.

As mentioned before, the random numbers generated by
the algorithm are derived from the values of / and 6 in each
iteration of the standard map. Two numbers are obtained from
each iteration by applying the mod 1 operation to the values
of 7 and 6. These values are then multiplied by 10 to the power
of exp to shift the decimal point. Finally, the resulting numbers
are converted to integers, retaining only the integer part. This
process allows the user to specify the number of digits the
random numbers should have. By providing the exp parameter,
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users can control the precision and scale of the generated
random numbers. This flexibility allows for customized usage
of the random number generator in various applications. As an
example of these operations, when exp = 5, the value
1.52486421 becomes the integer value of

(1.52486421 mod 1) x 10" which is 52486.

B. Algorithm

With the aforementioned design considerations, a random
number generator algorithm is constructed and implemented in
the form of a function. The function receives parameters i, o,
n, k, and exp which respectively represent the initial / and 6
value, how many random numbers are generated, the k
constant, and the maximum amount of digits a random number
could have. The parameter & has a default value of 0.971635
which is the significant point of global chaos in the standard
map, while the parameter exp has a default value of 4 so that
the generated numbers by default have a maximum of 4 digits.
The function returns an array of random numbers with length
n. The algorithm follows these steps:

1. Do initial checks on function parameters.
a. Check that k > 0. If k < 0, value & is invalid and
exit.
b. Check that i and o are not both equal to 0. If both
i — 0 and o = 0, the combination of i and o are
invalid and exit.
c. Checkthat 0 < i< 2mIfi<Oori =
is invalid and exit.
d. Lastly, checkthat0 < 0 < 2m.Ifo < Ooro > 2m,
value o is invalid and exit.
2. Initialize an empty array called numbers.

3. Loop [%

a. Calculatei = (i + k sin(o)) mod 2.

b. Then, calculate 0 = (0 + i) mod 2m with i using
the value calculated in the previous step.

c. Calculate numl which is the integer value of
(imod 1) x 1077

d. Then, calculate num2 which is the integer value of
(omod 1) x 10",

e. Append numl and num?2 to the array numbers.

4. Return the array numbers, taking the first n elements.

This means that for an odd value of », the last generated
number is discarded.

2m, value i

] times.

As an example, if the user inputs i = 0.2, o = 0.1,
n = 5 while leaving the default values k = 0.971635 and
exp = 4, the algorithm will return a sequence of random
numbers 2970, 3970, 6726, 696, and 5248.

IV. ANALYSIS

With the random number generator algorithm proposed, a
few aspects are analyzed which are deemed relevant and
important to assess the quality of the random numbers. These
aspects are the periodicity and distribution of the random
numbers generated by the algorithm.

A. Periodicity

To analyze the periodicity of the random number
generator, a line plot is used with the x-axis representing the
index of the number and y-axis representing the number
generated for a given index. There are two variable conditions
which are by varying the initial value of / and 6, and also by
varying the k constant.

A sequence of 100 random three-digit numbers is
generated and examined to see whether any repeating patterns
or cycles emerge. By observing the generated sequence over a
large number of iterations, it can be determined whether the
system exhibits any periodic behavior. The absence of
discernible patterns or repetitions indicates a higher degree of
randomness. Ideally, the random number generator should not
have any period or repetition.

1) Initial value of I and 0

The values k = 0.971635 and exp = 3 are used to
analyze the effect of different values of / and 6 when
generating 100 random numbers.
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Fig. 4.1. Periodicity of initial / = 0.1and 6 = 0.1
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Fig. 4.2. Periodicity of initial ] = 0.1and 6 = 0.5
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Fig. 4.3. Periodicity of initial ] = 0.1and 6 = 1
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Fig. 4.4. Periodicity of initial/ = 0.5and 6 = 1
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Fig. 4.5. Periodicity of initial ] = 1and 8 = 1

The graphs generated for each set of initial values / and 0
appear completely distinct from one another. This observation
suggests that even slight changes in the initial conditions result
in significantly different sequences of random numbers. It
indicates the sensitivity of the standard map to initial
conditions and the chaotic nature of the system.

None of the graphs exhibit any discernible periodicity or
repeating patterns. This absence of regularity implies that the
random numbers generated by the algorithm do not follow a
predictable cyclic behavior. The system appears to explore the
entire phase space chaotically, providing a high degree of
randomness. Regardless of the specific initial conditions
tested, all the resulting sequences of random numbers exhibit
similar levels of chaotic behavior.

2) k constant

The values I = 0.1, 8 = 0.5, and exp = 3 are used to
analyze the effect of different values of £ when generating 100
random numbers. The value k = 0.971635 is a crucial value
to be analyzed as that is the point when the standard map
descends into global chaos.
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Fig. 4.6. Periodicity of k = 0.5
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Fig. 4.7. Periodicity of k = 0.971635
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Fig. 4.8. Periodicity of k = 1.5

Similar to the previous analysis, the graphs generated for
each value of & appear distinct from one another. Each graph
represents a unique sequence of random numbers, highlighting
the sensitivity of the standard map to changes in the parameter
k.

The analysis demonstrates that varying the value of the &
constant has a significant impact on the behavior of the
algorithm. Even when £ is not set to the commonly associated
value of global chaos of 0.971635, the algorithm continues to
exhibit chaotic behavior for generating random numbers.

B. Distribution

To assess the overall distribution of the random number
generator, a histogram is plotted with respect to a sample of
1000 random numbers generated by the algorithm. Similar to
the previous periodicity subsection, there are two variable
conditions which are by varying the initial value of / and 0,
and also by varying the & constant.

From the histogram, it is hoped that the observed
distribution is close to uniform. A uniform distribution means
that the algorithm can produce random numbers fairly across
the range of possible values without any significant clustering.
This means that a number to another number will have the
same chance of being generated.

1) Initial value of I and 6

The values k = 0.971635 and exp = 3 are used to
analyze the effect of different values of / and 6 when
generating 1000 random numbers.
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Fig. 4.9. Distribution of initial / = 0.1and 6 = 0.1
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Fig. 4.10. Distribution of initial ] = 0.1and ® = 0.5
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Fig. 4.11. Distribution of initial ] = 0.1and 8 = 1
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Fig. 4.13. Distribution of initial ] = 1and8 = 1

For the test case with / = 0.1 and 6 = 0. 1, the histogram
exhibits a somewhat bell-curve shape in the higher numbers.
This indicates a concentration of random numbers towards the
middle range of values. While the distribution deviates slightly
from perfect uniformity, it still maintains a relatively balanced
spread of numbers throughout the range.

In the case of I = 0.1 and 6 = 0.5, the histogram reveals
a high count in the lower and middle numbers, indicating a
clustering of random numbers in these regions. However, there
are also several ranges with low counts in the middle and
upper ranges, resulting in an uneven distribution. This
non-uniform behavior indicates the presence of patterns in the
generated random numbers, compromising the desired ideal
distribution.

When I = 0.1 and 6 = 1, the histogram appears mostly
uniform, indicating a closer approximation to the ideal
distribution. However, there are a few regions with
exceptionally high counts, specifically around the values of
400 and 900. These localized peaks in frequency indicate
some deviations from perfect uniformity, but overall, the
distribution displays a satisfactory level of randomness.

For I =0.5 and 6 =1, the histogram exhibits a
bell-curve shape in the higher numbers. This suggests a
concentration of random numbers towards the upper end of the
range, indicating a clustering in that region. While not
adhering strictly to the ideal uniform distribution, the overall
spread of numbers appears reasonably balanced.

The case of I =1 and 6 = 1 presents a severely
non-uniform distribution. The histogram shows the highest
counts in the lower numbers, with very few counts in the
higher numbers. The middle numbers exhibit a strikingly low
count, creating a distinct valley-like pattern. This behavior
strongly deviates from the ideal uniform distribution,
indicating unseen patterns in the generated random numbers.

Varying initial values of 7/ and 6 demonstrates the
algorithm’s ability to approach a uniform distribution of
random numbers in some cases, while not so in others. The
ideal uniform distribution is achieved in some instances, but
clustering or non-uniform patterns can also emerge.

2) k constant

As discovered before, the initial values of 7 and 6 to be 0.1
and 1 respectively produce the closest to a uniform
distribution. Thus, those values are used to analyze the effect
of varying values of the k£ constant with exp = 3 when
generating 1000 random numbers.
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Fig. 4.14. Distribution of k = 0.5
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Fig. 4.15. Distribution of k = 0.971635

IF4020 Cryptography Paper, Semester II Year 2022/2023



0 200 400 600 800 1000
Number

Fig. 4.16. Distribution of k = 1.5

The test case with k = 0.5 reveals a distribution pattern in
the histogram where the lower and middle numbers have high
counts, followed by a valley of low counts from the middle to
the higher range. While this distribution deviates from perfect
uniformity, it still demonstrates a degree of randomness with a
slight bias towards the lower and middle ranges.

When k = 0.971635, the histogram reveals a mostly
uniform distribution, which closely approximates the ideal.
The majority of the bins in the histogram display similar
counts, indicating an even spread of random numbers across
the entire range as previously seen.

Lastly, at k = 1.5, the histogram appears kind of uniform
but exhibits a valley-like shape with lower counts in the
middle-high regions. This indicates a slight clustering towards
the lower and higher ends of the range, resulting in a dip in
frequency in the middle region. While the distribution deviates
slightly from the ideal uniform distribution, it still maintains a
relatively balanced spread of numbers.

By varying the values of the k& constant, the algorithm’s
capability to approximate a uniform distribution under specific
conditions is observed. Notably, when k = 0.971635, the
distribution is predominantly uniform with minimal
deviations. However, other values of k show non-uniform
distributions. It is uncertain to say whether the result of the
uniformity is because of the value of k by itself or because of
the combination of it with values / and 0 as well.

V. CONCLUSION

The successful implementation of the standard map as a
random number generator demonstrates its potential for
producing high-quality random numbers. The algorithm’s
sensitivity to initial conditions, combined with the absence of
discernible periodicity or repeating patterns, ensures a high
degree of randomness, making it a promising candidate for
random number generation. Regardless of the specific initial
conditions tested, the algorithm consistently exhibits similar
levels of chaotic behavior, further enhancing its reliability.

A random number generator should generate a number
with the same probability as another number, or in other words
have a uniform distribution of generated values. However, the
algorithm fails to consistently generate uniformly distributed
values with varying parameters k, I, and 0, necessitating
further investigation into the complex interaction between £, 1,

and 0. Future research can delve into these relationships,
unraveling the underlying mechanisms and enabling the
optimization of the algorithm for everyday applications.

Source CoDpE

The source code for the standard map random number
generator algorithm implementation can be found in the
following GitHub repository:

https://github.com/blueguy42/Standard-Map-RNG
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