

ITMFR: A New Block Cipher Algorithm with Feistel

Network, Round Key, and Key-Dependent Substitution and

Transposition Following Shannon’s Diffusion and Confusion

Principle

Ignatius Timothy Manullang1, Fatur Rahman2.

1,2 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika (STEI), Institut

Teknologi Bandung (ITB), Jalan Ganesha 10, Bandung 40132

E-mail: ignatiustimothymanullang@gmail.com , 13517056@std.stei.itb.ac.id

Abstract. Currently, many block cipher algorithms are vulnerable to linear cryptanalysis and

differential cryptanalysis. In order to fix those vulnerabilities, substitution and permutation

which are key-dependent, theoretically, can be incorporated into the block cipher algorithm.

Therefore, a new block cipher, which is named ITMFR is presented. It incorporates Feistel

network, round keys, and key dependent transposition or permutation and substitution cipher for

diffusion and confusion which provides additional security and complexity into the traditional

block cipher algorithm.

Keywords: Block Cipher, Feistel Network, Round Key, Key-dependent, Substitution,

Transposition

1. Introduction

In this era of information, computer technology is being developed rapidly. The transmission of

information happens more frequently, with the advent of new information exchange medias, including,

however, not limited to social medias, which results in the ever-growing necessity of data protection

against illegal duplication and unauthorized use. This is in contrast to the availability and the millions

of users using the internet network which is a non-secure public channel. The development of this

particular computer technology has a negative impact in which secret messages can be retrieved through

various attacks. This has led to the increasing reliance on information security, which can be obtained

through the application of cryptography. Cryptography, can provide security properties to the

information, such as confidentiality, integrity, authentication, and non-repudiation.

In Cryptography, the message goes through the process of encryption, in which the information is

encoded with a key before it is sent by the sending party. The receiving party will then receive the

encrypted message. There are many cryptographic algorithms. One of them is Block Cipher. Block

Cipher is an encryption method that applies a deterministic algorithm along with a symmetric key to

encrypt a block of text.

mailto:ignatiustimothymanullang@gmail.com
mailto:13517056@std.stei.itb.ac.id

The main components of the Block Cipher include substitution box (S-box), permutation box (P-box),

and other encryption operations with key. S-box functions as a component for substitution cipher and

provides confusion, P-box functions as a component for transposition cipher and provides diffusion. The

terms diffusion and confusion were identified by Claude Shannon in his 1945 classified report A

Mathematical Theory of Cryptography [1].

Many popular Block Ciphers include S-box and P-box which are specifically designed for better

security. S-box and P-box in Block Ciphers in standards such as DES [2] and AES [3] produce non-linear

transformations. S-box and P-box in Block Ciphers such as Khufu [4], DSDP [5], Twofish [6] and Blowfish
[7] uses key-dependent S-box and/or P-box, in which the S-box and/or P-box is created using the

encryption key.

1.1. DES

DES or Data Encryption Standard, is a standard for DEA or Data Encryption Algorithm, a symmetric-

key block cipher algorithm which is used to encrypt digital data. DES was developed at IBM in 1972.

DES operates with 64-bit blocks, with external key length equal to its block size of 64 bits. However,

only 56 bits of its external key are used, the other 8 parity bits are not used.

In DES, each plaintext block is encrypted in 16 enciphering rounds, which follows the Feistel Network

(shown in figure 2). Each round uses a different internal key, which consists of 48-bits and is generated

from the 64-bit external key from the user, using key scheduling (shown in figure 3). Each block

undergoes an initial permutation (IP), 16 rounds of enciphering, and initial permutation inversion (IP-1)

(shown in figure 1).

Figure 1. DES Global Scheme

Figure 2. DES Encryption Algorithm

Figure 3. DES Internal key generation

The Feistel function, which is depicted in figure 2, operates on a 32-bit half-block, and consists of four

stages, Expansion, Key mixing, Substitution and Permutation.

Expansion involves expanding the 32-bit half-block into 48 bits using expansion permutation by

duplicating half of the bits.

Key mixing involves combining the expansion result with a subkey that corresponds to the encryption

round using a XOR operation.

Substitution involves dividing the key mixing result into eight 6-bit pieces, then it is substituted using

the substitution boxes or S-boxes. Each of the eight S-boxes replaces its six input bits with four output

bits, following a non-linear transformation

Permutation involves rearranging the output of substitution according to the permutation box (P-box).

1.2. AES

AES, which is also known as Rijndael, is a Block Cipher standard which is designed by two Belgian

cryptographers, Vincent Rijmen and Joan Daemen, and established by the U.S. National Institute of

Standards and Technology (NIST).

AES is based on the substitution-permutation network. AES consists of three Block Ciphers, AES-

128, AES-192 and AES-256. AES incorporates 128-bit block sizes with varying key sizes of 128 for

AES-128, 192 for AES-192, 256 for AES-256, and varying number of rounds, 10 for AES-128, 12 for

AES-192, 14 for AES-256. The Algorithm has some steps, which include KeyExpansion,

AddRoundKey, SubBytes, ShiftRows, and MixColumns.

KeyExpansion involves deriving round keys from the cipher key using AES key schedule.

AddRoundkey involves combining each byte of the current message state with the cipher key.

SubBytes involves byte substitution using a substitution table (S-box).

ShiftRows involves shifting of rows of array state through wrapping.

MixColumns involve mixing data in each column of the state array.

The process is ordered as follows:

1. Initial Round

1.1. AddRoundKey

2. Repeated as much as the number of rounds (Nr) - 1.

2.1. SubBytes

2.2. ShiftRows

2.3. MixColumns

2.4. AddRoundKey

3. Final round.

3.1. SubBytes

3.2. ShiftRows

3.3. AddRoundKey

Figure 4. AES algorithm process

1.3. Khufu

Khufu is a Block Cipher which is designed by Ralph C. Merkle in 1989. The cipher is named based on

the Egyptian Pharaoh Khufu. Khufu is a 64-bit block cipher that uses 512-bit keys, which is unusual

considering that other block ciphers typically have much smaller keys which rarely exceed 256 bits.

Khufu incorporates the Feistel Network with 16 rounds by default, although the users are allowed to

change the number of rounds into multiples of eight between 8 and 64. The S-Box used in this Block

Cipher is a key-dependent S-Box which changes every 8 rounds (which is termed an octet).

In a round, the message is divided into two, left half and right half. The least significant bit of the left

half the block is used to create the 8×32-bit S-box. Then, the S-box is XORed with the other 32-bit half.

The left half is rotated to bring a new byte into position. Then, the halves are swapped. At the start and

end of the algorithm, key whitening, which in this case is done by XOR between extra key material and

the block.

Figure 5. Khufu Structure

DSDP

DSDP is a 128-bit Block Cipher which incorporates key-dependent S-Box and P-Box. Key sizes vary

but are generally more than 128 bits. The number of rounds also varies. The variation of key sizes and

number of rounds makes this block cipher flexible in terms of trade-off between speed and security.

Permutation and Substitution on the DSDP is done with S-Box and P-Box, which are generated by the

RC4 cipher's key scheduling algorithm.

1.4. Twofish

Twofish is a symmetric key block cipher, based on feistel network, with a block size of 128 bits and key

sizes up to 256 bits. The components of Twofish cipher are key-dependent S-box, Maximum-Distance

Separable Matrix (MDS Matrix), Pseudo-Hadamard Transform (PHT) and whitening process. Twofish

is designed to meet AES criteria (Advanced Encryption Standard) such as, the block size must be 128

bits, capable of accepting key sizes of 128 bits, 192 bits and 256 bits and efficient in both hardware and

software implementation.

Figure 6. Twofish Structure

1.5. Blowfish

Blowfish is a symmetric key block cipher designed in 1993 by Bruce Schneier. The Blowfish algorithm

incorporates a 64-bit block size and a variable key length from 32 bits up to 448 bits. It is based on the

Feistel Network, in which Blowfish incorporates 16-rounds of Feistel Network. It also does substitution

using large key-dependent S-boxes.

Figure 7. Twofish Structure

2. Basic Theory

2.1. Block Cipher

Block cipher [8] is a symmetric key cryptographic algorithm which operates on a block of text. In block

cipher, the plaintext bits are divided into blocks of bits of equal length. Encryption on block cipher is

done on plaintext blocks with bits of the key, and the user-supplied, external key does not have to equal

the length of the plaintext block.

Figure 8. Block Cipher Encryption & Decryption Scheme

2.2. Block Cipher Operation Modes

Block cipher operation modes are modes in which a block is operated before it is encrypted or decrypted

by the encryption or decryption function. There are 5 (five) block cipher operation modes, which are

Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback

(OFB) and Counter Mode.

2.2.1. Electronic Code Book (ECB)

The Electronic Code Book mode or ECB mode involves individually and independently encrypting each

plaintext block of Pi into a block ciphertext Ci, by using the Encryption formula:

Ci = EK (Pi) (1)

And the Decryption formula:

Pi = DK (Ci) (2)

In this case, Pi and Ci respectively are the i-th plaintext and ciphertext blocks.

In ECB mode, the same plaintext block is always encrypted to be the same block ciphertext. Since each

block of the same plaintext is always encrypted into the same block of ciphertext, it is theoretically

possible to create a corresponding plaintext and ciphertext codebook.

Figure 9. Encryption & Decryption Scheme of Electronic Code Book (ECB) Block Cipher Operation

Mode

2.2.2. Cipher Block Chaining (CBC)

The Cipher Block Chaining mode or CBC mode aims to create dependencies between blocks. Each

block of ciphertext depends on all previous plaintext blocks. The result of the previous block encryption

is sent into the initialization vector (IV). The IV can be given by the user or generated randomly by the

program. In the decryption process, the plaintext block is obtained by XOR-ing IV with the results of

the decryption current block encryption. The first block encryption requires a pseudo block (C0) which

is called the initial of the first ciphertext block. The IV can be given by the user or generated randomly

by the program. In the decryption, the plaintext block is obtained by XOR-ing IV with the results of the

decryption of the first ciphertext block.

Figure 9. Encryption & Decryption Scheme of Cipher Block Chaining (CBC) Block Cipher Operation

Mode

2.2.3. Cipher Feedback (CFB)

The Cipher Feedback mode or CFB mode aims to overcome weaknesses in CBC mode when applied to

data communications (incomplete block size). Data is encrypted in units that are smaller than the block

size. The n-bit CFB encrypts n bits of plaintext at a time, which makes the n-bit CFB treat the block

ciphers similar to stream ciphers. CFB mode requires a queue that is the same size as the input block

size. The 8-bit CFB mode for 64-bit (8-byte) blocks operates as follows:

Figure 10. Encryption & Decryption Scheme of 8-bit CFB Cipher Feedback (CFB) Block Cipher

Operation Mode for 64-bit (8-byte) blocks

2.2.4. Output Feedback (OFB)

The Output Feedback mode or OFB mode is similar to CFB mode, except that n bits of the encrypted

queue are copied to the rightmost position element in the queue. Decryption is done as the reverse of the

encryption process. In the encryption process, 1-bit errors in plaintext blocks only affect the

corresponding ciphertext blocks, and in the decryption process, 1-bit errors in the ciphertext block only

affect the corresponding plaintext blocks. The 8-bit OFB mode for 64-bit (8-byte) blocks operates as

follows:

Figure 11. Encryption & Decryption Scheme of 8-bit CFB Cipher Feedback (CFB) Block Cipher

Operation Mode for 64-bit (8-byte) blocks

2.2.5. Counter Mode

The Counter Mode uses counters for encryption and decryption. A counter is a value in the form of a

block of bits whose size is the same as the size of the plaintext block. The counter value must be different

from each encrypted block. Initially, for the first block encryption or decryption, the counter is initialized

with a value. Furthermore, for the encryption or decryption of the next blocks the counter is incremented

by one value. The structure of Counter Block Cipher Mode is as follows:

Figure 12. Encryption & Decryption Scheme of Counter Block Cipher Operation Mode

2.3. Block Cipher Structure

Block Cipher Structure is the base in which Block Ciphers are created. There are 2 types of block cipher

structures, namely SPN (Substitution Permutation Network) and Feistel Network. An example of Block

Cipher which is based on SPN is AES, and examples of Block Cipher which is based on the Feistel

Network are DES, Twofish, Blowfish and Khufu.

SPN has 4 types of transformations, namely substitution transformations, permutation transformations,

linear merge transformations and key addition transformations. The structure of SPN is shown below,

where where S is substitution, P is permutation and K is key

Figure 13. The structure of SPN

Feistel Network is one type of block cipher structure, which in the balanced Feistel network, the plaintext

is divided into 2 equal parts which will be processed differently. The plaintext block is divided into two

blocks, namely L and R. L and R for the i-th round are defined in the equations below, where F is Round

Function for encryption or decryption and K is key

Li + 1 = Ri (3)

Ri + 1 = Li ⊕ F (Ri, Ki) (4)

After that, Ciphertext is defined as (Rn + 1, Ln + 1) where n is the number of rounds for the block cipher.

The structure of Feistel Network is shown below.

Figure 13. The structure of Feistel Network

2.4. Key Dependent Substitution

Key-Dependent Substitution is substitution which is affected by the key. Key-Dependent Substitution

can be done using the Key-Dependent S-box, which is generated using an S-box generation algorithm

based on the encryption key.

2.5. Key Dependent Permutation

Key-Dependent Permutation is permutation which is affected by the key. Key-Dependent Permutation

can be done using the Key-Dependent P-box, which is generated using a P-box generation algorithm

based on the encryption key.

2.6. Shannon’s Diffusion and Confusion Principle

Shannon’s Diffusion and Confusion Principle were terms identified by Claude Shannon in his 1945

classified report A Mathematical Theory of Cryptography [1]. They are two basic principles of block

cipher design.

Diffusion means spreading the influence of a plaintext bit on the ciphertext to hide the statistical

characteristics of a plaintext. In other words, a difference of one input bit can cause a significant change

in ciphertext. A simple way that can be done to produce diffusion is the transpositions or permutation

of plaintext at a certain level (byte / bit).

Confusion hides the relationship between plaintext and ciphertext. Confusion can be generated through

substitution.

Simple operations such as substitution and permutation when performed multiple times on a plaintext

block can produce good confusion and diffusion which implies a better level of security for the block

cipher. This is what underlies the iterated cipher design for a block cipher.

3. The Proposed ITMFR Algorithm

ITFMR is designed to implement iterated cipher, transposition, substitution, and other algorithm by

applying Shannon’s Confusion and Diffusion principles. ITFMR uses 64-bit blocks, 64-bit keys, and 8

rounds. For each round, the algorithm will iterate transposition of block, substitute the block, and

multiplying the block with the key and raising it to the power of the number of current ongoing rounds,

each process will be done using the key obtained from that round.

The main components of ITMFR are:

1. Key-Dependent Iteration of Transposition

2. Key-Dependent Substitution

ITFMR also uses another operations, that is xor, multiplication, and exponentiation.

3.1. Specification

The specifications of ITFMR are:

1. Block size: 64-256 bits

2. Key size: 64-256 bits

3. Number of rounds: 8

4. Structure: Feistel Network

Figure 14 below describe how ITFMR works.

Figure 13. The Feistel Network structure of ITFMR

3.2. Key-Dependent Iteration of Transposition

ITFMR will iterate transposition of block n times, with n is the total of number 1 bit of the transposed

block. Each transposition will have different keys starting from 0 to n. Let m be the key of the

transposition process, we will make the bits of block into a matrix of m x (number of bits / m). The

ciphered block will then be formed by combining the bit from each row 1 to m from each column 1 to

(number of bits / m).

For example, let the block be 10101111 and the key be 2. The rows of the matrix form of the block will

then be 10, 10, 11, 11. Taking each bit from the all the rows from row 1 to 4 and column 1 and combining

it with each bit from column 2, we obtain 11110011 as the ciphered block.

In Python the implementation of this step is

 key_iterate = 0

 for i in range(len(key)):

 key_iterate = key_iterate + int(key[i])

 for i in range(key_iterate):

 key_transpose = (key_iterate % len(block))

 while(len(block) % key_transpose != 0):

 key_transpose = key_transpose + 1

 new_block = ''

 matrix_block = [block[i:i+ key_transpose] for i in range(0, len(block), key_transpose)]

 for i in range(key_transpose):

 for j in range(len(matrix_block)):

 new_block = new_block + matrix_block[j][i]

 block = new_block

Note that the key of transposition processed will only be the factors of block length.

3.3. Key-Dependent Substitution

ITFMR will generate different S-Box table for each round based on the key from that round. ITFMR

will use Rijndael S-Box as the base table as shown in Figure 6. ITFMR will generate new table based

on the method described by Hosseinkhani and Javadi[9]. The generated table will be used in ITFMR to

substitute every 8 bits from the block with the corresponding value on the table. The number of row will

be taken from the first two and the last two bits from the 8-bit part of the block and the number of column

will be taken from the third to sixth bits from the 8-bit part of the block. For example, 11001100 will be

substituted with the value from row 1100, which is 12 in decimal, and column 0011, which is 3 in

decimal. From the Rijndael table, 11001100 will be substituted as 37 in hex or 110111 in binary.

In Python the implementation of this step is

 sbox = generateKeyDependentSBox(key)

 eightbits_array = [block[i:i+8] for i in range(0, len(block), 8)]

 for i in range(len(eightbits_array)):

 row = binaryToInteger(eightbits_array [i][:2] + eightbits_array [i][6:8])

 column = binaryToInteger(eightbits_array [i][3:6])

 eightbits_array [i] = integerToBinary(sbox[16*row+column]).split('b')[1]

 block = ''.join(eightbits_array)

Note that the block that will be substituted in this step has already gone through the iteration of

transposition step as explained before.

Figure 6. Rijndael S-Box[10]

3.4. Res function

ITFMR also add another step to make sure that the algorithm can be more secure. In this step, the

algorithm will multiply the integer value of the block with the integer value of the key. The result will

then be raised to the power of the number of current rounds conducted. The result will then be converted

back to binary.

In Python the implementation of this method is

 key = binaryToInteger(key)

 block = binaryToInteger(block)

 res = pow((block * key), NFeistelRound)

 res = integerToBinary(res)

Note that the block used in this step has already gone through the substitution process as explained

before.

3.5. Round Function

Figure 14. The Round Function structure of ITFMR

From the feistel network described above, the previous four steps in the algorithm play the role of

transformation function (round function) f in the feistel network with the number of rounds is 8. Feistel

network enables us to use the same function, that is f, for encryption and decryption.

4. Experiment & Result Analysis

4.1. Performance Analysis

ITFMR is implemented in Python 3.8.5 and tested on ACER Nitro AN515-52 with specifications:

1. Operating System: Windows 10 Home Single Language 64-bit

2. Processor: Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz

3. Memory: 8192 MB RAM

Experiment was done using three different plaintext, that is 2 block (32 bytes), 1000 blocks (16 KB),

and 2000 blocks (32 KB). Each plaintext will be encrypted and decrypted using three different modes,

that is ECB, CBC, and counter mode. The time taken to encrypt or decrypt will be measured in ms. The

results of the experiment are shown in Table 1.

Table 1. Experiment Result

Mode 2 block (ms) 1000 blocks (ms) 2000 blocks (ms)

ECB

(Encryption)

189 100549 158748

ECB

(Decryption)

205 96500 160877

CBC

(Encryption)

268 131738 230422

CBC

(Decryption)

337 132301 231065

Counter

(Encryption)

178 97193 171813

Counter

(Decryption)

175 95976 193916

From the result above, we find that the ITFMR algorithm still run relatively slow since our algorithm

use steps that yield large amount of possible combinations of ciphertext. But for a relatively small and

important text, for example in messaging applications, ITFMR proved to be secure to use. The

examples of plaintext, ciphertext, and key are shown in the table below.

Table 2. Example of Plaintext, Ciphertext, Master Key, and Expanded Key

Plaintext (in hex) Ciphertext (in hex) Master Key Expanded Key

I, Giorno Giovanna,

have a dream

(49 2c 20 47 69 6f 72

6e 6f 20 47 69 6f 76

61 6e 6e 61 2c 20 68

61 76 65 20 61 20 64

72 65 61 6d)

q¼Pº²Dô5TÂÂÎQPç¨U

jT;æ×{²

(71 bc 90 51 8f 50 ba

b2 44 f4 02 35 54 c2

c2 ce 51 50 e7 13 a8

55 6a 54 01 3b e6 d7

12 7b b2 15)

Bucciarati 33707e66483cafebb67

079430d0d10df20c299

501461130e3ccc36f14

765e3a1

df7e70e5021544f4834

bbee64a9e3789febc4b

e81470df629cad6ddb0

3320a5c

4.2. Security Analysis

4.2.1. Brute-Force Attack.

For 1 block plaintext, since we use at least 64-bit block, there will be 64 possible keys for iteration of

transposition. There will be 7 possible keys for transposition. For substtution, there will be 16*16

possible substitution for 8 bits of block, so there will be 256 raised to the power of 8 possible substitution

for 1 block. Lastly, the last step of algorithm makes for 2 raised to the power of 128*8 possible results.

The total amount of possible combinations makes it impossible for current technologies to analyze it

within thousands of years.

4.2.2. Linear Cryptanalysis

The use of S-Box in ITFMR makes it harder for linear cyptanalysis since S-Box added non-linear

characteristic to the algorithm. Linear cyptanalysis tries to find linear equation that has high bias that

connects plaintext, ciphertext, and key. The high amount of possible combinations in S-Box makes

harder to do that.

4.2.3. Differential Cryptanalysis

The use of S-Box in ITFMR makes it harder for linear cyptanalysis since S-Box added non-linear
characteristic to the algorithm. Differential cyptanalysis tries to find certain differential output that often

appears given certain differential input. The high amount of possible combinations in S-Box makes

harder to do that.

5. Conclusion and Future Works

In this paper, we developed new block cipher algorithm that is impervious to any cryptanalysis attacks.

ITFMR algorithm is secure since there are so many possible combinations for the ciphertext.

Unfortunately, it still takes much time to encrypt the plaintext or decrypt the ciphertext. Future works

can be conducted to make the algorithm more efficient and thus runs faster.

6. References

[1]"Information Theory and Entropy". Model Based Inference in the Life Sciences: A Primer on

Evidence. Springer New York. 2008-01-01. pp. 51–82.

[2]Munir R 2020 Review Beberapa Block Cipher dan Stream Cipher (Bagian 1: DES)

http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-

cipher-dan-stream-cipher-2020-bagian1.pdf (accessed on 23 October 2020)

[3]Munir R 2020 Review Beberapa Block Cipher dan Stream Cipher (Bagian 4: Advanced Encryption

Standard (AES)) http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-

beberapa-block-cipher-dan-stream-cipher-2020-bagian4.pdf (accessed on 23 October 2020)

[4] R. C. Merkle, “Fast Software Encryption Functions”, Lecture Notes in Computer Science, Advances

in Cryptology, proceedings of CRYPTO’90, pp 476-501, 1990.

[5] R. Zhang, L. Chen, “A Block Cipher using Key-Dependent S-Box and P-Boxes”, Industrial

Electronics, ISIE 2008. IEEE International Symposium, pp. 1463-1468, 2008.
[6] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall dan N. Ferguson, “Twofish : A 128-bit Block

Cipher”, AES Submission.

[7] B. Schneier (1993). "Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish)".

Fast Software Encryption, Cambridge Security Workshop Proceedings. Springer-Verlag: 191–204.

[8] Munir R 2020 Review Beberapa Block Cipher dan Stream Cipher (Bagian 3: Block Cipher)
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-

dan-stream-cipher-2020-bagian3.pdf (accessed on 23 October 2020)

[9]Hosseinkhani R and Javadi H H S 2012 Using Cipher Key to Generate Dynamic S-Box in AES Cipher
System (International Journal of Computer Science and Security vol 6)

[10]Wikipedia Rijndael S-box https://en.wikipedia.org/wiki/Rijndael_S-box (accessed on 23 October

2020)

http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian1.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian1.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian4.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian4.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian4.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Review-beberapa-block-cipher-dan-stream-cipher-2020-bagian4.pdf
https://en.wikipedia.org/wiki/Rijndael_S-box

