
Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2018/2019

A Method of Generating Random Numbers In An

Efficient Manner Using Hash Functions
A Hash-Based Pseudo Random Number Generator

Jonathan Alvaro

Teknik Informatika

Institut Teknologi Bandung

Bandung, Indonesia

jonalvarot@gmail.com

Abstract—In computer science, random numbers are used in

numerous important applications, such as cryptography and

simulations of real-world events. With such a wide array of

applications, a method to generate uniformly distributed random

numbers in an efficient manner would be very beneficial. This

paper explores the possibility of generating uniformly distributed

random numbers using hashing algorithms. Initial evaluation

shows that this method would be able to generate numbers in a

sufficiently uniform manner with low computing power required

despite having a limited range of numbers.

Keywords—random; hash; algorithms; uniform.

I. INTRODUCTION

Random number generators are being used in various fields
of study to perform important tasks, such as cryptography [1]
and simulation of complex systems. In cryptography in
particular, uniformly distributed random number generators are
needed in order to ensure the security of encrypted data. On the
other hand, in order for the generator to be applicable, it must be
able to generate random numbers without using too much
computing power. This paper strives to explore the possibility of
using hash algorithms as the method of generating new random
numbers. The reason that hash algorithms are chosen is two-
fold. First, is the fact that with its widespread use, there are
efficient implementations of these algorithms that are available.
Second, is due to the way that good hashing algorithms work.
Namely, they are designed in such a way that collisions are
minimized. Because of this, the author makes an assumption that
the hash strings generated by the hashing algorithm could be
used as a source of random numbers that are distributed in a
sufficiently uniform manner.

II. BACKGROUND

A. Hashing

Hashing is an operation which maps a value that is given as
an input into another completely different value [2]. In general,
the output of a hash operation is an array of bits of certain length,
with each hashing method having its own length of output.

Usually, these output values are displayed as a hex-based string
in order to make it more readable by humans.

There are various different methods that could be used to do
a hash operation. These methods are usually called hash
functions. Each hash functions have their own unique
characteristics, such as different output lengths. But, most hash
functions that are used in real world settings today usually gives
output values that are at least 256 bits long. The reason for this
is that hash functions aim to minimize hash collision, which is
an event where two different inputs produce the same output
values. Hash collisions are undesirable because they cause
significant security vulnerabilities [3].

In the real world, there are a lot of important applications for
hashing, in particular, in the field of security. For example, a
hash string can be used to ensure the integrity of data that is
distributed on the web. A user that means to use the data could
ensure the data’s integrity simply by comparing the hash of the
data that he received with the hash that is listed on the data’s
source. Another example for the use of hash would be to hash
account passwords. Since hash algorithms are expected to
generate very small amount of collisions, passwords can be
passed through a hash function on a client machine, before it is
passed on to the server. This way, it ensures that any intercepted
packet would not compromise the user account’s security.

B. Available Hash Functions

There are a lot of hash functions with various
implementations that are readily available for use out there.
Amongst them, there is one family of hash functions, the Secure
Hash Algorithms (SHA), which is the most widely known. The
reason for its popularity is due to the National Institute of
Standards and Technology recommending it as the publicly used
hash function for security purposes [4]. Among the hash
functions that are included within this family, two of them,
namely SHA-0 and SHA-1, are considered insecure because of
known hash collisions. The other two functions, SHA-2 and
SHA-3, are not as compromised as the previous two functions.
But, in general, it is recommended that SHA-3 is the used hash
function because of SHA-2’s known vulnerability against
extension attacks.

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2018/2019

Another widely known family of hash functions would be
the Message Digest (MD) hash functions. There are 4 functions
in this family, MD2, MD4, MD5, and MD6. The MD hash
functions, more specifically the MD5, used to be a popular hash
function due to its speed, until significant vulnerabilities were
found. These vulnerabilities presented various attack methods
that simply rendered the MD5 unsuitable for security [5]. In
response to this, the MD6 algorithm was designed and
implemented in order to address the vulnerabilities in MD5. It
was in fact, one of the candidates that were considered to be
adopted as the SHA-3 algorithm. But, the MD6 was eventually
considered not ready for practical applications, mainly due to
speed problems.

III. PROPOSED ALGORITHM

As the paper title suggests, this paper proposes a method of
using various hash functions in order to efficiently generate
uniformly distributed random numbers. Due to its simplicity, the
proposed algorithm should be compatible with most of the hash
functions that are available, thus, making it a very easily
implemented algorithm. In general, the algorithm could be
divided into two parts, namely:

1. Hash string generation

2. Translation into numbers

The first part is mainly handled by the hash function, which is
not the main topic of this paper, and as such, will not be
discussed into further details other than what is mentioned in
chapter II.

As for the second part, there are numerous methods that are
available for this purpose. In general, it would be desirable for
the method used in translating the hash string to be able to
generate a wide array of numbers in order to increase the
applicability of the algorithm in real world applications.

 One thing that should be noted here is that a hash string
generated by a hash function would be limited in length and, as
such, would only be able to generate a limited amount of random
numbers. The algorithm solves this problem by using the
generated hash string as the input value to generate the next hash
string that would be used to generate the numbers. With this
method, an initial seed value could be used to generate an
unlimited amount of random numbers. Furthermore, considering
the fact that good hash functions would rarely encounter a hash
collision, it is reasonable to assume that the generated numbers
would be distributed in a uniform manner. For a more detailed
picture of the algorithm, refer to Fig. 1.

Fig. 1. Flow of Proposed Algorithm

IV. METHOD

In this paper, the main goal would be to measure the
efficiency of the algorithm and the uniformity of the random
numbers. In order to measure this, the proposed algorithm would
be implemented using three different hash functions, namely,
SHA-1, SHA-512 (SHA-2), and SHA3-512 (SHA-3). The
reasoning behind the chosen algorithms is in order to check
whether the security of the hash functions itself influences the
uniformity of the generated numbers. As for the translation
function, this paper uses the simplest possible algorithm, namely
using each digit in the generated hash string as is, and skipping
the non-numeric characters within the hex string. Furthermore,
in order to ensure that the uniformity of the generated numbers
is measured correctly, each implementation with its own hash
function would be run through 100000 iterations, or in other
words, each function would generate 100000 hash strings’ worth
of random numbers.

For efficiency, this paper measures it by using the amount of
time it takes for the algorithm to go through the 100000
iterations. As for the uniformity, this paper would measure it
simply by-eye inspection of the histogram plot of the generated
numbers.

V. RESULTS

The result obtained from tests done using the method
presented in the previous chapter would be presented and
explored within this chapter.

TABLE I. EFFICIENCY OF IMPLEMENTATIONS WITH DIFFERENT HASH

FUNCTIONS

Hash Function
Amount of Generated

Numbers

Time Taken

(s)

Numbers

per Second

SHA-1 2,500,597 2.1602 1,157,576

SHA-512 (SHA-2) 7,999,295 6.4598 1,238,319

SHA3-512 (SHA-3) 7,997,897 6.5207 1,279,520

Randint (Python
3.6.5)

8,000,000 8.0385
995,210

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2018/2019

First, the efficiency of the algorithms could be seen in Fig.
2, which compares the time taken to go through 100000
iterations and the amount of generated numbers between the
implementations. As a baseline, the figure also shows the time it
takes for the built-in randint function in Python 3.6.5. As can be
seen, the amount of numbers generated by the algorithm
implemented using the SHA-1 hash function is lower compared
to the other implementations. The reason for this is that the
length of a SHA-1 hash string is only 160 bits compared to the

512 bits using SHA-2 and SHA-3. But, the more important
data to notice here is the amount of numbers generated per
second by each implementation. As can be seen, every single
algorithm generates more numbers per second compared to the
built-in randint function from Python. This proves that the
proposed algorithm is indeed efficient enough to be used for
generating random numbers.

Next, the second important data to be explored here is the
uniformity of the numbers generated by each implementation.
From Fig. 3 below, it can be seen that for this specific translation
function, the uniformity of every single implementation with
different hash functions practically equals the uniformity of
random numbers generated by a built-in Python function. This
further proves the applicability of the algorithm to be used as a
random number generator in real world scenarios.

VI. CONCLUSIONS AND FURTHER RESEARCH

As presented in Fig. 2 and Fig. 3, the result obtained from
the implementations described in chapter IV appears to support
the claims made in chapter I about the uniformity and efficiency
of the proposed algorithm. With this, the algorithm could be
further improved and explored in order to find out whether it is
possible to use this algorithm as the random number generator
in applications that require both efficiency and uniformity. This
algorithm also provides at the very least a limited scalability in
terms of memory and efficiency. This claim would have to be
confirmed in large-scale applications that require very large
numbers (in the hundreds of digits) as that would mean that the
current implementation would require multiple iterations just to
generate a single number.

That being said, there are several points that might be
improved in further research on this topic. First of all, the
translation function should be replaced by another function that
would enable the generation of random numbers in a larger
range of value. It is hoped that this new translation function
would be able to preserve both the uniformity and the efficiency
of the implementations that this paper explores. Secondly, future
studies might explore the possibility that the efficiency and
uniformity found in this paper is limited to few iterations. There
is still a possibility that this algorithm would not scale for more
significant applications. And finally, it should be checked
whether there would ever be a practical point when the generated
numbers would loop over due to hash collisions. Should such a

Fig. 3. Uniformity Comparison for Various Implementations

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2018/2019

point be discovered, it would immediately render this algorithm
useless for security-based applications.

ACKNOWLEDGEMENTS

In this section the author would like to thank Mr. Rinaldi
Munir as the author’s professor for teaching the knowledge that
the author used during the writing of this paper. The author
would also like to thank past researchers that have made their
research available to the public as they presented the author with
references that served as learning materials for the author.

REFERENCES

[1] V. Bagini and M. Bucci, “A Design of Reliable True Random Number
Generator for Cryptographic Applications,” Cryptographic Hardware and
Embedded Systems Lecture Notes in Computer Science, pp. 204–218,
1999.

[2] “Hash,” Hash Definition. [Online]. Available:
https://techterms.com/definition/hash. [Accessed: 04-May-2019].

[3] MD5 considered harmful today. [Online]. Available:
https://www.win.tue.nl/hashclash/rogue-ca/. [Accessed: 04-May-2019].

[4] Q. H. Dang, “Secure Hash Standard,” 2015.

[5] S. Chen and C. Jin, “An Improved Collision Attack on MD5 Algorithm,”
Information Security and Cryptology Lecture Notes in Computer Science,
pp. 343–357.

