
Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

Transpose-Trigram Cipher 
Trigram-based Substitution Cipher 

 

Jonathan Alvaro 

Informatics Engineering 

ITB 

Bandung, Indonesia 

13516023@std.stei.itb.ac.id 

Abner Adhiwijna 

Informatics Engineering 

ITB 

Bandung, Indonesia 

13516033@std.stei.itb.ac.id 
 

Abstract—Polyalphabetic substitution ciphers are still 

vulnerable to decryption methods such as frequency analysis. As 

such, the paper proposes a layered trigram-substitution cipher 

that increases the security while still allowing acceptable 

encryption speed.  

Keywords—trigram; block cipher; substitution; caesar cipher; 

transposition; rotation;  

I. INTRODUCTION 

In the history of cryptography, one of the most commonly 
method used to ensure the secrecy of a message is the 
substitution method. In this method, each letter in the original 
message is replaced by another letter. There have been various 
variations of this method of encryption, with some of them being 
more famous than the others. Notable examples include the 
Affine cipher and the Caesar cipher. 

But, this method of encryption proved to be susceptible to 
various code-cracking methods such as frequency analysis. This 
is caused mainly by two weaknesses of this method, namely the 
unchanging position of the letters between the original message 
and the predictable frequency of each letter, which is unique for 
each language. As such, this paper proposes a new block cipher 
that makes use of a variation of the traditional substitution 
methods in order to improve the security of the cipher while still 
keeping the ease of implementation of the substitution method.  

II. SUBSTITUTION-BASED CIPHERS 

This section will review other encryption techniques that are 
based on the substitution method, no matter whether it is a 
traditional or a modern encryption technique. 

A. Caesar Cipher 

The first cipher to be reviewed in this chapter is, arguably, 
one of the most well-known ciphers out there. The cipher 
receives its name from the first recorded user of the encryption 
method, Julius Caesar. This cipher was used by the Roman army 
in order to protect messages of military significance [1]. Despite 
how well-known the cipher is, it actually employs a very simple 
encryption method. In fact, any message encrypted with this 
method could be easily decoded in less than an hour  

 

 

 

with only pen and paper, as there are only 25 possible unique 
keys and how simple the encryption method is. 

Basically, the Caesar cipher is a monoalphabetic substitution 
cipher. That is, each letter in the original message is replaced by 
another message in order to hide the content of the original 
message from any unwanted third party. In order to determine 
the encrypted text, each letter in the original message is replaced 
by a letter a certain distance in front of the letter to be encrypted 
within the alphabet. The distance in question in this case is called 
a key, namely an integer between 1 and 25, inclusive, which is 
predetermined and agreed upon by both the sender and the 
receiver. For example, with a key of 3, the letter a will be 
encrypted into the letter d. In the case that the end of the alphabet 
is reached, this method wraps around to the beginning of the 
alphabet. An example of this for a key of 3 is the letter y. In this 
case, it would be replaced by the letter b. 

On the receiver’s end, the original message could be known 
by decrypting the ciphertext. This is done by replacing each 
letter in the ciphertext by another letter a certain distance from it 
within the alphabet. The only difference between the encryption 
and decryption process lies within the fact that the replacement 
letter is not located in front of the letter to be decrypted, but 
behind the letter in question. For a key of 3, a letter c within the 
ciphertext would be replaced by the letter 3 positions behind it 
within the alphabet, namely z. Aside from this difference, the 
encryption and decryption process are identical. 

The simplicity of this method allows messages to be 
encrypted and decrypted rapidly by manual calculations, which 
makes it suitable for the past, where knowledge of cryptography 
is limited and complex calculating machines did not exist.  

B. Vigenère Cipher 

The Vigenère cipher is another traditional encryption 
method that was widely used before computers and modern 
cryptography techniques become widespread. As with the 
Caesar cipher, the letters in the original message would be 
replaced by another letter in the encrypted message. The 
difference here is that the Vigenère cipher is a polyalphabetic 
cipher instead of a monoalphabetic one. What this means is that 
for each letter in the alphabet, there are more than one letter that 
could become its replacement within the encrypted version of 
the message. This method of encryption is far more secure 
compared to the Caesar cipher, because it is resistant to 
frequency analysis. The reason for this is that each letter could 

mailto:13516023@std.stei.itb.ac.id
mailto:13516033@std.stei.itb.ac.id


Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

be replaced by more than one letter and as such, the frequency 
of each letter within the encrypted message does not necessarily 
reflect the frequency of each letter within the original message. 
This resistance to frequency analysis prevents this encryption 
method to be unbreakable for a little bit over three centuries, 
from 1553, the year it was first published, to 1863, when the 
Kasiski method was finally released to the public [2][3]. This 
method is also more resistant to brute-force decryption 
compared to the Caesar cipher as there is essentially an 
unlimited number of possible key variations for this method. 

In order to encrypt a message using this method, a certain 
helping tool called the Vigenère square [4]. This square is a 26 
by 26 matrix that gives a replacement letter given the original 
letter and a letter within the key, which is a string of any length. 
Should the length of the key be shorter than the text to be 
encrypted, the key itself is repeated multiple times until it is of 
at least the same length of the plaintext. To encrypt a letter using 
the Vigenère square, there are three steps to follow: 

1. Find the row which label is the original letter. 

2. Find the column which label is the letter within the 
key with the same position of the original letter 
within the original string. 

3. Replace the original letter with the letter at the 
intersection between the row and the column from 
steps 1 and 2. 

On the other side, to decipher the encrypted message is also 
merely a matter of finding the matching letters within the 
Vigenère square. The steps to decipher the encrypted message 
are: 

1. Find the column which label is the key for the letter 
being deciphered. 

2. Within the column, find the cell that contains the 
letter being deciphered. 

3. The label of the row containing the matching cell 
is the original letter. 

 With this method, the encrypted message is now resistant to 
traditional frequency analysis because different occurrences of a 
letter would use different keys to encrypt it and thus would be 
replaced by different letters. But, there is still a way to decrypt a 
message encrypted in this manner, namely by using the Kasiski 
method. The Kasiski method is basically a modified version of 
the frequency analysis that makes use of the repeating nature of 
the key used to encrypt the text. Because of this reason, the 
shorter the key is compared to the original text, the less secure 
the encrypted message will be. 

III. TRANSPOSE-TRIGRAM CIPHER 

Both of the encryption methods reviewed in the previous 
chapter has the advantage of being easy to both encrypt and 
decrypt, thus making it useable for communications where 
messages are transmitted rapidly between both parties. But, in 
this day where the computing power of computers are widely 
available, those methods of encryption are very insecure and 
cannot be relied on to deliver any message of importance. 
Because of that, this paper proposes the Transpose-Trigram 

cipher which takes advantage of the ease at which those ciphers 
are done, but provides increased security to techniques such as 
the Kasiski method and the frequency analysis. 

A. Cipher Overview 

The Transpose-Trigram cipher is a block cipher which uses 
the Vigenère cipher, Caesar cipher, transposition, and a trigram-
based substitution as the encryption and decryption function 
within a Feistel cipher. In addition to this, transposition and 
rotation of the message itself is also done multiple times. This is 
done in order to remove the weakness of the Vigenère cipher, 
namely repeated occurrences of a certain letter being encrypted 
using the same letter within a key. The repeated trigram-based 
substitution also helps protect the encrypted message from 
brute-force decryption by the large number of possible 
substitution tables for each encryption. 

Further adding to the security of the cipher is its ability to be 
run in five different block cipher mode of operations, namely 
ECB, CBC, CFB, OFB, and counter mode. 

B. Cipher Details 

The Transpose-Trigram cipher is a block cipher with a block 
size of 12 bytes. This block size is chosen due to the trigram-
based substitution requiring the block size to be divisible by 3. 
This cipher also requires a 12-bytes long key that would be used 
to generate the trigram-substitution tables and to initialize the 
key for both the Caesar cipher and the Vigenère cipher. 

For the encryption process, each block of the message would 
be processed through 12 iterations of the Feistel cipher. This 
number of iterations is an arbitrarily determined number that 
according to our simulations, is secure enough while still 
maintaining the ease of encryption and decryption of the ciphers 
within the previous chapter. The following are steps on how a 
block of message is processed through the Feistel cipher: 

1. Divide the block into two halves of equal length. 

2. Use the following formula to encrypt each half, 

𝐿𝑖+1 =  𝑅𝑖  
𝑅𝑖+1 =  𝐿𝑖 𝐹(𝑅𝑖, 𝐾𝑖) 

𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 0 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 
𝐿𝑖 = 𝑇ℎ𝑒 𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 
𝑅𝑖 = 𝑇ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 
𝐾𝑖 = 𝑇ℎ𝑒 𝑘𝑒𝑦 𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 
𝐹 = 𝑇ℎ𝑒 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

After going through 12 iterations of this encryption process, 
both halves are joined together in order to create the final 
encrypted block. 

The encrypted message can be decrypted back simply by 
doing the same process but with a slightly different formula for 
the Feistel cipher, namely: 

𝐿𝑖 =  𝑅𝑖+1 𝐿𝑖+1 
𝑅𝑖 =  𝐹−1(𝐿𝑖+1, 𝐾𝑖+1) 
𝐹−1 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

As in the encryption process, in the decryption process, the 
Feistel cipher is done for 12 iterations in order to transform the 
encrypted message back into the original plaintext. 



Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

C. Encryption Function 

The encryption function used within this cipher is made up 
of two different phases. The first phase is the simpler one which 
uses both the Caesar cipher and letter transposition in order to 
scramble the letters within the original message. As for the 
second phase, which is the more complex of the two, it uses both 
the Vigenère cipher and a trigram-based substitution in order to 
further secure the message by increasing the difficulty for 
frequency-based analysis such as the traditional frequency 
analysis and the Kasiski method. Each iteration of the Feistel 
cipher described in the previous section uses one of the two 
phases, with odd-numbered iterations using the first phase and 
the even-numbered iterations using the second phase. This 
means that, effectively, there are 6 different iterations that makes 
use of both phases. But the reason that the phases are used in 
turns instead of a single is to introduce the further obfuscation 
that the Feistel cipher provides between each phase.  

 First, for the first phase, the block that is entered into the 
encryption function is transposed by converting it into a matrix 
with two columns. Then, the new transposed string is obtained 
by reading the matrix right to left, top to bottom. Then, the 
resulting string will be encrypted using the Caesar cipher in 
order to scramble the letters within the block half being 
processed. 

 

Fig. 1. Transposition of string within the first phase of the encryption function 

As for the second phase, the first step is to further divide the 
block half being processed into two halves of 3 bytes each. In 
order to help with this description, these 3 bytes chunks will be 
called sub-halves from hereon. The reason for this is to introduce 
interdependency between bits in the encrypted message. This is 
done in order to prevent bit-changing attacks to succeed by 
causing the decryption process to fail if even a single bit is 
corrupted. To begin with, the first sub-half will be encrypted 
using the extended Vigenère cipher with the second sub-half as 
a key. Then, the result of the extended Vigenère cipher will be 
protected from the Kasiski method by substituting the resulting 
trigram with another trigram by using a lookup table. Then, the 
second sub-half will be encrypted as well by the same process 
using the encrypted first sub-half as the key for the extended 
Vigenère cipher. After that, both sub-halves are joined together 
to form the encrypted version of the original block. As for the 
lookup table for the trigram substitution, the encryption function 
will use one of the 6 tables pre-generated with the seed entered 
by the user on the beginning of the encryption process. As for 
the order which the tables are used, the first occurrence of the 
second phase within the encryption of a single block uses the 
first table, the second occurrence uses the second table, and so 
on. In other words, every n-th occurrence of the second phase of 
every block will use the same lookup table, namely the n-th 
generated table. This trigram substitution step helps protect the 

encrypted message from brute-force attacks as there are 2.74 ∗
1014 possibilities for each table. Considering the fact that the 
cipher uses 6 different tables for the substitution step, there are 
4.32 ∗ 1086 possible table combinations which makes a brute-
force attacks of this cipher very difficult. This at the very least 
provides the necessary security for exchanging important 
messages at the level of personal communication between 
individuals. 

IV. IMPLEMENTATION 

In this section, the paper will discuss the results of the 
application of the cipher using several test-cases and modes of 
operations. All tests were done using scripts written in Python. 
Considering the fact that Python is an interpreted language, the 
results within the paper should not be taken as the maximum 
performance of the cipher as more efficient implementations 
might be possible. As a detailed explanation of how the cipher 
works has been provided in the third section of the preceding 
chapter, this chapter will assume that the readers have already 
understood the big picture of how the cipher works and 
immediately jump to the results obtained from the authors’ 
implementation of the cipher. 

A. Methods 

In this chapter and all of its sections, all of the data here will 
be the best obtained result from running the cipher against a 
certain test-case for 3 times for encryption and one time for 
decryption. As for the specifications of the testing machine, it is 
as follows: 

OS Windows 10 Pro 64-bit (build 17134) 

CPU Intel Core i7-8700K 

RAM 16GB 

Fig. 2. Specifications of the machine used to acquire performance data 

B. Speed 

In this section, the paper will present the results obtained 
from the program and try to explain the reason for the obtained 
results. More specifically, it will test the claim made in the 
beginning of the paper that the proposed cipher maintains the 
ease of encryption and decryption of its component ciphers. The 
following table shows the time taken purely for the encryption 
process for text of various length and mode of operations. 

Input Encryption Time Decryption Time 

Length: 12000, OFB 0.16 0.19 

Length: 12000, ECB 0.16 0.16 

Length: 12000, CBC 0.17 0.16 

Fig. 3. Performance of the Transpose-Trigram Cipher for various inputs 

All time in the table are in seconds and rounded to the nearest 
hundredth and is calculated only for the duration the cipher is 
encrypting/decrypting the message which doesn’t include the 
time taken to generate the lookup tables needed for the trigram 
substitution. As for the input parameters, the length of each input 
is in characters. For all three of the tests listed in the table, the 



Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

input is a string of randomly generated character 12000 
characters long.  

As can be seen, the time it takes to encrypt and decrypt a 
message 12000 characters long is very fast. This makes the 
proposed cipher usable for practical uses, such as securing 
messages exchanged by phone. But this is only if we do not 
consider the time needed to generate the set of tables that is 
needed to perform the trigram substitution step. During testing, 
the table generation takes the majority of the script’s running 
time, with each execution of the table generating function taking 
at least 1 minute. This introduces a very significant overhead 
into the encryption, 50-60 times the encryption/decryption time 
in fact, which would prohibit the use of this cipher for real-life 
applications that requires rapid message exchange. Not only 
that, it also means that the encryption method is preferable to be 
used for extremely long messages. The reason for this is that as 
the length of the message increases, the more time is spent 
encrypting/decrypting the message itself instead of generating 
the tables for the process. 

C. Security 

Finally, this section will try to test the, in the authors’ 
opinion, most important aspect of an encryption method, 
namely, how secure the method is. Due to the limited knowledge 
the authors have in this field, the security analysis done will be 
limited to confusion and diffusion analysis on two cases, a 1-bit 
change in the encrypted message, a 1-bit change in the key, and 
the feasibility of brute-force attacks and frequency analysis. 
Furthermore, the analysis will be done solely in the ECB mode 
to reduce the complexity of the analysis. 

Based on the results received from the tests, the cipher 
method is found to be sufficient in terms of confusion and 
diffusion. The reason for this is that a 1-bit change in the 
encrypted message breaks the decrypted message for the 
characters that are in the same block of the changed bit. The 
change does not affect other blocks since the test is done on ECB 
mode. Furthermore, this cipher is very secure when it comes to 
bit changes in the key itself, as when this attack method is tested, 
the whole cipher breaks and outputs garbled text that bears 
practically no resemblance to the original message. In fact, due 
to the fact that the cipher uses extended ASCII instead of just the 
letters in the alphabet, the output received from decrypting a 
message using the wrong key outputs characters that should not 
even exist in a normal text, thus further ensuring the security of 
this cipher from this attack. 

Next, for brute-force attacks, based on the analysis that were 
done, this method of attack is practically impossible. First, it 
would require the attacker to test out 4.32 ∗ 1086 possible table 
combinations. In addition to that, the Caesar shifts that are done 
by the phase one of the encryption function, further increases the 
possible combination of keys needed to break the cipher by 
another order of magnitude. According to the authors knowledge 
of the computing power that is available to most people, this 
number of possible combinations makes breaking the cipher by 
brute-force impractical and simply not worth the resources 
needed to achieve this. 

Finally, as for frequency analysis, the cipher is secure from 
this avenue of attack because of the trigram substitutions. As the 

substitutions are done in sets of three characters, it means that 
each letter has an almost equal chance to be used as a 
replacement for another character. This ensures that frequency 
analysis of the resulting encrypted message would not expose 
any significant information. This protection from frequency 
analysis is further increased in the case of readable texts. This is 
due to the mapping of merely a subset of the 128 characters 
ASCII into the 256 characters extended ASCII which causes 
each character’s frequency to be distributed to at least 2 or more 
different characters’ frequency. 

Based on all the tests and analysis that were done, it is 
determined that as long as the key used to encrypt a message is 
kept secret, the cipher would be safe enough for everyday use 
for messages that are not too important, e.g. personal messages. 
On the other hand, due to the limited security analysis performed 
in this paper, it is not recommended to use this cipher for very 
important messages such as those on the national or corporate 
level until a more detailed and extensive analysis is done. 

V. CONCLUSIONS 

As proven by the tests on the previous chapter, the 
Transpose-Trigram cipher is secure enough to be used in daily 
life while still maintaining the capability of being rapidly 
calculated as its component ciphers. On the other hand, there are 
still weaknesses to be fixed and further improvements for the 
cipher that could be done in order to improve its performance. 

First of all, the trigram substitution step within the second 
phase of the encryption function uses a lookup table which takes 
a relatively very long time in order to generate. There are several 
ways to fix this point. The first is simply to find another method 
of substitution which does not rely on substitution tables which 
would enable bypassing the table generation altogether. Another 
possible solution is to use a set of tables for as long as it takes to 
generate another set of tables. This way, there will be a thread 
that always runs in the background which continuously 
calculates the next set of tables based on the initial key given. 
Whenever the thread finishes calculating a set of tables, it would 
send it back to the main encryption program when it detects that 
the main program is not in the middle of encrypting a message. 
This way, the delay of generating the lookup tables would only 
be felt during the initial startup of the program. Of the two 
solutions proposed here, the more desired one is the first 
solution, due to a couple of reasons. The first reason is that the 
lookup table takes up a lot of space in memory (over 1 GB for 
trigram-based substitutions), which costs precious system 
resource and makes it extremely impractical to generate the 
lookup tables for substitutions of ngrams with length 4 and 
above (requires over 16 GB, which is the RAM capacity of the 
testing machine). The second reason is that should there be a 
powerful enough machine, the intervals between the generations 
of table sets gives potential attackers to simply try out every 
single possible table combination (very impractical, but still 
possible). 

The next possible improvement that the authors want to point 
out is the possibility of randomizing the phases used within the 
encryption function. At the moment, the way that the encryption 
function is designed, only one half of the block would receive 
the stronger encryption of the second phase, while leaving the 
first phase somewhat vulnerable with only transpositions and 



Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

letter shifting. On the other hand, pure randomization might 
mean that the security of the cipher as a whole to be unstable 
given the variable number of second phase encryptions that each 
block receives. 

The authors also propose that a modification be made to 
somehow allow each block to be linked to each other in the 
encryption process. This improvement is proposed in order to 
close off the possibility changed bit attack. If possible and 
implemented, this would significantly increase the security of 
the cipher for use in messages that contains sensitive 
instructions. 

Finally, the author also proposes a further, more detailed 
analysis of the security that the cipher provides to a message, 
preferably by experts in the field of cryptography that would 
have more extensive knowledge compared to the authors. 
Another thing that would need to be analyzed would be how the 
cipher performs for extremely long and extremely short 
messages as the tests performed in this paper are very limited in 
terms of variability.  

ACKNOWLEDGMENT  

The authors would like to express their gratitude for the 
support offered by Mr. Rinaldi Munir, the professor in charge of 
the cryptography class the authors are enrolled in during the time 
of the paper’s writing. For without the knowledge and resources 
he introduced to the authors, the authors would not be able to 
design and propose the cipher within the paper. Then, the 
authors would like to also thank the authors’ parents for 
supporting the authors throughout college as without their 
support the authors would never be able to go so far in their 
study. And finally, the authors would like to thank all the experts 
out there that have shared their knowledge on the internet for 
others to learn as without it, the authors would have trouble 
finding the needed data to back their claims and to design a 
cipher that could perform sufficient security to be implemented 
for practical use. 

REFERENCES 

[1] "Cracking the Code — Central Intelligence Agency", Cia.gov, 2019. 
[Online]. Available: https://www.cia.gov/news-information/featured-
story-archive/2007-featured-story-archive/cracking-the-code.html. 
[Accessed: 12- Mar- 2019]. 

[2] L. Smith, Cryptography. New York: Dover, 2013. 

[3] F. Kasiski, Die Geheimschriften und die Dechiffrir Kunst. Berlin: E.S. 
Mittler und Sohn, 1863. 

[4] https://www.topspysecrets.com/images/vigenere-cipher.jpg. 2019. 

  



Paper for IF4020 Cryptography, 2nd semester of 2018/20189 

 

  

STATEMENT 

With this, we declare that the paper that we write is written based on our own ideas. This paper contains no plagiarized ideas, nor 

is it a translation of an existing paper as far as the authors’ knowledge goes. 

 

Bandung, 13 March 2019 

 

 

 

 

Signed, 

Jonathan Alvaro, 13516023 

 

Bandung, 13 March 2019 

 

 

 

 

Signed, 

Abner Adhiwijna, 13516033

 
 

 

 

 

 


