
Hash Function Performance

Abner Adhiwijna 135160331

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113516033@std.stei.itb.ac.id

Abstract—A hash function is a function that is used to map

data of any sizes into fixed size data. A value from a hash

function is created in such a way that it is difficult to find out the

initial value. This is useful in storing data such as passwords so

that the stored values cannot be used to infer the actual data. A

brute force attempt to find a value similar to a certain value is

possible. As the attempt requires to execute the hash function

multiple times, the hash function’s computing performance will

have a big effect in the time it takes for a brute force attack.

Thus, having a hash function that is significantly slower is more

secure against a brute force attack. Various hash functions has

different algorithms. This difference leads to functions having

different performance that is important against a brute force

attack.

Keywords—hash; brute force; performance; computing time;

I. INTRODUCTION

A hash function maps data of arbitrary size to fixed size
data. It works as a one-way function and designed to be
infeasible to invert. Hash functions are widely used for
cryptographic purposes for this reason. Password verification
and digital signatures are applications of hash functions. Hash
functions allows data such as passwords to be stored without
revealing the password. However, this doesn’t stop some
people from trying.

A small change to a message being hash changes the hash
value so significantly that it is near infeasible to find a specific
message corresponding to a hash value. Brute force is the
method used to crack hashes. The method simply tries all
possible combinations until it arrives at a solution. If a hash
function has low computing time, a brute force attack will be
able to try more inputs in a period of time. Thus, it is important
for hash functions to have some degree of performance to deter
brute force attacks.

This paper will test several popular hash functions on an
amount of inputs to check the comparative computing time of
each of those functions. The time it takes to execute a function
will help determine which hash function is more secure to use.

II. THE HASH FUNCTIONS TESTED

A. Secure Hash Algorithm (SHA)

The Secure Hash Algorithms are cryptographic hash
functions published by the Nasional Institute of Standards and
Technology (NIST).

1) SHA-1
SHA-1 was first published at 1995. It produces a 160-bit

hash value.

2) SHA-2
SHA-2 was published at 2001. It was designed by the US

NSA. It has variants for 224, 256, 384, and 512 bits. This paper
will cover SHA-256.

3) SHA-3
Also known as Keccak, this algorithm is fairly new first

published at 2015. Keccak was selected as a winner of the
NIST hash function competition for SHA-3.

B. MD Message-Digest Algorithm Series

This series was developed by Ronald Rivest.

1) MD4
MD4 was developed on 1990. It has now been replaced by

MD5.

2) MD5
First published in 1992. Designed by Ronald Rivest to

replace MD4

C. BLAKE2

BLAKE is a cryptographic hash function based on the
ChaCha stream cipher. Blake was developed by Jean-Philippe
Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W.
Phan.

1) BLAKE2b
A variant of BLAKE2 optimized for 64-bit platforms.

2) BLAKE2s
A variant of BLAKE2 optimized for 8- to 32-bit platforms.

D. RipeMD

Developed in 1992 and has five variants which are
RIPEMD, RIPEMD-128, RIPEMD-160, RIPEMD-256, and
RIPEMD-320. This paper will cover the most common one
which is RIPEMD-160.

E. Whirlpool

A cryptographic hash function published at 2000 that is not
patented and may be used freely. It was designed by Vincent
Rijmen and Paulo S. L. M. Barreto.

III. THE ENVIRONMENT

The test will be conducted against an array of random
strings. Each string is randomized to have a length up to 100.
For this test, Different amounts of string will be tried for all
hash functions.

A. Hardware, Programming Language, and Libraries

The programming language that will be used for this test is
python. The libraries used for this test is hashlib from python.
Below are the list of functions used for each hash function.

- hashlib.sha1()

- hashlib.sha256()

- hashlib.sha3_256()

- hashlib.new(‘md4’)

- hashlib.md5()

- hashlib.blake2b()

- hashlib.blake2s()

- hashlib.new(‘ripemd160’)

- hashlib.new(‘whirlpool’)

Below is the specification of hardware used for this test.

Operating System Windows 10 Home Single
Language 64-bit (10.0, Build
17134)
(17134.rs4_release.180410-
1804)

System Model Inspiron 15 7000 Gaming

Processor Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz (8
CPUs), ~2.8GHz

Memory 16384MB RAM

B. String Values to be Hashed

Although this is insignificant for the performance of the
hash function, it doesn’t hurt to document how the random
strings are generated. The maximum string length was set at
100. Each string will be generated from printable characters
with a random length between 1 and the maximum length.

def initList(n=N):

 arr = []

 for i in range(n):

 arr.append(

 "".join(random.choice(

 string.printable)

 for _ in range(random.randint(

 0, maxRandLength)))

 .encode('utf-8'))

 return arr

IV. TEST RESULTS

The test will be conducted three times for each amount of
string. The value taken will be the average of those results.
Time taken will be in milliseconds.

A. 1000 Strings

Function Time 1 (ms) Time 2 (ms) Time 2 (ms)

SHA-1 1.00255 0.997066 0.997305

SHA-256 0.99659 0.996828 0.997782

SHA-3 256 0.99206 1.023293 0.997543

MD4 0.998974 0.997782 0.997543

MD5 0.994205 0.99802 0.99659

BLAKE2b 0.997543 0.92411 0.997543

BLAKE2s 0.997543 0.996351 0.962973

RIPEMD-160 0.997066 0.998735 1.996113

Whirlpool 1.98698 1.993895 0.997471

Function Average Time (ms)

SHA-1 0.998974

SHA-256 0.997066

SHA-3 256 1.004299

MD4 0.9981

MD5 0.996272

BLAKE2b 0.973066

BLAKE2s 0.985622

RIPEMD-160 1.330638

Whirlpool 1.659449

Below is the speed sorted by time from fastest to slowest

Function Average Time (ms)

BLAKE2b 0.973066

BLAKE2s 0.985622

MD5 0.996272

SHA-256 0.997066

MD4 0.9981

SHA-1 0.998974

SHA-3 256 1.004299

RIPEMD-160 1.330638

Whirlpool 1.659449

B. 10000 Strings

Function Time 1 (ms) Time 2 (ms) Time 2 (ms)

SHA-1 6.980658 7.950783 8.012056

SHA-256 11.95264 8.009434 9.939432

SHA-3 256 12.00318 10.99706 11.00588

MD4 6.949902 7.97987 8.988857

MD5 7.981777 6.981134 6.979227

BLAKE2b 13.98897 11.96814 11.94453

BLAKE2s 9.941816 9.004116 11.95264

RIPEMD-160 12.9993 12.96401 10.97488

Whirlpool 15.95616 18.93806 15.94949

Function Average Time (ms)

SHA-1 7.647832

SHA-256 9.967168

SHA-3 256 11.33537

MD4 7.972876

MD5 7.314046

BLAKE2b 12.63388

BLAKE2s 10.29952

RIPEMD-160 12.31273

Whirlpool 16.94791

Below is the speed sorted by time from fastest to slowest

Function Average Time (ms)

MD5 7.314046

SHA-1 7.647832

MD4 7.972876

SHA-256 9.967168

BLAKE2s 10.29952

SHA-3 256 11.33537

RIPEMD-160 12.31273

BLAKE2b 12.63388

Whirlpool 16.94791

C. 100000 Strings

Function Time 1 (ms) Time 2 (ms) Time 2 (ms)

SHA-1 79.31113 74.77427 75.67954

SHA-256 110.6715 96.31968 111.1367

SHA-3 256 112.0458 112.7 107.7123

MD4 72.84069 78.78661 70.80388

MD5 72.83664 93.78076 72.80707

BLAKE2b 112.7012 119.7116 131.366

BLAKE2s 92.01121 103.7209 95.75677

RIPEMD-160 121.7146 122.6728 132.6454

Whirlpool 166.1785 168.5696 165.9915

Function Average Time (ms)

SHA-1 76.58831

SHA-256 106.0426

SHA-3 256 110.8193

MD4 74.14373

MD5 79.80816

BLAKE2b 121.2596

BLAKE2s 97.16296

RIPEMD-160 125.6776

Whirlpool 166.9132

Below is the speed sorted by time from fastest to slowest

Function Average Time (ms)

MD4 74.14373

SHA-1 76.58831

MD5 79.80816

BLAKE2s 97.16296

SHA-256 106.0426

SHA-3 256 110.8193

BLAKE2b 121.2596

RIPEMD-160 125.6776

Whirlpool 166.9132

D. 1000000 Strings

Function Time 1 (ms) Time 2 (ms) Time 2 (ms)

SHA-1 759.9683 778.6429 779.4826

SHA-256 1000.324 960.1517 1203.443

SHA-3 256 1122.055 1111.153 1466.95

MD4 751.9937 731.5886 807.4577

MD5 762.4938 784.2755 845.7928

BLAKE2b 1149.026 1167.475 1229.07

BLAKE2s 964.6988 989.1622 1036.482

RIPEMD-160 1250.806 1294.768 1368.453

Whirlpool 1708.392 1796.22 1825.659

Function Average Time (ms)

SHA-1 772.6979

SHA-256 1054.639

SHA-3 256 1233.386

MD4 763.68

MD5 797.5207

BLAKE2b 1181.857

BLAKE2s 996.7809

RIPEMD-160 1304.675

Whirlpool 1776.757

Below is the speed sorted by time from fastest to slowest

Function Average Time (ms)

MD4 763.68

SHA-1 772.6979

MD5 797.5207

BLAKE2s 996.7809

SHA-256 1054.639

BLAKE2b 1181.857

SHA-3 256 1233.386

RIPEMD-160 1304.675

Whirlpool 1776.757

E. 10000000 Strings

Function Time 1 (ms) Time 2 (ms) Time 2 (ms)

SHA-1 8137.61 7903.784 7918.985

SHA-256 9992.155 9966.959 9782.443

SHA-3 256 11462.22 12027.27 11371.63

MD4 7853.347 7882.942 7663.154

MD5 8162.451 8256.433 7904.304

BLAKE2b 11663.13 12524.95 12025.8

BLAKE2s 10165.77 10091.08 9950.375

RIPEMD-160 13447.09 13526.03 13839.56

Whirlpool 18226.76 18266.65 17527.65

Function Average Time (ms)

SHA-1 7986.793

SHA-256 9913.852

SHA-3 256 11620.37

MD4 7799.814

MD5 8107.73

BLAKE2b 12071.29

BLAKE2s 10069.07

RIPEMD-160 13604.23

Whirlpool 18007.02

Below is the speed sorted by time from fastest to slowest

Function Average Time (ms)

MD4 7799.814

SHA-1 7986.793

MD5 8107.73

SHA-256 9913.852

BLAKE2s 10069.07

SHA-3 256 11620.37

BLAKE2b 12071.29

RIPEMD-160 13604.23

Whirlpool 18007.02

V. COMPARISON AND ANALYSIS

A. Secure Hash Algorithm (SHA)

SHA-1, SHA-2, and SHA-3 has different durations for
hashing the same amount of strings. There is a trend that SHA-
2 generally is slower than SHA-2, and SHA-3 is slower than
SHA-2. This means that over the course of new algorithms, the
SHA series generally takes longer to hash a value. This is still a
good change in terms of defending against brute force attacks

We suggest that you use a text box to insert a graphic
(which is ideally a 300 dpi resolution TIFF or EPS file with
all fonts embedded) because this method is somewhat more
stable than directly inserting a picture.

To have non-visible rules on your frame, use the
MSWord “Format” pull-down menu, select Text Box >
Colors and Lines to choose No Fill and No Line.

because it means that newer algorithms will need longer to be
cracked.

B. MD Message-Digest Algorithm Series

MD5 generally takes a little bit more time than its
predecessor, MD4. However, the difference is almost
negligible. Hence, MD5 is not that much better in defending
against brute force attacks in computing time than MD4

C. BLAKE2

BLAKE2s is faster then BLAKE2b. This is to be expected
since BLAKE2b is optimized for 64-bit platforms while
BLAKE2s is optimized to 8 to 32-bit platforms.

D. General

MD4, MD5, and SHA-1 have relatively fast computing
times compared to the other hash functions. These functions
are easy to attack and should be avoided.

SHA-256, SHA-3 256, BLAKE2b, and BLAKE2s have
pretty good computing times. These hash functions should be
safe to use just based on the security against brute force
attacks.

RIPEMD-160 and Whirlpool both have a very high
computing time. RIMEMD-160 needs about 36% more time
than SHA-256 while Whirlpool is at 80% more. These
functions are safe to use against brute force attacks.

VI. CONCLUSION

Every hash function has different performances and
computing time. These computing times are useful for fending
off brute force attacks. The more time it takes to execute a hash
function, the more secure it is against brute force attacks.

Based on the findings, MD4, MD5, and SHA-1 has
relatively low computing time and thus should not be used.
These hash algorithms are susceptible against brute force
attacks.

SHA-256, SHA-3 256, BLAKE2b, and BLAKE2s are safe
to use with enough protection against brute force attacks.

RIPEMD-160 and Whirlpool are the slowest and should be
the safest against brute force attacks. The functions are safe by

increasing the amount of time needed for the same amount of
executions.

Based on this test, it is concluded that RIPEMD and
Whirlpool should be used. However, SHA-256, SHA-3, and
BLAKE should not be forgotten when in need of more
performance. MD4, MD5, and SHA-1 should not be used.

This paper does not cover other aspects of a hash function
and it should be noted when choosing which function to use.
Collision attacks are not covered here but are affected by the
computing time needed by hash functions. Furthermore, newer
algorithms has the advantage in that there has been less
cryptoanalysis done to it. These aspects need to be considered
outside of the computing time for fending off brute force
attacks.

REFERENCES

[1] https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups
/STM/cavp/documents/shs/sha256-384-512.pdf Accessed on 09 May,
2019.

[2] https://keccak.team/, Accessed on 09 May, 2019.

[3] https://blake2.net/, Accessed on 09 May, 2019.

[4] https://homes.esat.kuleuven.be/~bosselae/ripemd160.html, Accessed on
09 May, 2019.

[5] https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~p
barreto/WhirlpoolPage.html, Accessed on 09 May, 2019.

[6] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68-73.

[7] I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271-350.

[8] K. Elissa, “Title of paper if known,” unpublished.

[9] R. Nicole, “Title of paper with only first word capitalized,” J. Name
Stand. Abbrev., in press.

[10] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

STATEMENT

I hereby declare that this paper is my own paper, not an

adaptation, or a translation from someone else’s paper, and not

a plagiarism.

Bandung, 05 May 2019

Abner Adhiwijna 13516033

https://web.archive.org/web/20130526224224/http:/csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http:/csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://keccak.team/
https://blake2.net/
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://web.archive.org/web/20171129084214/http:/www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://web.archive.org/web/20171129084214/http:/www.larc.usp.br/~pbarreto/WhirlpoolPage.html

