
ARUS: Pseudo-Asymmetric Encryption Algorithm

Lazuardi Firdaus
School of ​ Electrical Engineering and Informatics

Bandung Institute of Technology
Bandung, Indonesia

lazuardifirdaus369@yahoo.com

Abstract​— ARUS is an encryption algorithm made using

AES, RSA, and SHA2. The aim of ARUS is to provide the
functionality of RSA while having the encryption time of AES.
Even though in theory such goal was to be achieved, the testing
however has shown that ARUS need further development,
implementation, and testing.

Keywords—encryption, aim, functionality, time

I. INTRODUCTION

The introduction of asymmetric encryption algorithm in
the 20th century opens up whole new possibilities in the
cryptography world. For the first time, it is possible to
encrypt messages while distributing the key for the whole
world to use. This is because encryption and decryption use
a set of 2 different keys. Allowing other people to encrypt a
message but preventing them from decrypting it (or vice
versa). Thus, eliminating the problem that persist on
symmetric encryption algorithm which is the transportation
of keys between sender and receiver.

Asymmetric encryption algorithm, however, is not
without its cons. Many asymmetric encryption algorithm
such as RSA and ECC requires more time to encrypt
messages than its symmetric counterpart. Thus limiting its
usability when dealing with a large size of messages.

A solution to this problem is to somehow combine the
two approach. Acquiring the encryption time of symmetric
encryption while pertaining the characteristics of
asymmetric encryption of using different keys for
encryption and decryption. ARUS is an encryption
algorithm made exactly just for that.

ARUS, which stands for AES RSA Union SHA,
combines the encryption speed of AES and the sets of keys
used by RSA. ARUS can optionally uses SHA to help
maintain the integrity of the sent message.

II. BASIC THEORY

A. Symmetric Encryption
The more traditional of the two, Symmetric Encryption

Algorithm dates back way back to the rise of the Roman
Empire. Caesar cipher, one of the oldest cryptographic
algorithm, was used by Julius Caesar to protect messages of
military importance.

The term ‘Symmetric’ comes from the fact that the key
used for encryption are also used for decryption. Whoever
has access to the key are able to both encrypt and decrypt a
message. This means that the confidentiality of the key is
crucial.

To decrypt a message one needs to know the key used to
encrypt the message. The sender and the receiver of the
message must agree on the said key beforehand. The
problem lies on how to communicate the key between the
sender and the receiver. The most straightforward and
perhaps the safest method is to meet physically. This
however is simply not possible in many case. Just simply
sending the key through a mediator raises the chance of it
being intercepted thus rendering the encryption unsafe.

When using symmetric encryption to

communicate, a key is needed on every pair of
sender receiver

B. Asymmetric Encryption
‘Asymmetric’ comes from the fact that the key used to

encrypt a message is different from the key used the decrypt
it. One of the two key can be made open to public (named
public key), while the other be kept in secret (named private
key).

Asymmetric encryption brings up many utility. When the
encryption key is made public and decryption key is made
private, multiple sender can send message to the same
receiver without fear of anyone but the receiver can read the
message.

When decryption key is the one made public and
encryption key made private, encrypted message can be a
way of authenticating the sender because none but the
holder of the private key can encrypt the message in a way
that can be decrypted using the decryption key.

When communicating using asymmetric

encryption, a receiver only needs a pair of keys

C. Hashing and Messages Integrity
Hashing function is a function that receives any amount

of string and produce a fixed amount of digest. The length of
the digest is varied from one hashing algorithm to the other.
Unlike encryption, hashing function accept no key and the
process is irreversible. We cannot deduct for sure the input
of the function based on the digest alone.

The most common use of hashing function is to ensure
the integrity of messages. This can be done because a small
amount of changes on the input can produce an entirely
different digest. Hashing digest of the messages can be
added to the messages itself. When the receiver receives the
message he/she can try to reproduce the same digest using
the original message. If the digest is the same as the one
included, very most likely the original message is
unchanged thus proving the integrity of the message.

III. ARUS PSEUDO-ASYMMETRIC ENCRYPTION

A. Basic Idea
The goal of ARUS is to provide the function or

characteristics of asymmetric encryption while having an
almost similar encryption time to symmetric encryption,
especially on large messages. Such things can be done by
actually encrypting the original message using symmetric
encryption using a generated key. The key can be generated
randomly or by using a digest of a hash function, using the
original message as the input. The key is then encrypted
using asymmetric encryption and is added to the encrypted
message.

ARUS flowchart in general

Theoretically, the time needed to encrypt a message
using ARUS would be similar to the encryption time of AES
especially on longer messages. The RSA encryption only
need to encrypt the key used to encrypt using AES which is
a fixed length. If the key was generated using a hash
function, the time needed to calculate the hash was also
added to the calculation.

ARUS uses AES for its symmetric encryption
component, RSA for its asymmetric encryption component,
and SHA2 for its hash function component. Hence the name
ARUS (AES RSA Union SHA).

B. ARUS Modes
ARUS can encrypt messages on 2 modes: random mode

and hash mode. Regardless of the modes, ARUS can decrypt
encrypted messages the same way. Hash mode, however,
provides an additional feature of message integrity checking.
Adding more security to the message.

1) Random Mode
When encrypting in random mode, the key for AES

encryption is generated randomly. This is a more
straightforward solution than Hash mode. Random mode
also can encrypt faster than Hash mode because the key is
generated randomly instead of calculated from a hash
function. The use of random mode can also confuse third
party because the same message can have a whole different
form when encrypted because of the random number.

ARUS flowchart in random mode

The downside of Random mode is the possibility that the
random number generator can be guessed. If a third party
can somehow guess the number calculated by the random
number generator used to generate the AES key, that third

party can have access to the original unencrypted message.
Risking the confidentiality and integrity of the message.

2) Hash Mode
In hash mode, the key for the AES encryption is

generated from the hash of the unencrypted message. Using
hash digest as key means that the receiver can check
message integrity just by comparing the hash digest of the
decrypted message with the key itself. Hash mode
eliminates the weakness of Random mode which is the
possibility that the random number generator can be
guessed.

ARUS flowchart in hash mode

The downside of using hash mode is that it needs more
time to encrypt a message than Random mode. The
algorithm needs additional time to calculate the hash digest
of the message before encrypting it with AES.

IV. SIMULATION

A. Implementation
An implementation for ARUS, both Random mode and

Hash mode, was made using Ruby. AES, RSA, and SHA2
implementation was also made as part for ARUS
implementation. The source code can be accessed on the
following page
https://github.com/LazuliSound/PseudoAsymmetric

B. Testing: encryption and decryption example
Testings for the implementation of ARUS was done to

ensure the success of the encryption and the decryption
process. 3 messages of varying length was to be encrypted
using the implementation of ARUS in random mode and
hash mode. The 3 messages, both unencrypted, encrypted,
and decrypted as well as the public and private key used are
as follow.

1) Random mode

Public Key:
13822674922986224941,2724684112625172770418343859733871140
9713822674922986224941,27246841126251727704183438597338711
4097
Private Key:
6836833366790436139157783980382807205,27246841126251727704
1834385973387114097

Plaintext:
This is a text

Ciphertext:
22911238842440881
02866593144425205

Decrypted:
This​ ​is​ ​a text

61572257088922547
03623918895510662
86496675840000000
00000000000000000
000000000000000▒^
C▒▒▒▒▒▒{▒▒E▒

Public Key:
13888891667212343329,2322439045964043277122660023375696036
87
Private Key:
216738412961773588578140407735232067649,232243904596404327
712266002337569603687

Plaintext:
Out of the night that
covers me

Ciphertext:
16164104642445505
39333203452095474
10403165233222874
15964916246334278
71651418620000000
00000000000000000
000000000000000▒!

▒▒▒ws㉢
▒▒bK▒▒▒WF[(▒[~
▒▒▒

Decrypted:
Out of the night that
covers me

Public Key:
17832816390864117679,2731480425667867834563097989025334034
53
Private Key:
87447784404735358708839532063233318187,2731480425667867834
56309798902533403453

Plaintext:
Out of the night that
covers me Black as
the pit from pole to
pole I thank whatever
gods may be For my
unconquerable soul

Ciphertext:
07775218539535169
97189995639190606
78621009299496183
71810721860835774
67587609(▒,▒*Ū▒`y
`▒▒▒a▒*▒ow9o▒L
▒b1B▒▒▒▒d▒▒rqC
▒,mq▒▒"A▒▒`▒I▒
N▒▒▒^▒▒▒▒%z▒4
6▒Xnή▒2

Decrypted:
Out of the night that
covers me Black as
the pit from pole to
pole I thank whatever
gods may be For my
unconquerable soul

2) Hash mode

Public Key:
13577236990676810111,2195288601846702698317636726543873827
41
Private Key:
7698439096039124922374455302297696203,21952886018467026983
1763672654387382741

Plaintext:
This is a text

Ciphertext:
09018994489276925
56973072403531877
02353168081746730
52288276268199918
92760258530000000
00000000000000000
000000000000000▒
▒▒▒L ▒J▒▒▒

Decrypted:
This​ ​is​ ​a text

Public Key:
14042930197723137587,3217712800916820568524960234433327786
97

https://github.com/LazuliSound/PseudoAsymmetric

Private Key:
319442434840185659713687324471438477103,321771280091682056
852496023443332778697

Plaintext:
Out of the night that
covers me

Ciphertext:
20562471795849631
71135984136460087
79469162939427533
44509969948164549
89086996310000000
00000000000000000
000000000000000▒
▒`Z▒▒▒ͪ▒▒b▒▒▒.▒
▒▒b▒▒P▒_3▒▒.▒

Decrypted:
Out of the night that
covers me

Public Key:
14610579032988250031,2674040123912139139741263451310420289
67
Private Key:
25243631861050847264647945847689889671,2674040123912139139
74126345131042028967

Plaintext:
Out of the night that
covers me Black as
the pit from pole to
pole I thank whatever
gods may be For my
unconquerable soul

Ciphertext:
08240100258238092
53128921887365593
66688020948775689
65137116833610622
63599404iN`▒A3▒▒
.a|▒▒▒vQ▒▒▒}▒y▒
00000000000000000
04▒�▒▒▒ja▒

`Ӏ▒▒g▒ϰ▒D▒zC▒Ҽ(
▒▒▒-▒▒▒|▒fW▒g▒
▒▒▒Mz6▒▒:▒▒\▒▒
▒▒DL▒響
wcX▒▒R/뮞▒▒

Decrypted:
Out of the night that
covers me Black as
the pit from pole to
pole I thank whatever
gods may be For my
unconquerable soul

C. Testing: encryption time
Testings for the implementation of ARUS was carried.

The testing was done on a computer with specification:

– Lenovo g40
– Windows 10
– Intel Core i5-4210u (4 CPUs ~2.4Ghz)
– 6GB RAM
– HDD

The testing was done by encrypting and decrypting 5
messages of varying size using ARUS random mode, ARUS
hash mode, and RSA. Each file size uses a different set of
randomly generated private and public key. The key was
shared between ARUS random, Arus hash, and RSA
encryption to ensure fair comparison. Each key was 1024 bit
long.

The time needed to encrypt and decrypt each message
size and each encryption method will be calculated. The
decrypted message will also be checked to ensure that the
encryption and decryption was a success

Such was the result of the test.

Message Size: ​100 Byte

ARUS Encrypt
Time (Random
Mode):
0.018844 s

ARUS Encrypt
Time (Hash
Mode):
0.037255 s

RSA Encrypt
Time:
0.018281 s

ARUS Decrypt
Time (Random
Mode):
0.052994 s

ARUS Decrypt
Time (Hash
Mode):
0.093011 s

RSA Decrypt
Time:
0.028192 s

Message Size: ​1 Kilo Byte

ARUS Encrypt
Time (Random
Mode):
0.119642 s

ARUS Encrypt
Time (Hash
Mode):
0.152562 s

RSA Encrypt
Time:
0.136195 s

ARUS Decrypt
Time (Random
Mode):
0.384682 s

ARUS Decrypt
Time (Hash
Mode):
0.282001 s

RSA Decrypt
Time:
0.128893 s

Message Size: ​10 KiloByte

ARUS Encrypt
Time (Random
Mode):
0.741534 s

ARUS Encrypt
Time (Hash
Mode):
1.082473 s

RSA Encrypt
Time:
0.741873 s

ARUS Decrypt
Time (Random
Mode):
2.571902 s

ARUS Decrypt
Time (Hash
Mode):
2.421922 s

RSA Decrypt
Time:
1.044429 s

Message Size: ​100 KiloByte

ARUS Encrypt
Time (Random
Mode):
7.548439 s

ARUS Encrypt
Time (Hash
Mode):
12.850284 s

RSA Encrypt
Time:
14.10012 s

ARUS Decrypt
Time (Random
Mode):
26.042851 s

ARUS Decrypt
Time (Hash
Mode):
25.411035 s

RSA Decrypt
Time:
13.124358 s

Message Size: ​200 KiloByte

ARUS Encrypt
Time (Random
Mode):
16.713517 s

ARUS Encrypt
Time (Hash
Mode):
32.335428 s

RSA Encrypt
Time:
25.130664 s

ARUS Decrypt
Time (Random
Mode):
49.857806 s

ARUS Decrypt
Time (Hash
Mode):
51.981146 s

RSA Decrypt
Time:
26.316504 s

Comparison of ARUS(random), ARUS(hash), and
RSA encryption time on various message size

V. SECURITY

AES, RSA, and SHA2 each can be considered secure by
today’s standard when using a large enough keyspace. The
integration of those 3 in the form of ARUS implementation
,however, may raise several security concern:

– When using random mode to generate AES key,
there is a risk that the key can be compromised if

the random number generator used to generate the
key can be guessed. This can be overcome by using
hash mode.

Nevertheless, when those weakness can be overcome,
ARUS can be considered a secure alternative to RSA. This
is as long as AES, RSA, and SHA2 can be considered
secure.

VI. CONCLUSION

Theoretically, the implementation of ARUS will provide
the use case of RSA with the speed of AES especially on
larger messages. The test indicates that this may be true
although on smaller messages ARUS took a similar time or
worse to encrypt a message than RSA.

The addition of SHA2 to improve the security of ARUS
however present a negative impact on the performance of
ARUS when compared to traditional RSA according to test.
This however may indicate that the implementation of
SHA2 used in the experiment is just isn’t as efficient as it
should be. In theory the time needed to produce a digest of a
message using hash function should be considerably faster
than encrypting the same message. This proves that the
development, implementation, and testing of ARUS can be
improved even more.

