
Implementation of Salted MD5 Hash in Ruby: A
Security Analysis

Aulia Ichsan Rifkyano
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung
Bandung, Indonesia

rifkyanoa@gmail.com

Abstract—These days passwords are a kind of requirement
almost everyone need. Passwords are like house keys, they can
be used to unlock doors so that we are able to go somewhere
else in the house. Even so, without using the key, the house can
be broken into in many ways. It can be the fault of the key, the
door, or the owner of the house itself. Same goes with
passwords. If the owner of the password is not careful, people
with bad intention might steal that password and use them to
do some crimes. To increase security, one might do something
to their password to make it difficult for others to steal or use
them. One of them is called Hashing. By hashing a password,
others might have to take more time than usual to guess or
predict the original password. One might also add salt to the
hash so that the password thief might not know the original
password from the hashed one without the salt.

Keywords—Hash, salt, password, MD5, computer

I. INTRODUCTION

In this modern age where almost everything needs a
computer, people realize that computers aren’t as reliable
without proper configurations. Computers can be used to
help human calculate many things that can’t be done in
human time. But other than that, many people use computers
for many different purpose, such as social media, job
opportunities, promoting products, and many more. While
computers seem to help human, some others believe that
through computers too, other bad human might do bad stuff
to others.

One example is that by using someone’s account, with a
password that has been compromised, they can do whatever
they want with the identity of the stolen account’s owner.
This might seem harmless, but not when the owner has their
account identities or other accounts such as bank accounts in
their computers. This one is a huge problem since someone
might lose what they have saved from many years in just a
few minutes.

To tackle such problem, people have come up with many
different ways to upgrade the security for their computers.
One way is to fix and upgrade the passwords system. People
tend to use the same password in many different computers
and sometimes, that password might be a mediocre and mass
used password, such as ‘password’ for the password. This
might not be a problem if the world is a safe place and free
from criminals, but the world isn’t.

So to improve that password system, many people have
come up with many different ideas. One being called
hashing. Hashing is basically a function that takes a
password and return it in another form and maybe length so

that other people might have to guess or even try harder to
find the original password. Hashing is also popular in
modern technology and many people have been researching
over such topic, because even though it seems secure, some
smart geniuses might also find holes in them so that they are
breachable.

One hashing function that is popular today is MD5 hash.
MD5 hash takes a password, do something to them in the
middle of the process and return them in the form of a
password that is 128 bits in length, or 16 bytes.

In some cases, people use hashing method to compare
passwords whether they are the correct passwords or not in a
database. If they are the same, meaning they are correct, then
the person accessing the account will be granted access. If
not, then the person might have to try again.

Other function that adds to security in passwords is salt.
Salt is like another key to the same door that if you lose it,
you will be locked forever. Having salt to many hashes
seems to be a great idea since it is practical and easily
implemented in everywhere. One problem that comes with
salting a hash is having to maintain that salt or else the
original password might always be unknown.

II. MD5 HASH

The MD5 Hash Algorithm has been in the cryptographic
world for a while. Designed by Ron Rivest in 1991, it was
originally made to replace its predecessor, MD4 Hash
Algorithm. MD5 itself produces a hash of 128 bits long that
is represented with a 32 digits of hexadecimal.

MD5 itself was popular until 2005 where it was found to
be not resistant to collision. From here, people have tried to
come up with a better alternatives to MD5. In 2012, the hash
function was declared “cryptographically broken and
unsuitable for further use”.

To be a proper hashing function, the hash function must
be collision resistant, meaning that at least two text should
not make the same result. MD5 failed that and many people
found a way to ‘collide’ the passwords just by using
computers in their home. Since this exploit, people have been
moving on to other hashing function such as SHA function
families or others.

For now, MD5 is not usually found in cryptographic
needs. It might be found in some websites, but not many. It
still can be used to compare original files and the one being
spread too. It is now mainly used to store passwords in
websites with minimum specifications.

Aulia Ichsan Rifkyano-13515100 ©2019 IEEE

mailto:rifkyanoa@gmail.com

A. The Algorithm

1. Append padding bits, so that the length of the
plaintext is congruent to 448 modulo 512. Even
though the plaintext is already congruent to 448
modulo 512, padding should always be performed.

To append padding bits, a single ‘1’ bit is appended
then followed by ‘0’ bits so that the length of the
plaintext is congruent to 448 modulo 512.

2. Append length of the plaintext to the result of the
previous step. From here, the result should be an
exact multiple of 512 bits.

3. Initialize an MD buffer by making a four word
buffer. For example, a four word (A,B,C,D) is used
to compute the message digest. Each word is a 32-
bit representation which then will be initialized to
the following values in hex:

Word A: 01 23 45 67

Word B: 89 ab cd ef

Word C: fe dc ba 98

Word D: 76 54 32 10

4. Process result in a block of 16 words or 512 bits.
First divide each result consisting of L blocks until
the length becomes 512 bits. They are processed in
such way like in this schema:

B. MD5 Collision

The first MD5 collision was found in 1996. It was found
in a lite version of MD5 function. Since then people have
been figuring out whether MD5 contains another breach or
not.

Then in 2005, Ron Rivest announced that the function
was ‘broken’ and not to be used anymore after some
cryptanalyst found them in a collision state. Not long after
that, in 2007, another researcher named Anton Kuznetov

found out a breach in MD5 by using what is called as Prefix
Collision, by appending two new value that has been hashed
to two different documents. The two documents then
produced the same result.

The infamous MD5 collision is:

d131dd02c5e6eec4 693d9a0698aff95c 2fcab58712467eab
4004583eb8fb7f89

55ad340609f4b302 83e488832571415a 085125e8f7cdc99f
d91dbdf280373c5b

d8823e3156348f5b ae6dacd436c919c6 dd53e2b487da03fd
02396306d248cda0

e99f33420f577ee8 ce54b67080a80d1e c69821bcb6a88393
96f9652b6ff72a70

And

d131dd02c5e6eec4 693d9a0698aff95c 2fcab50712467eab
4004583eb8fb7f89

55ad340609f4b302 83e4888325f1415a 085125e8f7cdc99f
d91dbd7280373c5b

d8823e3156348f5b ae6dacd436c919c6 dd53e23487da03fd
02396306d248cda0

e99f33420f577ee8 ce54b67080280d1e c69821bcb6a88393
96f965ab6ff72a70

Both producing the same MD5 hash:

79054025255fb1a26e4bc422aef54eb4

With that being one of the classic MD5 hash, now people can
create their own collision using HashClash. With the cost of
$0.65, you can make your own collision of MD5 hash.

III. BREAKING THE DOOR

There are many ways to gain access to someone’s
account without getting the original password or by finding
the original password. These are some famous ways of
cracking passwords.

A. Brute Force

Brute force is the easiest and simplest way of cracking
passwords, but takes the longest time to finish. To brute
force, someone would use all combination of character
available with the help of some hints available. For example,
if someone’s password is longer than 5 characters, then the
cracker would have to use all combination of at least 5
characters to brute force the password.

Brute force will always be successful in predicting and
finding all kind of password, it just takes almost forever and
a lot of resource needed until the program finish brute
forcing.

Drawing 1: Schema of MD5 Hash

Some people already got a measurement for brute force,
which is to limit the amount of password tries within a given
amount of time. If someone fails more than the threshold
given, then the cracker will be banned according to the
amount of time specified.

B. Dictionary Attack

Dictionary Attack is basically brute force attack, but
using more organized way. The cracker would need to set up

a list or dictionary of words that has the possibility to match
with the password. Then the computer will try one by one
until the match is found (or not).

Dictionary attack will not always be successful like brute
force, but with a set of knowledge and some hints, someone
might get a lucky charm with the password cracking.

C. Precomputed Table

Precomputed Table is just a database full of hashed text.
Then if the cracker gains access to the database needed, the
cracker would then compare the database passwords to his
own precomputed table of hashes and find which one is the
same.

The problem with precomputed table is that one has to
have a large memory to store all the data of the precomputed
hashes if they want to succeed. If someone’s password is 10
letter long and consists of alphanumeric, then the cracker
would need 36^10 combination in which they are the
combination of all the precomputed hashes.

IV. IMPROVING MD5

There are two ways that I am proposing to improve this
hash function:

A. Repeated Hashing

By hashing many time, the result of the hash should be a
random combination of letters and numbers. Then it would
be another chaotic combination of letters and numbers if
hashed again. Many websites have used this method by
repeating MD5 three times. This would make people that has
precomputed table need to have more effort on making
another table.

The downside is that by calculating many times, a
computer needs more CPU power to do the repeating. Many
server would choose not to do that, but other servers would
do the triple calculations in the client-side.

B. Salt

Salt is basically another plaintext that is added to the
process of hashing. By adding salt, the original passsword is
more obfuscated than before. The result of the hash would be
much different than before by adding salt in the middle of the
process. Salt is mainly aimed to reduce the efficiency of
precomputed table, but then has proven to be effective in
many cases of hashing. To crack the original password with
salt, firstly the cracker would need to know the salt. Without
the salt, the cracker have no way to find the original
password.

V. IMPLEMENTATION

The implementation is Ruby based and follows the
specifications specified by RSA. Multiple times hash would
be as follows:

HASH(HASH(HASH(HASH(PLAINTEXT))))

While salt is just a random combination of alphanumeric
word that is appended to the end of the original plaintext

HASH(PLAINTEXT+SALT)

Here are some output from the program:

Drawing 2: MD5 Hash with no repeat

Drawing 3: MD5 repeated 3 times of the same input

Drawing 4: MD5 repeated 100 times of the same
input

Drawing 5: MD5 repeated 1,000 times of the same
input

Drawing 6: MD5 repeated 1 million times of the
same input

Then they are compared in https://crackstation.net/ and can
be seen in the attachment section.

By adding salt, the execution time is also lower because
longer plaintext means that the program doesn’t have to
process the padding byte many times, saving some processor
power. The implementation of ruby MD5 hash with salt can
be found in http://github.com/arzeeee/rubysalt

VI. SUMMARY

The MD5 Hash Algorithm has been in the cryptographic
world for a while. Proven to be quick once doesn’t mean it
will be in the cryptographic world forever. Many breaches
made the hash function unusable for many purpose, but yet it
still can be used for some reason.

By using salt and repeated hashing, we can improve the
security of passwords by a lot. Even though MD5 is popular
with collision nowadays, we might still find them in some
websites since they are pretty quick and use less computing
power than many other hashing functions.

DISCLAIMER

With this I declare that my paper is my own writing, not a
copy, not a translation, nor a plagiarism from other’s work.

Bandung, 10 Mei 2019

Aulia Ichsan Rifkyano
13515100

Drawing 7: A common word hashed 1 time

Drawing 8: The same common word hashed
one thousand times

Drawing 9: MD5 hash with salt

Attachments

Attachment 1: Result of repeated and non-repeated hashing of a
common word

	I. Introduction
	II. MD5 Hash
	A. The Algorithm
	B. MD5 Collision

	III. Breaking The Door
	A. Brute Force
	B. Dictionary Attack
	C. Precomputed Table

	IV. Improving MD5
	A. Repeated Hashing
	B. Salt

	V. Implementation
	VI. Summary

