Mirror Cipher using Feistel Network

Thsan Muhammad Asnadi' Ranindya Paramitha’ Tony’

123 Informatics Department, Institut Teknologi Bandung, Bandung 40132, Indonesia
E-mail: '13516028@std.stei.itb.ac.id 213516006@std.stei.itb.ac.id *13516010@std.stei.itb.ac.id

Abstract. Mirror cipher is a cipher built by creativity which has a specific feature of mirrored round function. As
other ciphers, mirror cipher could be used to secure messages’ confidentiality and integrity.
This cipher receives message and key inputs from its user. Then, it runs 9 rounds of feistel
networks in ECB modes. Each round would run a round function which consists of 5 functions
in mirrored order (9 function calls in total): s-box substitution, row substitution, column
substitution, column cumulative xor, and round key addition. This cipher is implemented using
Python and has been tested using several message and key combinations. Mirror cipher has
applied Shanon’s diffusion and confusion property and proven to be secured from bruteforce
and frequency analysis attack.

1. Introduction

1.1 Background

In this modern world, data or messages are exchanged anytime and anywhere. To protect
confidentiality and integrity of messages, people usually encrypt their messages before sending them,
and then decrypt the received messages before reading them. These encryption and decryption
practices and techniques are contained under the big concept of cryptography. There are many ciphers
(encryption and decryption algorithms) that have been developed since the BC period. Ciphers are
then divided into 2 kinds of ciphers, based on how it treats the message: stream cipher and block
cipher.

1.2. Analysis of Other Ciphers

Block cipher is a type of cipher that operates on a fixed-length group of bits, called block. A message
would be splitted into blocks and then encrypted. The Data Encryption Standard (DES) specifies two
FIPS approved cryptographic algorithms which are used for encrypting (enciphering) and decrypting
(deciphering) binary coded information [4]. DES splits message into 64 bits blocks, and runs 16
rounds of round function. Its 56 bits round keys are generated from the user’s key. The AES
(Advanced Encryption Standard) is another standard issued by NIST. Its algorithm is capable of using
cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits [5]. AES
runs 10 rounds of round function which consists of 4 functions: subbytes, shiftrows, mixcolumns, and
addroundkey.

1.3. Approach to Develop Mirror Cipher
Mirror cipher is a cipher which developed out of creativity and admiration for the nature of symmetry.
It is called a mirror cipher because it has a specific feature of mirrored round function utilities. Mirror

mailto:13516028@std.stei.itb.ac.id
mailto:13516006@std.stei.itb.ac.id
mailto:13516010@std.stei.itb.ac.id

cipher runs 9 rounds of feistel networks. This cipher is an ECB cipher which encrypts and decrypts
each message block independently.

2. Theories

There are several theories which are referred to as basic knowledge in the development of mirror
cipher. The theories are about cryptography in general, ciphers, block ciphers, feistel network,
diffusion, and confusion.

2.1. Cryptography in General

Cryptography is the practice and study of technique for secure communication in the presence of third
parties called adversaries. In general, cryptography is divided into classic cryptography and modern
cryptography. Modern cryptography is based on mathematical theory and computer science practice.
Classic cryptography focuses on message confidentiality. On the other hand, modern cryptography
focuses on confidentiality, integrity, and non-repudiation.

2.2, Ciphers
Cipher is an algorithm to perform encryption and decryption. Encryption is a conversion of plaintext
into ciphertext. Decryption is a conversion of ciphertext into plaintext. Ordinary information or
comprehensible messages are called plaintext. Unintelligible information or incomprehensible
messages are called ciphertext. Cipher is usually implemented as either block cipher or stream cipher.
Cipher uses one or two keys as information to do encryption and decryption. Based on how key used,
cipher is divided into:
e Symmetric-key cipher
A key is used to do both encryption and decryption. To keep the information secure, key
should be treated as secret information.
e Asymmetric-key cipher
There are two types of key used in this cipher, those are public key and private key. Public key
is a key that can be disseminated widely and openly. Contrarily, private key should be kept secure
by the owner. The key for encryption and decryption process should be different.

2.3. Block Cipher
Block cipher is a type of cipher that operates on a fixed-length group of bits, called block. To work on
long plaintext, plaintext should be divided into blocks with a predetermined size, then encrypt those
blocks using one of these modes:
e Electronic Code Book (ECB)
In this mode, each plaintext block (Pi) is individually encrypted into a ciphertext block (Ci).
For decryption, each ciphertext block (Ci) is individually decrypted into a plaintext block (Pi).
Figure 1 shows how ECB do encryption and figure 2 shows how ECB do decryption. The
encryption formula

' Plaintext Plaintext Plaintext '
[LIIIIIITTIITT] [CIIIIIITITTTT] IIIITIITIITT

1
block cipher !

o Wt]
1

[IIIIIIITTITT] [CIIIIITTITTITT] IIIITITTITITT
1 Ciphertext Ciphertext Ciphertext 1
i

block cipher
encryption

block cipher

Key encryption

Key —=

1 Electronic Codebook (ECB) mode encryption ‘

+ Figure 1. ECB illustration on encryption, source:
+ https://en.wikipedia.org/wiki/Block_cipher_mode_of o

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB

Electronic Codebook (ECB) mode decryption

i
1

: Ciphertext Ciphertext Ciphertext

i

1

‘ ¥ ¥ |

' block cipher block cipher block cipher

. Key —= decryption Key —= decryption Key — decryption

1

1

:

: [IIITIITTITITT] [IIITIITTITITT] [CIIITIITTITITT]
' Plaintext Plaintext Plaintext

i

1

1

1

i

Figure 2. ECB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block cipher_mode_of op
eration#ECB

For encryption, each ciphertext (Ci) block relies on all of the previous ciphertext blocks (Cl,
C2, ..., Ci-1). The previous ciphertext block is used to xor with the next plaintext block before
encryption. To make each message unique, an initialization vector (IV) is used on first block
encryption. Initialization vector is a random value that has the same size as a block. Figure 3
shows how CBC do encryption and figure 4 shows how CBC do decryption.

1
: Plaintext Plaintext Plaintext '
' '
' [TTTITITTTT [TTTITITTTT [EENNNEEEEEEEN] '
1 Initialization Vector (IV) .
N EEENNNEEEEEEE| b 32 .
1 1
! block cipher block cipher block cipher !
. Key encryption Key encryption Key encryption :
1 1
: — [— | :
' OTTTTITITTTT] '
: Ciphertext Ciphertext Ciphertext :
' :
1 1
1 1
' '

Cipher Block Chaining (CBC) mode encryption

+ Figure 3. CBC illustration on decryption, source:
+ https://en.wikipedia.org/wiki/Block_cipher_mode_of_operati

Cipher Block Chaining (CBC) mode decryption

. on#ECB

| D C D E o m m o e mmmmmmmmmmmmmmmm = 1
VT TSI mm |
' Ciphertext Ciphertext Ciphertext :
: OIITITITIITT] OIITITITIITT] [OTTTTTTTT7T1 :
! — | !
1 1
i block cipher block cipher block cipher '
' Key decryption Key decryption Key decryption !
! Initialization Vector (IV} .
| — :
1 1
' [ENNNEEEENEEEE| H
: Plaintext Plaintext Plaintext :
: '
' '
' '
1 1

Figure 4. CBC illustration on decryption, source:
https://en.wikipedia.org/wiki/Block cipher mode of operatio

e Cipher Feedback (CFB)
Similar to CBC, in encryption, CFB uses encrypted previous ciphertext (Ci-1) to xor with next
plaintext (Pi). Initialization vector is used for encrypting and decrypting the first block. Figure
5 shows how CFB do encryption and figure 6 shows how CFB do decryption.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB

Initialization Vector (IV)

ITTITTTTTTT]
block cipher
o —{ enter |

Plaintext

block cipher block cipher
o —| Wtk | | rer—| Winater |
Plaintext Plaintext
I Eannnnnsanann iy EEnnnansnnnnn iy Ef
OTTTIITTTTT [EEEEENNNNNERE] [EEEENNNENEEEE]
Ciphertext Ciphertext Ciphertext

Cipher Feedback (CFB) mode encryption

___ i
Figure 5. CFB illustration on encryption, source: :
https://en.wikipedia.org/wiki/Block_cipher_mode_of operatio :
n#Cipher Feedback (CEB) :

Initialization Vector (IV)

Cipher Feedback (CFB) mode decryption

1 1
1 1
' '
' [NENENERENEEEN] '
: l :
' '
' block cipher block cipher block cipher '
| rer | mtyeton | | 0| tnctn | | /| ity :
' '
' Ciphertext Ciphertext Ciphertext !
H ~[ITTTTTTTITT] ~[ITITTTTTITT] ~[TTTTITITTTTT] .
1 1
\ [NNNENEREREREE] [ENEENENENENEN] [ENNENENENNENN] .
' '
! Plaintext Plaintext Plaintext !
' '
' '
1 1
1 1

Figure 6. CFB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block cipher mode of operati
on#Cipher Feedback (CFB)
e Output Feedback (OFB)
Similar to CFB, in encryption and decryption, OFB apply xor operation to keystream block
with plaintext or ciphertext. Keystream block is a product of repeatedly doing encryption on
initialization vector. Figure 7 shows how OFB do encryption and figure 8 shows how OFB do
decryption. r

Initialization Vector (IV}

Output Feedback (OFB) mode encryption

' '
1 1
1 1
' [ENEEEENENRERE] '
' '
| | l l |
! block cipher block cipher block cipher !
. Key encryption Key encryption key \
1 1
! Plaintext Plaintext Plaintext !
. — OO —5 MO — .
: [ENENENNEEEEEE] [EENEEEENNEEEE] [EENEENENNEEEE] :
' '
! Ciphertext Ciphertext Ciphertext !
' '
' '
1 1

Figure 7. OFB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block cipher mode of oper
ation#Output_Feedback (OFB)

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)

--

h Initialization Vector (v} |

o EEE——

1
D e chaden | | "/ | omeymtion | | /| sncrvedon | |
: Ciphertext Ciphertext Ciphertext i
! —@ MO —& OO —
i RERRRSLREAREE RRREERLRaEEIE L i
: Plaintext Plaintext Plaintext i

Output Feedback (OFB) mode decryption

+ Figure 8. OFB illustration on decryption, source: :
+ https://en.wikipedia.org/wiki/Block_cipher_mode_of_oper
i ation#Output_Feedback (QFB) .. ______......___ E
e Counter Mode (CTR)
In encryption and decryption, CTR do xor operation between plaintext or ciphertext with a
keystream. Keystream is the result of encrypting the counter of the current block by using a

key.

2.4. Feistel Network

Feistel network is a cryptographic technique used in construction of block cipher. The feistel network
has reversible property. This property makes one algorithm to be used on encrypting and decrypting.
The algorithm used on the feistel network is independent from the model itself. Figure 9 illustrates a
simple feistel network on encryption. The F denotes an algorithm used on the feistel network. In
encryption and decryption, the feistel network divides the block into two parts, left (L) and right (R).
After some operation on those parts, the position of the left and the right part are swapped and
concatenated into a block.

N
N

+ Figure 9. Encryption in feistel network , source: :

+ https://www.researchgate.net/figure/Illustration
+ -of-a-round-in-a-Feistel-network figl 2246457 .

2.5. Confusion and Diffusion
Confusion and diffusion are two properties of secure cipher. they were identified by Claude Shanon.
Confusion means that each binary digit or bit of the ciphertext should depend on several parts of the

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711

key. Diffusion means that if a single bit of plaintext or key is changed, then half of the bits in the
ciphertext should change. These properties obscures the relationship between ciphertext, plaintext, and
the key.

3. Proposed Cipher Design

Mirror cipher is a feistel cipher with mirrored round function design. It uses a feistel network with
round function that consist of 9 steps: s-box substitution, row substitution, column substitution,
column cumulative xor, round key addition, column cumulative xor, column substitution, row
substitution, and s-box2 substitution. Four earliest steps are the same as the four latest ones. That is
why the cipher is called a mirror cipher.

3.1. Initial Processing

This cipher works for 256 bits message. If the message is longer than 256 bits, the message would be
divided to blocks of 256 bits. If the message is shorter than 256 bits, it would be padded with a 1 and
Os until at the end of message it has 256 bits. The decryption algorithm would be the same as the
encryption algorithm only with the reversed feistel network. Mirror cipher accepts key input from its
users. The length of the key would be used as the seed of random function to create round key
constants. The first 128 bits of the key would be used as an initialization vector. If the key is less than
128 bits, the key would be repeated until it reaches 128 bits long.

3.2 Feistel Network Design

The design of the feistel network in mirror cipher uses the original feistel network design as shown in
Figure 9. The 256 bits message block would be splitted into L and R 128 bits blocks. Then, the R
block would be inserted into the round function with a specific round key. The first round key would
be 128 bits initialization vector which is extracted from the user input key. The next round key would
be generated automatically using the previous round’s key and a random seed, which is the length of
the user input key. The result from the round function would be xored with the L block and then used
as the new R block. The new L block would be a copy of the old R block. This design would be run 9
times in mirror cipher. The key, initialization vector, and seed would be the same for all blocks (not
linked among blocks), which means mirror cipher is an ECB block cipher.

3.3. Round Function Design

The round function consists of 5 different functions: s-box substitution, row substitution, column
substitution, column cumulative xor, and round key addition. Four functions are done twice. The 128
bits message is converted to hexadecimal message and being visualized as 4x4 matrix which each cell
consists 2 hexadecimals.

45 4e 4b 49

52 50 53 49

20 | 44 | 45 | 4

52 49 50 53

3.2.1. S-Box Substitution

In this round function, s-box substitution would be done twice with different s-boxes, which is in the
first and last step. S-box is simply a 16x16 matrix which could be used to search substitution of each
cell on our message matrix. For example on encryption using Figure 11. s-box, we want to look for a
substitution for 45 (first cell on our matrix). To do that, we should look for the intersection between
the fourth (first hexadecimal in the cell) row and fifth (second hexadecimal in the cell) column, which
would give us 6e.

https://captanu.wordpress.com/2015/04/25/aes/

Doing this to all cells in the message matrix, we would get another message matrix as shown in Figure
12. In the last step, we would use another s-box which is an inversed version of s-box used in the
encryption phase.

6e 2f b3 3b

© 100 | 53 ed | 3b :

L lb7 | b | 6e | b3 |

00 3b 53 ed

+ Figure 12. Message after s-box
+_substitution ;

3.2.2. Row Substitution

Row substitution is done twice in this function. It is done as the second step and eighth step. In the
second step, the cipher substitutes the first row of message matrix with the third row, and the second
row with the fourth row. In the eighth step, the cipher substitutes the first row of message matrix with
the fourth row, and the second row with the third row. Figure 13. is showing us the result of row
substitution (in second step) at the message matrix from Figure 12.

b7 | b | 6e | B3]

: 00 3b 53 ed :

6e 2f b3 3b

t o0 | 53 ed | 3b :

Figure 13. Message after row
i_substitution in second step -
3.2.3. Column Substitution
In this round function, column substitution is done twice. It is done as the third step and seventh step.
In the third step, the cipher substitutes the first column of message matrix with the fourth column, and
the second column with the second column. In the seventh step, the cipher substitutes the first column
of message matrix with the third column, and the second row with the fourth row. For example, we
apply column substitution (third step) to the message matrix we have in Figure 13., the result would
look like Figure 14.

ol b3 | 6e |16 | b7 |

: ed 53 3b 00 :

L | 3b | b3 | 2f | 6e |

v 3b | ed | 53 | 00 :

+ Figure 14. Message after column
+_substitution in third step .

3.2.4. Column Cumulative XOR

Column cumulative XOR is, as the name says, a function that does xor cumulatively to message
matrix’s columns. This function is done twice, as fourth and sixth step. The function does XOR the
original first and second column and uses the result as the new second column. Then, it does XOR on
that new second column with the original third column, and uses the result as the new third column.
Lastly, it takes the new third column and XOR it with the original fourth column to get the new fourth
column. Figure 15. shows the result of column cumulative xor of message matrix in Figure 14.

bl b3 | dd |6 | 1]

: ed be 85 85 :

3b | 88 a7 c9

© |3 | d6 | 85 | 85 :

+ Figure 15. Message after column
+_cumulative XOR -

3.2.5. Round Key Addition

Round key addition is the fifth step of this round key function. This step adds a specific generated
round key to the message using xor function. The first column of the message matrix is xored with the
first column of the key matrix, and so on. For example, the round key is shown at Figure 16. and the
cipher adds it to the message in Figure 15.. The result is shown at Figure 17.

3.2.5.

49 46 34 30 fa 9b 2 41

32 30 20 41 df 8e a5 c4

44 41 4c 41 7f c9 eb 88

48 20 4b 55 73 fo ce do

A g

i Figure 16. Round key
+ example

Figure 17. Message after round
: key addition :

____________________________________ fl

Overall Round Function

The overall round function would consist of 9 steps which look like this pseudocode:

round_ function:

s-box substitution with s-box in Figure 11.
row substitution:
substitute first row and third row
substitute second row and fourth row
column substitution:
substitute first column and fourth column
substitute second column and third column
column cumulative xor:

new first column = old first column

new second column = xor first column with second column

new _third column = xor new second column with third
column

new fourth column = xor new third column with fourth
column

add round key:
xor with round key
column cumulative xor
column substitution:
substitute first column and third column
substitute second column and fourth column
row substitution:
substitute first row and fourth row
substitute second row and third row
s-box substitution with the inverse of s-box in Figure 11.

The Figure 18. also shows the process of a mirror cipher’s round function.

Plain Text Row Column

E Message Hexa 5 bs-t?f}i‘ Substitution Substitution E
' | 128 Bits Block uhstEution 183,264 164,283 | !
: Columin Column Column :
! A . Round Key % i
' Substitution Cumulative Aeldition Cumulative !
H 143, 2424 XOR) XOR H
; R?W . Inversed S-Box Cipthier 'I';:xt ;
' Substitution Substituti Message Hexa ,
L | 194,293 Ea 128 Bits Block ;

3.4. Round Key Generation

The round key generation is a process to generate a round key for each round in the feistel network.
The first round (round 0) uses 128 bits initialization vector which is extracted from the user input key.
From the second round, the round key is generated from the previous round’s key. For example, the
second round key is generated by shifting all columns in the first round key (initialization vector) to
the left, so the second column becomes the first, the third one becomes the second, and so on. After
that, we take the first and last column, xor them, and use the result as the new last column. Lastly, we
xor that new key matrix with round key constant by columns. This round key constant is created
randomly using seed that is inputted by the user. For example, if we have an initialization vector
(previous round’s key) as shown in Figure 16., we shift all the columns to the left once, so it would be
a new matrix as shown in Figure 19. After that, we xor the first and last column, and use the result as
the last column. The matrix would now as shown in Figure 20.

46 34 30 49 46 34 30 o

30 20 41 32 30 20 41 20

41 4c 41 44 41 4c 41 56

20 4b 55 48

Figure 19. Shifted previous
round’s key

Figure 20. The round key
matrix after xor first and last
column

'l 20 | 4b 55 80
+

g B |

Lastly, we xor the matrix with round constant in Figure 21, so we get the new round key as shown in
Figure 22.

18 2d 83 lc Se 19 b3 ec

aa 15 4a a7 9a 35 0b 87

50 d2 c2 Oa 11 9¢ 83 5c

e3 12 44 09

Figure 21. Round constant for

Figure 22. The round key
+ round 1 with seed 123

matrix after xor with round

o3 59 11 89
+
constant

g g

4. Simulation and Result Discussion

4.1. Implementation

The implementation is using Python as coding language. The program accepts message, key, and seed
from the user in MirrorCipher class. After that, the program splits the message into 256 bits blocks,
and runs 9 rounds of feistel network for every block by calling FeisteINetwork class. This class takes
the right 128 bits from the block and calls FeistelFunction class which contains the round function of
the cipher.

This round function calls 5 different functions: look up sbox for s-box substitution,
row_substitution for row substitution, col substitution for column substitution,
cumulative xor col for column cumulative xor, and add round key for round key
addition.

In s-box substitution, the s-box is extracted from a file, which is read by the read matrix function.
In round key addition, the program uses get key constant function to get a key constant for a
specific round. The key generation is implemented in the next round key function. This function and
round key addition function use 2 helper functions: get column to get a specific column, and
arrange col for arranging columns into a complete matrix.

There are also some helper classes: matrix to string to convert matrix to string,
string to matrix to convert string to matrix, and split string n lengths to splita
string into n long strings.

4.2. Testing and Evaluation

To evaluate and test the cipher, we use this following example of user input:

text = ENKRIPSI DAN DEKRIPST ADALAH PROSES YANG UTAMA DALAM KRIPTOGRAFT
key = NANIN TONY IMBA

The text is then converted into hexadecimal:
454e4152495053492044414e2044454b5249505349204144414c41482050524£534
5532059414e47205554414d412044414¢c414d2040b524950544£4752414649

which is then splitted into 256 bits blocks:
['454e4b52495053492044414e204445405249505349204144414c41482050524¢f"

'5345532059414e47205554414d412044414c414d204b524950544£4752414649"]
The blocks are encrypted using a feistel network for 9 rounds. The encrypted hexadecimal result
would be:

95efdd28806e41af7b9%eb0afd00791£f4c8cff79dce3d455e282a0£2b02e801£f51e2
d0d467d25a2620£f8002ebafle362f76207abl865caf0918f60ebeb9385965
The whole encryption process could be seen in the log in Figure 23:

L et 1
INFO:root:Encrypting 486964757020606562696820646172692068617275732073656b656461722076

INFO:root:Blocks used: 2068617275732073656b656461722076

DEBUG: root:S-Box: [['63", “2Zc’, ‘7z, "#b°, "f2°; ‘6bi; “of', “c5', 38°, '€1°, ‘67, ‘2b , ‘fe', dz', ‘abl, ‘76°], ['ca’; 82, ‘ca’, ‘W', fa’,
159, Aty ke, tadt, tdat, a2t taft . get, taat, g2l ‘et [thzt, fdY, 930, ‘2’ 36, 3, ‘fr, ‘cc,; "3a%, ‘as’; ‘65, fii; i,
e e e '15']) ['@d', ‘ef', 23, 'c3', 18", 'O6'; '®5', "9a’, '©7', '12';, '8@, 'e2’', 'eb', “27', ‘B2, '75'], ['@9', "g3’, '2c¢', "1a°, "1b*,
‘Ge', "5a’, "a@’,; 527, '3b', 'de’; ‘b3, "29°%, ‘e3', '2f'; ‘84|, ['53%, 'd1°, ‘ee’, ‘ed , ‘26', 'fc', ‘b1, ‘5b7, "6a’, ‘cb';, ‘be’;, "39%; ‘4a’, !
‘act, “58%,; "et'], ['del; “ef', ‘aa’, ‘fb', "43', 'ad’, "33°, ‘8@5%, '45°, *f9°, 'ez!, '7f', 'se', '3Ic', W9f', "ag’J, ['51°;, 'a3’, ‘40, '8f', ‘92",
tod*,, "38%, “f5', "be", b6, 'da', 217, ‘i@, ‘FE', 'f3', 'dZ'], [cd®, "ec’, "13], "ec', 'sf', ‘9y', ‘A4l, Y4y, ‘eaA’; 'ay’, ‘7e’,; "3d; 'BAY,
isdt, f190, 73], el 8Ll faft, tdet, T22%, Zat, 900, "8, ‘46, “ee’, ‘b8l "14', ‘de’, “5e', ‘@b, ‘dbl], ['ed’; *32%, ‘3a’; ‘@a’, ‘49,
‘@6, "24°, 's5¢b, ez, d3’, ‘ac’, '627, "91%, 'os5', ‘en', “7o0'], ['ez®, 'c8°, "37', 'ed', 'sd', 'd5', ‘4e', a9’, ‘ec’;, ‘56", "f4°, ‘eéa’;
7at, "ae, ‘es'], [‘'ba‘, "#8', ‘25", “2e", "i1c%, ‘ael, "bal, ‘ce6, ', idd", “7a’, ‘af', ‘'ab®, 'bd', '8b%, “8a’], ['7e', '3e’, ‘bs’, “66%, 48,
@3, Tfel,. Teel, Thl, T35, i5ZL, that THeT, telt; idi, 9et]s [Tl f8l, 980, A1, e9%, d9's 8ei, 94n; "9bt, flet, “87°, Te9y, ‘el
‘s5', ‘28', 'df'], ['8c', 'a1’, '89%, ‘ed’, 'bf', 'es’, '42', ‘68", '41°, '99°, ‘'2d', 'ef’', 'be', '54', ‘'bb', '167]]

DEBUG: root:Substituted by first S-Box: b745efae9dsfb7sfad7fada3efaeb73s

DEBUG: root:After row transform: ['4d7fada3efaeb73sb745efaeodsfb7sf’]

DEBUG: root:After col transform: ['434d7f4d3s8b74e@efa@efasb78fb78fod"]

DEBUG: root:After col xor: 43@e713c388fcf2e40afeasdsf3sb72a

INFO:root:Key used: 4b524950544f4752414649204153494b

DEBUG: root:Add key: 4b52495054414752414649204153494b with 430e713c388fcf2040afeasd8f38b72a

INFO:root:After addition with round key: e86celcesccee9gsb3888a3fe6c727d61

DEBUG: root:After col xor: ['@86465ab5c9c751e38bel3edocle6302’]

DEBUG: root:After col transform: ['65abes64751e5c9c13ed38bes3e26cie’ |

DEBUG: root :After row transform: ['63@26clel3ed3gbe751e5c9c65aboge4d’ |

DEBUG:rost:Taverse S:Boxz [[E52%, S0gt, thaty tdot i fapb i 56t et | ESRE G ShESD BAg L Sadl get S Rget s SEgn s Sdpt S NG [P ety a3t et
23, b’ TOft. IEEY. Ty, faat. URat . SRt ANt WeAto et fpgfs Schtlo [P5AtC Uzhes oAt Sagtl Taetl feptlifoaro gt el facto fgst
Yob’; A9y Faty Te3ts Sdel]ni [198%; S2eY; a1l 'e6l, L2BY, dot: Taat; Thoty yeto TShILivaatl tugre Ngdtol Tghr s tdd % 255 28, 68k Cfols
64, "B6', '68"; "93'; '16°, 'da', ‘aal, "sc'; ‘ec’, 'sd*; '65'; ‘'be’, '02']; ['6c', ‘78, '48', “58', 'fd', ‘ed’, 'b9'; “da’, ‘'se’; ‘'is'; "46',
's7', 'a7', 'sd’, 'sd", 's4'], ['9e’, 'd8’', 'ab’, 'ee’, 'sc', 'bc’', 'd3’, 'ea’, 'f7', 'e4’', 'S8', '@5', 'b8', 'b3', '45", '@6'], ['de’, '2c’, 'le’,
‘8f', ‘ca’, '3f', 'ef’, 'e2’, 'c1’, ‘af’, 'bd’, 'e3’, 'e1’, '13’, 'sa’, 'eb'], ['3a’, '91', '11', '41’, ‘af’, '67', 'dc’, ‘ea’, '97', 'f2', ‘cf’, !
fge L TRl “bAt tebt; T35 P96y cae; a4T; 2205 ted s adiy 357 GBS el HGUL 370 teB L Hetsl /55 tdE teeily [hAry SEL G dath
‘71, 'ud', '29', 'c5°, 's9’, '6f', 'b7', ‘62", 'ee', 'aa’, '18°, 'be', '1b'], ['fc', '56', '3e’, '4b', 'c6', 'd2’, '79°, "20', '9a', 'db’, 'co’, |
“ety, IR, todt s Thaty TRAT L PR, tdd i a3 BTy Serty ozt L) bl 12T et 59t 0 e cget s Teaty tehi), el thaty SR
agts "19%, "bst, "aat, tad, '2d', ‘es5'; “Fa'; 'of', 03", 'c0'; "oc'; ‘ef']; ['a0’', 'ed’; '3b', ‘ad', 'ae’, *2at; “‘f5%, "ba'; 'c2"; ‘eb’; ‘bb',
Sets. "8, 53T, 09Y) i, (475, 2b', Geat; tFel, ‘hal, 7Et; e 26T, fell, 69 tiat, e3t; 551, 71 tect; “zd'l]
INFO:root:Substituted by invers first S-Box: @eeabse9825376fc3fega7icbceebfac

INFO:root:XOR 4869647570206C656269682064617269 with 086ab8e9825376fc3fega71chcBebfsc

After that, we would try to decrypt the ciphertext back to the original message. We input the ciphertext
and the same key used in encryption. The program would convert the ciphertext into hexadecimals,
split it into blocks, and run the inverse feistel network on that blocks using the inputted key. The
re

INFO:root:Blocks used: fife4643296e3283b3293fd8923cfc2e

DERUGE poBt:S -Box: [[L6355 "Teyy “7p%; Tbl; wE2is UabtG TeE g test Eant et e PahiE St fern mde o Sahi S el eaty B89N Se0il Sadies St
S5t Ayl tfecs Cfadt Sdals et o Hally tachy Saatgnite egt [o N[y SR, foais fae s, 36T SaRll SRR ect s Taals taniitent) SR Ty o)
i el PR e [RGB i oy el e B b B e Tt e R s M T TR B D T s M s S o e i s S I L [B A e S B R e e R
by o g 7 (2 Rl S R | e G T PR TR s R R I, '8&'], ['53', ST e gy Yedth et e s WhAS e Sl ER Sea s ehty tibate B30% 0 Taa Ry
ct, 58, ‘o'l [det; “ef'; “aa’, “ftb', "43°; ‘ad’; *33'; ‘By', 45, “f9°, ‘exl, ‘7', ‘se'; "3e’, of'; "ag'],; ['51°; ta3’, ‘40 ; ‘8f'; ‘92
sad S 3RiGOEEST thes i the , idat g2 e L EEN R3S d) [Red e TG fea S ES Gy At s, e tagt, ey 3di Gt 6a
‘sd*, '19', '73'], ['e@*, ‘81', "af', 'dc’, '22', '2a‘, '9@', '88', '46', ‘ee’, 'b8', "14', 'de’, ‘5e', 'eb’, 'db'], ['e®’, "32', '3a', '@a’, '49°,
‘e6", '24', 'sc', 'c2', ‘d3', ‘ac', '62', ‘91", '95', ‘ea’, '79'], ['e7', "c8', '37', '6d', 'sd’, "d5', '4e’, 'a9', '6c’, '56', 'f4', 'ea’, ‘65",
‘7a", 'ae’, 'es'], ['ba‘, '78', "25°, '2e', '1c', 'a6’, 'b4a', 'c6', ‘e8', ‘dd*, '74', '1f', '4b’, 'bd‘, 'sb’, ‘8a'], ['7@', '3e', 'b5', '66', "48°,
‘e3*, 'fe', 'ee', '61', "35', '57°', 'b9', '86", ‘cl', ‘'1d', '9e'], ['e1’, ‘f8", 'o8', '11', '69', ‘'d9‘, '8e’', '94', '9b*, "1e', '87', 'e€9’, ‘ce’,
'55%; ‘28, df'], ['sc’, ‘ail, “89%, ‘ed’, "bf ., lee’; 42, ‘68'; ‘41", ‘99", ‘ad', ‘ef’; ‘be’, '54°, 'bbi, ‘16']]

DEBUG:root:Substituted by first S-Box: albb5alaasab23eceda575614febbe31

DEBUG:root:After row transform: ['6da575614febb@31albbSalaa5ab23ec”]

DEBUG:root:After col transform: ['6175a56d31beebdfla5abbalec23abas5”]

DEBUG:root:After col xor: 6114bldc31816a251a46fbsaeccf6dcl

INFO:root:Key used: 4b52495054414752414649204153494b

DEBUG:root:Add key: 4b52495054414752414649204153494b with 6114bldc31816a251adefbSaeccf6acl

INFO:root:After addition with round key: 2ae55badasceecocfsadb22dgc777a8a

DEBUG:root:After col xor: ['2a4f14b946888e12f8d5674a8cfbs16b’]

DEBUG:root:After col transform: ['14b92a4f8e124688674af8d5810b8cth"]

DEBUG:root :After row transform: ['81@bscfbe674afsds8el2468814bg2aat"]

DEBUG:root:Inverse S-Box: [['52', 'e9', 'ea’, 'd5', '3@', '36", 'a5"', '38', 'bf', "4@', 'a3’, '9e', 's1', 'f3', 'd7', 'fb'], ['7c’, 'e3’, '39',
¥R2T, tabi Rt SRR Syt s ger i Saa b oineal | et ant St] N REGAYD Ssant S iont e e Siaet el g et S eat et i Egns
fably a2l g el et ted s t2et, At febh,, T2, o, C24t, hat s Szed) fBh TR, et ved) tebis cdit, tan i e iR, et
‘eat, ‘86, ‘68, "ogl, f1e', ‘dal Taal, !sct, ‘Yoot 5d°, ‘65, ‘bet, ‘ez'], [fecl, ‘7@, ‘agt, ‘se’, ‘fd’, 'ed’, 'bo’, ‘da’, "5e’, 15%, *aef,
's7', 'a7', ‘8d’, ‘od’, ‘sa‘'], ['98‘', ‘d8', 'ab', ‘@@, ‘8c', 'bc', 'd3‘, "ea’, 'f7', ‘ea’, '58', '@s‘, ‘bs', 'b3', '4s5*, ‘@6'l, ['de’, 'Ic’, 'ie‘,
e e e Ve e R o e O A T R D e O [S B G G L S R L G R
e, tBRY, ‘haT, teal, fzai] (oGt Sfact, tgat oot tewn Siady Siane NEest itepdl tpol tagt Ssegt iget igsiltdfrteetl) Az R gt
‘71, 'ad', '29', 'c5', '89', 'ef', 'b7', '62', '@e', 'aa', '18', ‘he', '1b'], ['fc', 'S6', '3e', 'ab', 'cs', 'd2', '79', '20', '9a‘', 'db', 'ce@’,
SR 7R, fodt, isal, et [REt, Sddt, Sagh, 33 tRaY, teyt, ezt “sat . thil, M9k et fhof ozt ged tect AsEN) [fee? inal® tpgt
‘a9’, '19', 'bs', ‘"4a’, ‘ed’', ‘2d', 'es’, '7a’, 'of', '93', 'c9', ‘oc', 'ef'], ['a@’', ‘e@’, '3b", ‘ad', ‘'ae’, ‘2a', 'f5', 'be', 'c8', 'eb’, 'bb’,
"3¢f, ‘83, '53', 99%, “e1'], [17%, “2b', ‘ea’, '7e', ‘ba’, '7z%, 'd6", ‘26', ‘e1l', '69’, ‘14%, ‘63°, '55%, ‘2;1Y, ‘ec’, ‘zd'l]
INFO:root:Substituted by invers first S-Box: 919ef@63@aScelb5e63998979bdb9592

INFO:root:XOR b334e53efescse4a7bafede242ccasb72 with 919efee3eascelb5e63998979bdbos92

INFO:root:XOR result: 22aa155dfa@eblf2sfcfaeb3b7illeco

INFO:root:Decrypt result: ('22aal55dfa@ebif25fcfa6b3b7111eed’, 'fi1fed643290e3283b3293fd8923cfc2e’)

INFO:root:Total decrypt result: ['22aal55dfaeeblf25fcfa6b3b7111eedf1fed643290e3283b3293Fd8923cfc2e’]

The final result would be converted to string so we get our original message:
text = ENKRIPSI DAN DEKRIPSI ADALAH PROSES YANG UTAMA DALAM KRIPTOGRAFI

4.3. Frequency Analysis
Using a quite big message of 832 bytes (6656 bits), we could draw a frequency graph of 256 possible
groups of two hexadecimals. Figure 25 shows the frequency graph in plaintext and ciphertext.

Frequency Analysis

]
1
1
]
]
1
1
1
]
1
[l
1
]
1
[l
1
]
]
1
1 &0
]
]
1
[l
1
]
1
[l
1
]
]
1
1
]
]
1
1
1
]

5. Security Analysis

5.1. Bruteforce Attack Analysis

Bruteforce attack is an attack which tries all possible keys to crack the plain text message from the
cipher text message. Mirror cipher uses 4 bytes or 128 bits long key. This means there are 2'** possible
keys. If we assume that brute force attack could try 107 keys per second in a dual core computer, then
it means we need around 3.4028 x 10°' seconds or around 1.079 x 10** years to crack the key. Because
this amount of time is quite expensive compared to the value of encrypted messages, we could
conclude that mirror cipher is relatively secure from bruteforce attack.

5.2. Frequency Analysis Attack

Frequency analysis attack is an attack that compares frequency of letters in plaintext and ciphertext,
and uses the similar frequencies to guess the plaintext with known ciphertext. Comparing blue and
orange lines in frequency graph in Figure 25, we could conclude that even though there are some high
frequency letters in plaintext (such as A, E, etc.), the ciphertext has relatively even frequency for all
letters. This means that the mirror cipher has applied Shanon’s confusion property.

5.3. Diffusion and Confusion Analysis

To analyze if the mirror cipher has applied Shanon’s diffusion and confusion property, we try
encrypting a message with 2 different keys, encrypting 2 different plaintext with the same key, and
decrypting 2 different ciphertext with the same key. The differences should be as small as one bit.
Firstly, we try encrypting this message:

45 4e 4b 52 49 50 53 49 20 44 45 4b 52 49 50 53 49 20 44 49 20 4b
52 49 50 54 4f 47 52 41 46 49

with 2 different keys

o 4e 41 4e 49 4e 20 54 4f 4e 59 20 49 48 53 41 4e
o 4e 41 4e 49 4e 20 54 4f 4e 59 20 49 48 53 41 4f

Then, we compare the ciphertext result:

e 33
cc
e dl
ao

cl 82 63 e7 f1 59 ¢8 2a 7f d2 8a 9c 43 82 b0 de f£3 5d 94

£f8 e3 3c b9 6e ae 25 92 b5 5f 2f

68 82 63 4b 69 59 c8 2a 7f d2 8a 9c 43 82 b0 6b 41 5d 94

31 e3 3c b9 6e ae 25 92 b5 5f 2f

Both ciphertexts look quite different with roughly around 32 out of 256 bits changed, even though the

messages are the same and the keys only have one bit differences.

Secondly, we try encrypting these plaintext messages:

e Hidup lebih dari harus sekedar t

48
75

69 64 75 70 20 6c 65 62 69 68 20
73 20 73 65 6b 65 64 61 72 20 74

e Hidup lebih dari harus sekedar u

48
75

69 64 75 70 20 6c 65 62 69 68 20
73 20 73 65 6b 65 64 61 72 20 75

with the same key : KRIPTOGRAFI ASIK
The ciphertext results in hexadecimals would be:

o 4f
11
e 2a
2a

40 3e 24 53 0f 55 85 e6 10 dc 90
8b 73 2d f1 ac 51 87 06 87 58 03
ec cf 5b 27 e2 96 f0 fc 4a 0Oe b4
af 09 30 11 b9 77 ab 55 8c eb 10

64

64

cd

17

61

61

6d

71

72

72

Of

dd

69 20

69 20

5b 74

68

68

78

38

61 72

61 72

5c 46

18 08

We could see that both ciphertexts look very different with around 121 out of 256 bits changed, even
though the keys are the same and the messages only have one bit differences.
Lastly, we try decrypting these ciphertext messages:

e 062
20
® (2
20

69 57 77 al c4 0Ob af 40 91 a6 1f 01

ef 13 ef cb 80 4e 55 94 l1la £8 do

69 57 77 al c4 0Ob af 40 91 a6 1f 01

ef 13 ef cb 80 4e 55 94 1la £8 d7

with the same key : KRIPTOGRAFIT ASIK
We would get plaintexts:

e 48
75
e 22
29

69 64 75 70 20 6c 65 62 69 68 20
73 20 73 65 6b 65 64 61 72 20 76
aa 15 5d fa 00 bl f2 5f cf 46 b3
Oe 32 83 b3 29 3f d8 92 3c fc Z2e

64

b7

5c

5¢

61

11

86

86

72

le

6d £9

6d £9

69 20

e0 f1

e4

el

68

fe

54 ad

54 ad

61 72

46 43

Even though the keys are the same and the ciphertexts only have one bit differences, the plaintexts are
totally different with 126 out of 256 bit changed.

From those 3 test results, we could conclude that mirror cipher has applied Shanon’s diffusion
property because with only one bit difference, we would get totally different results.

6. Conclusion and Future Works

Mirror cipher is a new developed ECB type block cipher, which has a specific feature of mirrored
round function. Mirror cipher accepts message and key inputs from its user and runs 9 rounds of feistel
networks. Mirror cipher’s round function consists of 5 different functions in mirrored order, so it has 9
function calls in total. Mirror cipher could be used to secure messages’ confidentiality and integrity.
Mirror cipher has applied Shanon’s diffusion and confusion property and it relatively could not be
cracked using bruteforce or frequency analysis attack. In the future, there might be researches on
different modes of mirror cipher, could be in CBC mode, CFB mode, etc.

7. References

[1T Ronald L. Rivest 1990 "Cryptography". In J. Van Leeuwen (ed.). Handbook of Theoretical
Computer Science (Elseveir)

[2] "Information Theory and Entropy". Model Based Inference in the Life Sciences: A Primer on
Evidence (New York: Springer) p 51-82

[3] Padding Schemes for Block Ciphers. Retrieved from
https://www.cryptosys.net/pki/manpki/pki_paddingschemes.html

[4] National Institute of Standards and Technology, Data Encryption Standard (DES). (U.S.: U.S.
Department of Commerce)

[5] National Institute of Standards and Technology, Advanced Encryption Standard (DES). (U.S.:
U.S. Department of Commerce)

Acknowledgments

First and foremost, praises and thanks to God, for His blessings and kindness, so this paper could be
finished. We would like to express our deep gratitude to our lecturer Dr. Ir. Rinaldi Munir, MT. that
has taught us about cryptography, especially about block ciphers and feistel network. Without that
basic knowledge, we must be confused when facing this task. We also want to say thank you to Mr.
Rinaldi for arranging this task so we could expand our knowledge and creativity by making a new
cipher. We would never forget to thank all our colleagues, students of batch 2016 Informatics Major in
Bandung Institute of Technology, for all the support. Last but not least, we want to acknowledge with
gratitude the support and endless love from each of our family.

