

Mirror Cipher using Feistel Network

Ihsan Muhammad Asnadi​1 ​ Ranindya Paramitha​2​ Tony​3

123​ Informatics Department, Institut Teknologi Bandung, Bandung 40132, Indonesia
E-mail: ​1​13516028@std.stei.itb.ac.id​ ​2​13516006@std.stei.itb.ac.id​ ​3​13516010@std.stei.itb.ac.id

Abstract. ​Mirror cipher is a cipher built by creativity which has a specific feature of mirrored round function. As

other ciphers, mirror cipher could be used to secure messages’ confidentiality and integrity.
This cipher receives message and key inputs from its user. Then, it runs 9 rounds of feistel
networks in ECB modes. Each round would run a round function which consists of 5 functions
in mirrored order (9 function calls in total): s-box substitution, row substitution, column
substitution, column cumulative xor, and round key addition. This cipher is implemented using
Python and has been tested using several message and key combinations. Mirror cipher has
applied Shanon’s diffusion and confusion property and proven to be secured from bruteforce
and frequency analysis attack.

1. Introduction

1.1. Background
In this modern world, data or messages are exchanged anytime and anywhere. To protect
confidentiality and integrity of messages, people usually encrypt their messages before sending them,
and then decrypt the received messages before reading them. These encryption and decryption
practices and techniques are contained under the big concept of cryptography. There are many ciphers
(encryption and decryption algorithms) that have been developed since the BC period. Ciphers are
then divided into 2 kinds of ciphers, based on how it treats the message: stream cipher and block
cipher.

1.2. Analysis of Other Ciphers
Block cipher is a type of cipher that operates on a fixed-length group of bits, called block. A message
would be splitted into blocks and then encrypted. The Data Encryption Standard (DES) specifies two
FIPS approved cryptographic algorithms which are used for encrypting (enciphering) and decrypting
(deciphering) binary coded information [4]. DES splits message into 64 bits blocks, and runs 16
rounds of round function. Its 56 bits round keys are generated from the user’s key. The AES
(Advanced Encryption Standard) is another standard issued by NIST. Its algorithm is capable of using
cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits [5]. AES
runs 10 rounds of round function which consists of 4 functions: subbytes, shiftrows, mixcolumns, and
addroundkey.

1.3. Approach to Develop Mirror Cipher
Mirror cipher is a cipher which developed out of creativity and admiration for the nature of symmetry.
It is called a mirror cipher because it has a specific feature of mirrored round function utilities. Mirror

mailto:13516028@std.stei.itb.ac.id
mailto:13516006@std.stei.itb.ac.id
mailto:13516010@std.stei.itb.ac.id

cipher runs 9 rounds of feistel networks. This cipher is an ECB cipher which encrypts and decrypts
each message block independently.

2. Theories
There are several theories which are referred to as basic knowledge in the development of mirror
cipher. The theories are about cryptography in general, ciphers, block ciphers, feistel network,
diffusion, and confusion.

2.1. Cryptography in General
Cryptography is the practice and study of technique for secure communication in the presence of third
parties called adversaries. In general, cryptography is divided into classic cryptography and modern
cryptography. Modern cryptography is based on mathematical theory and computer science practice.
Classic cryptography focuses on message confidentiality. On the other hand, modern cryptography
focuses on confidentiality, integrity, and non-repudiation.

2.2. Ciphers
Cipher is an algorithm to perform encryption and decryption. Encryption is a conversion of plaintext
into ciphertext. Decryption is a conversion of ciphertext into plaintext. Ordinary information or
comprehensible messages are called plaintext. Unintelligible information or incomprehensible
messages are called ciphertext. Cipher is usually implemented as either block cipher or stream cipher.
Cipher uses one or two keys as information to do encryption and decryption. Based on how key used,
cipher is divided into:

● Symmetric-key cipher
A key is used to do both encryption and decryption. To keep the information secure, key
should be treated as secret information.

● Asymmetric-key cipher
There are two types of key used in this cipher, those are public key and private key. Public key
is a key that can be ​disseminated widely and openly. Contrarily, private key should be kept secure
by the owner. The key for encryption and decryption process should be different.

2.3. Block Cipher
Block cipher is a type of cipher that operates on a fixed-length group of bits, called block. To work on
long plaintext, plaintext should be divided into blocks with a predetermined size, then encrypt those
blocks using one of these modes:

● Electronic Code Book (ECB)
In this mode, each plaintext block (Pi) is individually encrypted into a ciphertext block (Ci).
For decryption, each ciphertext block (Ci) is individually decrypted into a plaintext block (Pi).
Figure 1 shows how ECB do encryption and figure 2 shows how ECB do decryption. The
encryption formula

Figure 1. ​ECB illustration on encryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_o
peration#ECB

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB

Figure 2. ​ECB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_op
eration#ECB

● Cipher Block Chaining (CBC)
For encryption, each ciphertext (Ci) block relies on all of the previous ciphertext blocks (C1,
C2, …, Ci-1). The previous ciphertext block is used to xor with the next plaintext block before
encryption. To make each message unique, an initialization vector (IV) is used on first block
encryption. Initialization vector is a random value that has the same size as a block. Figure 3
shows how CBC do encryption and figure 4 shows how CBC do decryption.

Figure 3. ​CBC illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operati
on#ECB

Figure 4. ​CBC illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operatio
n#ECB

● Cipher Feedback (CFB)
Similar to CBC, in encryption, CFB uses encrypted previous ciphertext (Ci-1) to xor with next
plaintext (Pi). Initialization vector is used for encrypting and decrypting the first block. Figure
5 shows how CFB do encryption and figure 6 shows how CFB do decryption.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB

Figure 5. ​CFB illustration on encryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operatio
n#Cipher_Feedback_(CFB)

Figure 6. ​CFB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operati
on#Cipher_Feedback_(CFB)

● Output Feedback (OFB)
Similar to CFB, in encryption and decryption, OFB apply xor operation to keystream block
with plaintext or ciphertext. Keystream block is a product of repeatedly doing encryption on
initialization vector. Figure 7 shows how OFB do encryption and figure 8 shows how OFB do
decryption.

Figure 7. ​OFB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_oper
ation#Output_Feedback_(OFB)

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Feedback_(CFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)

Figure 8. ​OFB illustration on decryption, source:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_oper
ation#Output_Feedback_(OFB)

● Counter Mode (CTR)
In encryption and decryption, CTR do xor operation between plaintext or ciphertext with a
keystream. Keystream is the result of encrypting the counter of the current block by using a
key.

2.4. Feistel Network
Feistel network is a cryptographic technique used in construction of block cipher. The feistel network
has reversible property. This property makes one algorithm to be used on encrypting and decrypting.
The algorithm used on the feistel network is independent from the model itself. Figure 9 illustrates a
simple feistel network on encryption. The F denotes an algorithm used on the feistel network. In
encryption and decryption, the feistel network divides the block into two parts, left (L) and right (R).
After some operation on those parts, the position of the left and the right part are swapped and
concatenated into a block.

Figure 9. ​Encryption in feistel network , source:
https://www.researchgate.net/figure/Illustration
-of-a-round-in-a-Feistel-network_fig1_2246457
11

2.5. Confusion and Diffusion
Confusion and diffusion are two properties of secure cipher. they were identified by Claude Shanon.
Confusion means that each binary digit or bit of the ciphertext should depend on several parts of the

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_(OFB)
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711
https://www.researchgate.net/figure/Illustration-of-a-round-in-a-Feistel-network_fig1_224645711

key. Diffusion means that if a single bit of plaintext or key is changed, then half of the bits in the
ciphertext should change. These properties obscures the relationship between ciphertext, plaintext, and
the key.

3. Proposed Cipher Design
Mirror cipher is a feistel cipher with mirrored round function design. It uses a feistel network with
round function that consist of 9 steps: s-box substitution, row substitution, column substitution,
column cumulative xor, round key addition, column cumulative xor, column substitution, row
substitution, and s-box2 substitution. Four earliest steps are the same as the four latest ones. That is
why the cipher is called a mirror cipher.

3.1. Initial Processing
This cipher works for 256 bits message. If the message is longer than 256 bits, the message would be
divided to blocks of 256 bits. If the message is shorter than 256 bits, it would be padded with a 1 and
0s until at the end of message it has 256 bits. The decryption algorithm would be the same as the
encryption algorithm only with the reversed feistel network. Mirror cipher accepts key input from its
users. The length of the key would be used as the seed of random function to create round key
constants. The first 128 bits of the key would be used as an initialization vector. If the key is less than
128 bits, the key would be repeated until it reaches 128 bits long.

3.2. Feistel Network Design
The design of the feistel network in mirror cipher uses the original feistel network design as shown in
Figure 9. The 256 bits message block would be splitted into L and R 128 bits blocks. Then, the R
block would be inserted into the round function with a specific round key. The first round key would
be 128 bits initialization vector which is extracted from the user input key. The next round key would
be generated automatically using the previous round’s key and a random seed, which is the length of
the user input key. The result from the round function would be xored with the L block and then used
as the new R block. The new L block would be a copy of the old R block. This design would be run 9
times in mirror cipher. The key, initialization vector, and seed would be the same for all blocks (not
linked among blocks), which means mirror cipher is an ECB block cipher.

3.3. Round Function Design
The round function consists of 5 different functions: s-box substitution, row substitution, column
substitution, column cumulative xor, and round key addition. Four functions are done twice. The 128
bits message is converted to hexadecimal message and being visualized as 4x4 matrix which each cell
consists 2 hexadecimals.

45 4e 4b 49

52 50 53 49

20 44 45 4b

52 49 50 53

Figure 10. ​Message example

3.2.1. S-Box Substitution
In this round function, s-box substitution would be done twice with different s-boxes, which is in the
first and last step. S-box is simply a 16x16 matrix which could be used to search substitution of each
cell on our message matrix. For example on encryption using Figure 11. s-box, we want to look for a
substitution for 45 (first cell on our matrix). To do that, we should look for the intersection between
the fourth (first hexadecimal in the cell) row and fifth (second hexadecimal in the cell) column, which
would give us 6e.

Figure 11. ​First S-Box, source: ​https://captanu.wordpress.com/2015/04/25/aes/

https://captanu.wordpress.com/2015/04/25/aes/

Doing this to all cells in the message matrix, we would get another message matrix as shown in Figure
12. In the last step, we would use another s-box which is an inversed version of s-box used in the
encryption phase.

6e 2f b3 3b

00 53 ed 3b

b7 1b 6e b3

00 3b 53 ed

Figure 12. ​Message after s-box
substitution

3.2.2. Row Substitution
Row substitution is done twice in this function. It is done as the second step and eighth step. In the
second step, the cipher substitutes the first row of message matrix with the third row, and the second
row with the fourth row. In the eighth step, the cipher substitutes the first row of message matrix with
the fourth row, and the second row with the third row. Figure 13. is showing us the result of row
substitution (in second step) at the message matrix from Figure 12.

b7 1b 6e b3

00 3b 53 ed

6e 2f b3 3b

00 53 ed 3b

Figure 13. ​Message after row
substitution in second step

3.2.3. Column Substitution
In this round function, column substitution is done twice. It is done as the third step and seventh step.
In the third step, the cipher substitutes the first column of message matrix with the fourth column, and
the second column with the second column. In the seventh step, the cipher substitutes the first column
of message matrix with the third column, and the second row with the fourth row. For example, we
apply column substitution (third step) to the message matrix we have in Figure 13., the result would
look like Figure 14.

b3 6e 1b b7

ed 53 3b 00

3b b3 2f 6e

3b ed 53 00

Figure 14. ​Message after column
substitution in third step

3.2.4. Column Cumulative XOR
Column cumulative XOR is, as the name says, a function that does xor cumulatively to message
matrix’s columns. This function is done twice, as fourth and sixth step. The function does XOR the
original first and second column and uses the result as the new second column. Then, it does XOR on
that new second column with the original third column, and uses the result as the new third column.
Lastly, it takes the new third column and XOR it with the original fourth column to get the new fourth
column. Figure 15. shows the result of column cumulative xor of message matrix in Figure 14.

b3 dd c6 71

ed be 85 85

3b 88 a7 c9

3b d6 85 85

Figure 15. ​Message after column
cumulative XOR

3.2.5. Round Key Addition
Round key addition is the fifth step of this round key function. This step adds a specific generated
round key to the message using xor function. The first column of the message matrix is xored with the
first column of the key matrix, and so on. For example, the round key is shown at Figure 16. and the
cipher adds it to the message in Figure 15.. The result is shown at Figure 17.

49 46 34 30

32 30 20 41

44 41 4c 41

48 20 4b 55

fa 9b f2 41

df 8e a5 c4

7f c9 eb 88

73 f6 ce d0

Figure 16. ​Round key
example

 Figure 17. ​Message after round
key addition

3.2.5. Overall Round Function
The overall round function would consist of 9 steps which look like this pseudocode:

round_function:

 s-box substitution with s-box in Figure 11.

 row substitution:

 substitute first row and third row

 substitute second row and fourth row

 column substitution:

 substitute first column and fourth column

 substitute second column and third column

 column cumulative xor:

 new_first_column = old first column

 new_second_column = xor first column with second column

 new_third_column = xor new second column with third

column

 new_fourth_column = xor new third column with fourth

column

 add round key:

 xor with round key

 column cumulative xor

 column substitution:

 substitute first column and third column

 substitute second column and fourth column

 row substitution:

 substitute first row and fourth row

 substitute second row and third row

 s-box substitution with the inverse of s-box in Figure 11.

The Figure 18. also shows the process of a mirror cipher’s round function.

Figure 18. ​Diagram of the process in round function

3.4. Round Key Generation
The round key generation is a process to generate a round key for each round in the feistel network.
The first round (round 0) uses 128 bits initialization vector which is extracted from the user input key.
From the second round, the round key is generated from the previous round’s key. For example, the
second round key is generated by shifting all columns in the first round key (initialization vector) to
the left, so the second column becomes the first, the third one becomes the second, and so on. After
that, we take the first and last column, xor them, and use the result as the new last column. Lastly, we
xor that new key matrix with round key constant by columns. This round key constant is created
randomly using seed that is inputted by the user. For example, if we have an initialization vector
(previous round’s key) as shown in Figure 16., we shift all the columns to the left once, so it would be
a new matrix as shown in Figure 19. After that, we xor the first and last column, and use the result as
the last column. The matrix would now as shown in Figure 20.

46 34 30 49

30 20 41 32

41 4c 41 44

20 4b 55 48

46 34 30 f0

30 20 41 20

41 4c 41 56

20 4b 55 80

Figure 19. ​Shifted previous
round’s key

 Figure 20. ​The round key
matrix after xor first and last
column

Lastly, we xor the matrix with round constant in Figure 21, so we get the new round key as shown in
Figure 22.

18 2d 83 1c

aa 15 4a a7

50 d2 c2 0a

e3 12 44 09

5e 19 b3 ec

9a 35 0b 87

11 9e 83 5c

c3 59 11 89

Figure 21. ​Round constant for
round 1 with seed 123

 Figure 22. ​The round key
matrix after xor with round
constant

4. Simulation and Result Discussion

4.1. Implementation
The implementation is using Python as coding language. The program accepts message, key, and seed
from the user in MirrorCipher class. After that, the program splits the message into 256 bits blocks,
and runs 9 rounds of feistel network for every block by calling FeistelNetwork class. This class takes
the right 128 bits from the block and calls FeistelFunction class which contains the round function of
the cipher.
This round function calls 5 different functions: ​look_up_sbox ​for s-box substitution,
row_substitution for row substitution, ​col_substitution for column substitution,
cumulative_xor_col ​for column cumulative xor, and ​add_round_key for round key
addition.
In s-box substitution, the s-box is extracted from a file, which is read by the ​read_matrix function.
In round key addition, the program uses ​get_key_constant function to get a key constant for a
specific round. The key generation is implemented in the next_round_key function. This function and
round key addition function use 2 helper functions: ​get_column ​to get a specific column, and
arrange_col ​for arranging columns into a complete matrix.
There are also some helper classes: ​matrix_to_string ​to convert matrix to string,
string_to_matrix ​to convert string to matrix, and ​split_string_n_lengths ​to split a
string into n long strings.

4.2. Testing and Evaluation
To evaluate and test the cipher, we use this following example of user input:
text = ENKRIPSI DAN DEKRIPSI ADALAH PROSES YANG UTAMA DALAM KRIPTOGRAFI

key = NANIN TONY IMBA

The text is then converted into hexadecimal:
454e4b52495053492044414e2044454b5249505349204144414c41482050524f534

5532059414e47205554414d412044414c414d204b524950544f4752414649

which is then splitted into 256 bits blocks:
['454e4b52495053492044414e2044454b5249505349204144414c41482050524f'

,

'5345532059414e47205554414d412044414c414d204b524950544f4752414649']

The blocks are encrypted using a feistel network for 9 rounds. The encrypted hexadecimal result
would be:

95efdd28806e41af7b9eb0afd00791f4c8cff79dce3d455e282a0f2b02e801f51e2

d0d467d25a2620f8002ebaf1e362f76207ab1865caf0918f60ebeb9385965
The whole encryption process could be seen in the log in Figure 23:

Figure 23. ​Screenshot of program encryption log
After that, we would try to decrypt the ciphertext back to the original message. We input the ciphertext
and the same key used in encryption. The program would convert the ciphertext into hexadecimals,
split it into blocks, and run the inverse feistel network on that blocks using the inputted key. The
program decryption log is shown in Figure …

Figure 24. ​Screenshot of program decryption log
The final result would be converted to string so we get our original message:
text = ENKRIPSI DAN DEKRIPSI ADALAH PROSES YANG UTAMA DALAM KRIPTOGRAFI

4.3. Frequency Analysis
Using a quite big message of 832 bytes (6656 bits), we could draw a frequency graph of 256 possible
groups of two hexadecimals. Figure 25 shows the frequency graph in plaintext and ciphertext.

Figure 25. ​Frequency analysis in plaintext and ciphertext

5. Security Analysis

5.1. Bruteforce Attack Analysis
Bruteforce attack is an attack which tries all possible keys to crack the plain text message from the
cipher text message. Mirror cipher uses 4 bytes or 128 bits long key. This means there are 2​128 possible
keys. If we assume that brute force attack could try 10​7 keys per second in a dual core computer, then
it means we need around 3.4028 x 10​31 seconds or around 1.079 x 10​24 years to crack the key. Because
this amount of time is quite expensive compared to the value of encrypted messages, we could
conclude that mirror cipher is relatively secure from bruteforce attack.

5.2. Frequency Analysis Attack
Frequency analysis attack is an attack that compares frequency of letters in plaintext and ciphertext,
and uses the similar frequencies to guess the plaintext with known ciphertext. Comparing blue and
orange lines in frequency graph in Figure 25, we could conclude that even though there are some high
frequency letters in plaintext (such as A, E, etc.), the ciphertext has relatively even frequency for all
letters. This means that the mirror cipher has applied Shanon’s confusion property.

5.3. Diffusion and Confusion Analysis
To analyze if the mirror cipher has applied Shanon’s diffusion and confusion property, we try
encrypting a message with 2 different keys, encrypting 2 different plaintext with the same key, and
decrypting 2 different ciphertext with the same key. The differences should be as small as one bit.
Firstly, we try encrypting this message:

45 4e 4b 52 49 50 53 49 20 44 45 4b 52 49 50 53 49 20 44 49 20 4b

52 49 50 54 4f 47 52 41 46 49

with 2 different keys

● 4e 41 4e 49 4e 20 54 4f 4e 59 20 49 48 53 41 4e

● 4e 41 4e 49 4e 20 54 4f 4e 59 20 49 48 53 41 4 ​f

Then, we compare the ciphertext result:

● 33 c1 82 63 e7 f1 59 c8 2a 7f d2 8a 9c 43 82 b0 de f3 5d 94

cc f8 e3 3c b9 6e ae 25 92 b5 5f 2f

● d1 68 82 63 4b 69 59 c8 2a 7f d2 8a 9c 43 82 b0 6b 41 5d 94

a0 31 e3 3c b9 6e ae 25 92 b5 5f 2f

Both ciphertexts look quite different with roughly around 32 out of 256 bits changed, even though the
messages are the same and the keys only have one bit differences.
Secondly, we try encrypting these plaintext messages:

● Hidup lebih dari harus sekedar t
48 69 64 75 70 20 6c 65 62 69 68 20 64 61 72 69 20 68 61 72

75 73 20 73 65 6b 65 64 61 72 20 74

● Hidup lebih dari harus sekedar u
48 69 64 75 70 20 6c 65 62 69 68 20 64 61 72 69 20 68 61 72

75 73 20 73 65 6b 65 64 61 72 20 7 ​5

with the same key : KRIPTOGRAFI ASIK
The ciphertext results in hexadecimals would be:

● 4f 40 3e 24 53 0f 55 85 e6 10 dc 90 cd 6d 0f dc b9 78 5c 46

11 8b 73 2d f1 ac 51 87 06 87 58 03

● 2a ec cf 5b 27 e2 96 f0 fc 4a 0e b4 17 71 dd 5b 7d 38 18 08

2a af 09 30 11 b9 77 ab 55 8c eb 10

We could see that both ciphertexts look very different with around 121 out of 256 bits changed, even
though the keys are the same and the messages only have one bit differences.
Lastly, we try decrypting these ciphertext messages:

● 62 69 57 77 a1 c4 0b af 40 91 a6 1f 01 5c 86 6d f9 e4 54 ad

20 ef 13 ef cb 80 4e 55 94 1a f8 d6

● 62 69 57 77 a1 c4 0b af 40 91 a6 1f 01 5c 86 6d f9 e4 54 ad

20 ef 13 ef cb 80 4e 55 94 1a f8 d ​7

with the same key : KRIPTOGRAFI ASIK
We would get plaintexts:

● 48 69 64 75 70 20 6c 65 62 69 68 20 64 61 72 69 20 68 61 72

75 73 20 73 65 6b 65 64 61 72 20 76

● 22 aa 15 5d fa 00 b1 f2 5f cf 46 b3 b7 11 1e e0 f1 fe 46 43

29 0e 32 83 b3 29 3f d8 92 3c fc 2e

Even though the keys are the same and the ciphertexts only have one bit differences, the plaintexts are
totally different with 126 out of 256 bit changed.

From those 3 test results, we could conclude that mirror cipher has applied Shanon’s diffusion
property because with only one bit difference, we would get totally different results.

6. Conclusion and Future Works
Mirror cipher is a new developed ECB type block cipher, which has a specific feature of mirrored
round function. Mirror cipher accepts message and key inputs from its user and runs 9 rounds of feistel
networks. Mirror cipher’s round function consists of 5 different functions in mirrored order, so it has 9
function calls in total. Mirror cipher could be used to secure messages’ confidentiality and integrity.
Mirror cipher has applied Shanon’s diffusion and confusion property and it relatively could not be
cracked using bruteforce or frequency analysis attack. In the future, there might be researches on
different modes of mirror cipher, could be in CBC mode, CFB mode, etc.

7. References
[1] Ronald L. Rivest 1990 "Cryptography". In J. Van Leeuwen (ed.). Handbook of Theoretical

Computer Science (Elseveir)
[2] "Information Theory and Entropy". Model Based Inference in the Life Sciences: A Primer on

Evidence (New York: Springer) p 51-82
[3] Padding Schemes for Block Ciphers. Retrieved from

https://www.cryptosys.net/pki/manpki/pki_paddingschemes.html
[4] National Institute of Standards and Technology, ​Data Encryption Standard (DES)​. (U.S.: U.S.

Department of Commerce)
[5] National Institute of Standards and Technology, ​Advanced Encryption Standard (DES)​. (U.S.:

U.S. Department of Commerce)

Acknowledgments
First and foremost, praises and thanks to God, for His blessings and kindness, so this paper could be
finished. We would like to express our deep gratitude to our lecturer Dr. Ir. Rinaldi Munir, MT. that
has taught us about cryptography, especially about block ciphers and feistel network. Without that
basic knowledge, we must be confused when facing this task. We also want to say thank you to Mr.
Rinaldi for arranging this task so we could expand our knowledge and creativity by making a new
cipher. We would never forget to thank all our colleagues, students of batch 2016 Informatics Major in
Bandung Institute of Technology, for all the support. Last but not least, we want to acknowledge with
gratitude the support and endless love from each of our family.

