

FrankenCipher: A New Simple Block Cipher

Gerardus Samudra Sembiring​1​, ​Nathaniel Evan Gunawan​2​.

1,2 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika (STEI), Institut
Teknologi Bandung (ITB), Jalan Ganesha 10, Bandung 40132
E-mail: ​13516103@std.stei.itb.ac.id​, ​13516055@std.stei.itb.ac.id

Abstract. ​Encryption, the process to obfuscate information deemed confidential or private,
while dating back to the days of Ancient Greece and Rome, has now rapidly risen in
complexity and prominence, thanks to the development of modern technology. We will now
take a look at several modern block cipher encryption algorithms, and propose our own block
cipher encryption algorithm, applying in it the Feistel structure, confusion and diffusion,
substitution and transposition, and iterated ciphers. ​Keywords​: encryption, block cipher,
Feistel, confusion, diffusion.

1. Introduction
In this paper, we would like to propose a new, simple block cipher titled FrankenCipher.
FrankenCipher arises out of the need for a block cipher that is more performant, yet maintains the
level of security that historically well-established block ciphers such as DES offer. To achieve this, we
combine the unbalanced Feistel network implemented in MacGuffin, a 64-bit block cipher, and the
key scheduling algorithm of RC4 for the S-block, and the structure of Twofish.

2. Theoretical Framework

2.1. Block ciphers
A block cipher is an encryption technique that operates on the block level. To encrypt a plain text with
a block cipher, the plaintext is split into multiple blocks of ​n​-bits. The block cipher then proceeds to
encrypt each block to produce a cipher block, utilising a fixed, symmetric key; that is, the same key is
used for both the encryption and decryption process. Finally, the cipher blocks are concatenated
together to form a ciphertext.

2.2. Modes of operation
There are a number of modes of operation for block ciphers, 3 of which are relevant to the topic of this
paper and shall be briefly explained:

● Electronic code book (ECB)
○ ECB works by independently encrypting the message blocks, passing them into an

encryption function with a key that is shared by all of the blocks. (Hence, 2 or more
blocks containing the same message produce the same number of identical cipher
blocks.) This results in a mode that is fault-tolerant, since all blocks are encrypted
independently of each other, but vulnerable to statistical attacks.

● Cipher block chaining (CBC)

mailto:13516103@std.stei.itb.ac.id
mailto:13516103@std.stei.itb.ac.id

○ CBC introduces a dependency between the resulting cipher blocks; a cipher block, in
this mode, depends on its corresponding plain text as well as all the cipher blocks
produced before it. The first message block is XOR-ed with a random initialisation
vector (IV) to ensure that each message is unique, and then processed by an
encryption algorithm with a key, resulting in a cipher block. The second message
block will be XOR-ed with the first cipher block, the third message block with the
second cipher block, and so on. In this way, CBC is harder to cryptanalyse than ECB,
but a corrupted message block will corrupt all the cipher blocks after it, due to the
chaining between the blocks.

● Counter mode
○ Counter mode attempts to improve upon CBC by removing the chaining, and

therefore dependency, between the cipher blocks. This mode utilises a counter, a
block with the same size as the message cipher, which is initialised for the first block
encryption and incremented for every subsequent block. For each message block, the
counter and key will be fed into the encryption algorithm, then XOR-ed with the
message block to form a cipher block.

2.3. Balanced Feistel networks
A Feistel cipher, or more commonly known as a Feistel network, is a symmetric structure used by a
number of prominent block ciphers, including the DES, GOST, Blowfish and Twofish ciphers. For
each message block, it works by splitting the block into two equal pieces: ​L​0 ​and ​R​0​. For each round

, we compute: 0, 1, 2, ..., ni =
Li+1 = Ri

(R ,)Ri+1 = Li ⊕ F i K i
The resulting ciphertext is ,)(Rn+1 Ln+1
This ciphertext can be decrypted by using the same process, for , n, n , n , ..., 0i = − 1 − 2

resulting in .L , R)(0 0

2.4. Unbalanced Feistel networks
It is possible to define a Feistel network that has unequal left and right halves. This is explored in
Schneier and Kelsey 1996, defining an ​Unbalanced Feistel Network (UFN)​. In a UFN, the n bits of
input are split into two pieces of s and t bits each. The s-bit piece is the ​source​, being the s
most-significant bits of the input, and the t least-significant bits of the input make up the ​target​.

For each round, the source block is fed into the round function F along with the round key,
producing a t-bit output, which is XOR-ed with the t-bit ​target​. Now the t-bit result forms the most
significant bits of the next round's input, while the s-bit source block is passed unmodified into the
least significant bits.

One round of a UFN is therefore:
F (msb (X),) sb (X))||msb (X)X i+1 = (s i ki ⊕ l t i s i

3. Proposed block cipher

3.1. Definitions
The FrankenCypher uses a block size of bits and a variable-length key of up to 2048 bits. 6n = 9 K
We use an unbalanced Feistel network with a split of and bits, iterated for 4s = 6 2t = 3 6N = 1
rounds. The round function takes in the s-bit input along with a 64-bit round key . In every F ki
round, uses four bijective 8-by-8-bit S-boxes , which are key-dependent.F ...SS0 3

3.2. S-box initialisation
First, take an initial S-box, , consisting of the identity permutation.S−1

We first encrypt the main key under four constant keys , using the main encryption K ...CC0 3
algorithm (defined later) in ECB mode, in order to generate four derived keys . In this K ...DKD 0 3
operation, are not yet available, se is used. The derived keys are then used with the RC4 ...SS0 3 S−1
key scheduling algorithm to generate the S-boxesSS0 3

x4672616e6b53626f784e756cC0 = 0
x4672616e6b53626f784f6e65C1 = 0
x4672616e6b53626f7854776fC2 = 0
x4672616e6b53626f78547269C3 = 0

3.3. Round key generation
The round keys are generated

3.4. Round function
The round function takes in a 64-bit input and a 64-bit round key, and produces a 32-bit result. First,
the input bits are split into two; 32 even-numbered bits 0..62 into and 32 odd-numbered bits into w1

. Each word is then passed into a function parameterized by the two 32-bit halves of tow2 g ki
produce two 32-bit results, which are then added modulo . The bits of this sum are reversed in 232
order, creating the output.
Function g mixes the input word with the round key word using a mod- addition, and then splits 232
the sum word into 4 bytes. The four bytes are substituted by the four S-boxes, resulting in 4 bytes. The
4 bytes are output back into F.

4. Figures

5. Tables

6. Conclusion and future development

7. References

[1] Blaze M and Schneier B, 1995, ​The MacGuffin Block Cipher Algorithm
[2] Schneier B, Kelsey J, Whiting D, Wagner D, Hall C, Ferguson N, 1998, ​Twofish: A 128-Bit

Block Cipher
[3] Schneier B and Kelsey J, 1973, Unbalanced Feistel Networks and Block-Cipher Design

Acknowledgments
Authors wishing to acknowledge instruction from the lecturer, as well as assistance or encouragement
from colleagues.

