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Abstract—This paper proposes a watermarking scheme used to 
embed and verify a digital signature for a lossless audio file. The 
scheme combines EdDSA (Edwards-curve Digital Signature 
Algorithm) and LSB (Least Significant Bit) watermarking. This 
paper will discuss the design of the proposed scheme, an 
implementation as a proof-of-concept, and thorough testing for the 
three security concepts supported by a digital signature: 
authentication, integrity, and non-repudiation. Test results show 
that EdDSA can be implemented and embedded on a lossless audio 
file without any discernable differences in audio contents and file 
size. 

Keywords—EdDSA; LSB watermarking; digital audio; digital 
signature 

 

I.  INTRODUCTION 
As the Internet becomes more easily accessible, information 

exchange via the Internet. Social interaction in the virtual world 
becomes more common, using either social media or Internet-
based social applications. Such information exchange includes 
the exchange of digital audio files. Currently, many websites and 
web applications offer a cloud-based digital audio sharing 
service; that is, the audio file is not stored in a local hard drive, 
but in the cloud. Examples of this service include SoundCloud 
and Spotify. 

These services are enjoyed by many people: from listening 
to professionally-made music to sharing a recording of their own 
production. Nevertheless, the ease of access of digital audio files 
is not usually bundled with security: integrity and validity of the 
audio file, authentication of the audio file owner, or whether the 
audio file has been tampered or not. Some digital audio sharing 
services implement complex policies to prevent the abuse of its 
audio files by irresponsible or malicious parties. 

Even so, a digital audio file can be easily disseminated 
through the Internet and modified by said irresponsible or 
malicious parties. The contents of the audio file can be modified 
slightly as to not trip audio copyright violation detection 
algorithms. In addition, the author of the audio file can easily 
repudiate its ownership because there is no method to verify 
which party is the actual owner of the audio. 

This paper proposes an audio watermarking scheme, where 
the necessary information is embedded within the audio files 
themselves, and such no other files or tags are needed. 

Therefore, regardless of whether the audio file is downloaded or 
spread through the Internet, the integrity and ownership of the 
audio file can still be verified. The proposed solution uses a 
digital signature with EdDSA combined with LSB 
steganography to watermark the audio. 

 

II. THEORETICAL BUILDING BLOCKS 

A. Twisted Edwards Curve 

  

Fig. 1. A twisted Edwards curve of the equation 10𝑥𝑥2 + 𝑦𝑦2 = 1 + 6𝑥𝑥2𝑦𝑦2 
Source: Wikimedia Commons 

A point P = (x, y) lies on a twisted Edwards curve E if it 
satisfies the following formula: 

 𝑎𝑎𝑥𝑥2 + 𝑦𝑦2 = 1 + 𝑑𝑑𝑥𝑥2𝑦𝑦2 (1) 

in which a, d are two different non-zero elements of the field 𝕂𝕂 
over which E is defined. For example, edwards25519 is defined 
over Fp, where 𝑝𝑝 = 2255 − 19. 

A critical property of an elliptic curve, including the twisted 
Edwards curve, is the presence of the point addition operation 
(“+”). For the twisted Edwards curve, point addition is defined 
as: 

https://en.wikipedia.org/wiki/File:Twisted_Edwards_curve.svg


 (𝑥𝑥1,𝑦𝑦1) + (𝑥𝑥2,𝑦𝑦2) = � 𝑥𝑥1𝑦𝑦2+𝑥𝑥2𝑦𝑦1
1+𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2

, 𝑦𝑦1𝑦𝑦2+𝑎𝑎𝑥𝑥1𝑥𝑥2
1−𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2

� (2) 

The formula can be used both for point addition and point 
doubling, even with the neutral element (0, 1). Doubling on a 
twisted Edwards curve is defined as: 

 2 ∙ (𝑥𝑥,𝑦𝑦) = � 2𝑥𝑥𝑦𝑦
𝑎𝑎𝑥𝑥2𝑦𝑦2

, 𝑦𝑦2−𝑎𝑎𝑥𝑥2

2−𝑎𝑎𝑥𝑥2−𝑦𝑦2
� (3) 

Scalar multiplication 𝑛𝑛 ∙ 𝑃𝑃 is defined as adding a point P to itself.  

B. Extended Twisted Edwards Curve 
A point in the twisted Edwards curve can be represented by 

a different coordinate system other than Cartesian [1]. A point 
(𝑥𝑥, 𝑦𝑦) can be represented by (X, Y, Z, T) satisfying the following 
set of equations. 

 𝑥𝑥 = X
Z
  

 𝑦𝑦 = Y
Z
 (4) 

 𝑥𝑥 × 𝑦𝑦 = T
Z
  

The neutral point (0, 1) is equivalent to (0, Z, Z, 0) in 
extended homogenous coordinates for any non-zero Z. 

Expressing a point in this coordinate system saves time in 
addition, which can be costly due to the modular division 
involved. The following algorithm for adding two points on a 
twisted Edwards curve with 𝑎𝑎 = −1 is described in [1]. 

 

Algorithm 1 Extended twisted Edwards point addition 

Require: 𝑑𝑑, (X1, Y1, Z1, T1), (X2, Y2, Z2, T2) 

1. 𝐴𝐴 ← (Y1 − X1) × (Y2 − X2) 
2. 𝐵𝐵 ← (𝑌𝑌1 + 𝑋𝑋1) × (𝑌𝑌2 + 𝑋𝑋2) 
3. 𝐶𝐶 ← 2𝑑𝑑T1T2 
4. 𝐷𝐷 ← 2Z1Z2 
5. 𝐸𝐸 ← 𝐵𝐵 − 𝐴𝐴 
6. 𝐹𝐹 ← 𝐷𝐷 − 𝐶𝐶 
7. 𝐺𝐺 ← 𝐷𝐷 + 𝐶𝐶 
8. 𝐻𝐻 ← 𝐵𝐵 + 𝐴𝐴 
9. X3 ← 𝐸𝐸𝐹𝐹 
10. Y3 ← 𝐺𝐺𝐻𝐻 
11. 𝑇𝑇3 ← 𝐸𝐸𝐻𝐻 
12. 𝑍𝑍3 ← 𝐹𝐹𝐺𝐺 
13. return (X3, Y3, Z3, T3) 

 

For point doubling, the above algorithm could be used with 
equal points as input. Nevertheless, another formula, also 
described in [1], saves a few smaller operations. 

 

 

 

 

 

Algorithm 2 Extended twisted Edwards point doubling 

Require: (X1, Y1, Z1, T1) 

1. 𝐴𝐴 ← X12 
2. 𝐵𝐵 ← Y12 
3. 𝐶𝐶 ← 2Z12 
4. 𝐻𝐻 ← 𝐵𝐵 + 𝐴𝐴 
5. 𝐸𝐸 ← 𝐻𝐻 − (X12 + Y12)2 
6. 𝐺𝐺 ← 𝐴𝐴 − 𝐵𝐵 
7. 𝐹𝐹 ← 𝐶𝐶 + 𝐺𝐺 
8. X3 ← 𝐸𝐸𝐹𝐹 
9. Y3 ← 𝐺𝐺𝐻𝐻 
10. 𝑇𝑇3 ← 𝐸𝐸𝐻𝐻 
11. 𝑍𝑍3 ← 𝐹𝐹𝐺𝐺 
12. return (X3, Y3, Z3, T3) 

 

C. Edwards-curve Digital Signature Algorithm (EdDSA) 
EdDSA is a public-key signature algorithm similar to 

ECDSA proposed by Bernstein et al. in [2]. In RFC 8032 [3], 
EdDSA is defined for two twisted Edwards curves: 
edwards25519 and edwards448, but EdDSA can also be used on 
other curves. 

 

Fig. 2. Illustration of the key generation and signing process of EdDSA 
Source: Brian Warner 

EdDSA uses a randomly-generated array of bytes with 
bitlength of b as its signing key k. In addition, EdDSA also 
requires a hash function H with a 2b-bits output length. A 
common occurrence is the usage of SHA512 for b = 256 bits. An 
integer a is calculated from 𝐻𝐻(𝑘𝑘) = (ℎ0, ℎ1, … , ℎ2𝑏𝑏−1) with: 

 𝑎𝑎 = 2𝑏𝑏−2 + ∑ 2𝑖𝑖ℎ𝑖𝑖3≤𝑖𝑖≤𝑏𝑏−3  (5) 

The public key A is computed from a base point 𝐵𝐵 ≠ (0, 1) of 
order ℓ (chosen following the EdDSA specification [2]), such 
that 𝐴𝐴 = 𝑎𝑎 ∙ 𝐵𝐵. 

 The signature (𝑅𝑅, 𝑆𝑆) of a message M is generated according 
to the following algorithm. 

https://blog.mozilla.org/warner/2011/11/29/ed25519-keys/


Algorithm 3 EdDSA Signature Generation 

Require: 𝑀𝑀, (ℎ0, ℎ1, … , ℎ2𝑏𝑏−1),𝐵𝐵,𝐴𝐴 

1. 𝑎𝑎 ← 2𝑏𝑏−2 + ∑ 2𝑖𝑖ℎ𝑖𝑖3≤𝑖𝑖≤𝑏𝑏−3  
2. ℎ ← 𝐻𝐻(ℎ𝑏𝑏 , … , ℎ2𝑏𝑏−1,𝑀𝑀) 
3. 𝑟𝑟 ← ℎ mod ℓ 
4. 𝑅𝑅 ← 𝑟𝑟 ∙ 𝐵𝐵 
5. ℎ ← 𝐻𝐻(𝑅𝑅,𝐴𝐴,𝑀𝑀) 
6. 𝑆𝑆 ← (𝑟𝑟 + 𝑎𝑎ℎ) mod ℓ 
7. return (𝑅𝑅, 𝑆𝑆) 

 

A signature is considered valid if 𝑅𝑅 ∈ 𝐸𝐸, 𝑆𝑆 ∈ [0, ℓ − 1], and 
the following equation holds: 

 8𝑆𝑆 ∙ 𝐵𝐵 = 8 ∙ 𝑅𝑅 + 8𝐻𝐻(𝑅𝑅,𝐴𝐴,𝑀𝑀) ∙ 𝐴𝐴. (6) 

In practice, the public key and the signatures are output 
according to the encoding specified in RFC 8032 [3]. A point 
(𝑥𝑥, 𝑦𝑦) is encoded as a b-bit string 𝐸𝐸𝐸𝐸𝐶𝐶(𝑥𝑥,𝑦𝑦), which is the (b-1)-
bit little-endian encoding of y concatenated with a parity bit (1 if 
x is positive, 0 otherwise). The value x can be recovered with the 
following equation 

 𝑥𝑥𝐴𝐴 =  ± �(𝑦𝑦𝐴𝐴2 − 1)/(𝑑𝑑𝑦𝑦𝐴𝐴2 + 1) mod 𝑝𝑝  (7) 

Signature computations are deterministic; for a given 
message M, multiple computations of signatures will produce 
identical results. Like other discrete-log-based signature 
schemes, EdDSA uses a nonce unique to each signature. In the 
signature schemes DSA and ECDSA, this nonce is generated 
randomly for each signature; if the random number generator is 
predictable when making a signature, the signature can leak the 
signing key (as happened with the Sony PlayStation 3 firmware 
update signing key). 

In contrast, EdDSA chooses the nonce deterministically as 
the hash of the signing key and the message. Thus, once a private 
key is generated, EdDSA no longer has any further need for a 
random number generator in order to make signatures, and there 
is no danger that a broken random number generator used to 
make a signature will reveal the signing key. 

 

D. LSB Watermarking 
A digital watermark is a marker covertly embedded in a 

digital object, such as an audio, video, or image data. It is 
typically used to identify ownership of the copyright of said data. 
Watermarking is the process of hiding digital information in a 
cover data. Digital watermarks may be used to verify the 
authenticity or integrity of the carrier signal or to show the 
identity of its owners. 

 

Fig. 3. LSB steganography illustration 
Source: codeproject.com  

For multimedia data, the most common method of 
watermark embedding is the LSB substitution, in which the least 
significant bits of each byte of the cover data are replaced by the 
embedded data. By only editing the least significant bits of each 
byte, changes from the original cover data are nearly 
imperceptible to the human senses. 

Despite its simplicity, LSB substitution is considered fragile 
watermarking. Although transformations like cropping are 
survivable, any addition of undesirable noise or lossy 
compression could destroy the embedded message. 

 

E. Raw Audio 
Raw audio is the most basic data representation of audio. 

Raw audio lacks a signature and a header, which makes 
determining a raw audio’s file format significantly harder than 
interchange formats due to said lack of signature. In addition, the 
lack of a commonly understood header makes determining audio 
parameters difficult. 

 

Fig. 4. Signal sampling representation 
Source: Wikimedia Commons 

Digital audio is stored as samples. A sample the smallest unit 
in a digital audio, equivalent to pixels in images. An audio is 
composed of a sequence of samples. 

Audio information is stored as an array of bytes. To interpret 
said array of bytes as samples, and thus a valid audio file, the 
following terms and parameters, normally stored in the audio 
header, are relevant: 

• Sample rate: the number of samples in a second, 
measured in hertz. A higher sample rate means that the 
played discretized audio more approaches the original, 
smooth analog audio. CD quality audio has a sample 
rate of 44100 Hz. 

• Bit depth: how many bits comprises a sample. The 
higher the bit depth, the more accurately the amplitude 
of an audio is represented. CD quality audio has a bit 
depth of 16 bits (2 bytes), which means that a sample is 
represented by a two’s complement two-byte integer. 

• Channels: represents sound coming from or going to a 
single point. A single microphone produces one channel 
of audio, and a single speaker accepts one channel of 
audio. Commonly found audio channels are mono (one 
channel), stereo (two channels; left and right), and 
surround sound (six channels). 

• Interleaved: how samples in different channels are 
organized. An interleaved audio stores samples 
belonging to different channels after one another; that is, 
the first samples of each channel are stored sequentially 
before the second and the rest. A non-interleaved audio 

https://www.codeproject.com/KB/graphics/porcupine/lsb1.jpg
https://en.wikipedia.org/wiki/File:Signal_Sampling.png


stores each channel separately; they may be stored in 
one file and each channel is concatenated after the other, 
or they may be stored in different files. 

 

Fig. 5. Non-interleaved and interleaved audio with two channels 
Source: The Lab Book Pages 

• Endianness: the byte ordering used in storing data types 
larger than a byte. This is relevant is a sample is 
composed of more than a byte (8 bits). 

 

F. Lossless Audio Formats 
Lossless audio formats encode and store audio data such that 

the audio is the same as the original source. This contrasts with 
lossy audio formats such as AAC, MP3, and WMA, which 
compress audio using algorithms that modifies the original data. 

Because lossy formats modify the original audio data, spatial 
domain manipulation (bits and bytes) of lossy audio data is 
infeasible; any manipulation must be done in the temporal 
domain (signals). Lossless audio data preserves the original 
audio, which also preserves any spatial domain manipulation 
done to the raw audio data. 

 

III. SOLUTION ANALYSIS AND DESIGN 
This paper proposes a watermarking scheme combining the 

EdDSA digital signature algorithm and LSB substitution 
watermarking. EdDSA is used to generate a digital signature 
based on a private key and the audio data and used to verify 
whether the audio data has been tampered at all using a valid 
public key. LSB substitution watermarking is used to embed the 
generated signature to the audio data. 

LSB watermarking is chosen because of its simplicity. The 
fragility of LSB watermarking is allowed because if the audio 
has been tampered, the embedded data will be lost and 
verification will fail, which is suitable for the purposes of this 
paper. 

Embedding the digital signature to one file eliminates the 
need of a separate file for authentication. The generated 
signature is embedded in the audio body, not the header. The 
watermarking scheme processes audio as raw audio and can be 
applied to audio stored in a lossless audio format (FLAC, WAV, 
etc.). 

The overall watermarking scheme design (signing and 
verification scheme) is illustrated in the following diagrams. 

 

Fig. 6. Block diagram illustration for audio signing 

 

 

Fig. 7. Block diagram illustration for audio signature verification 

Design rationales for the watermarking scheme will be 
elaborated in the following sections. 

 

A. EdDSA Curve Parameters 
As explained in Section II.A, EdDSA requires common 

curve parameters to be agreed first. This paper uses the Ed25519 
signature scheme, which uses the SHA-512 algorithm and the 

http://www.labbookpages.co.uk/audio/files/interleave.png


Curve25519 curve. Ed25519 is represented by the twisted 
Edwards curve 

 −𝑥𝑥2 + 𝑦𝑦2 = 1 − 121665
121666

𝑥𝑥2𝑦𝑦2 (8) 

Ed25519 has the following parameters: 

• 𝑝𝑝 = 2255 − 19 (prime) 

• 𝑏𝑏 = 256 

• Encoding of 𝐺𝐺𝐹𝐹(𝑝𝑝): 255-bit little-endian encoding of 
{0, 1, … , 𝑝𝑝 − 1} 

• 𝐻𝐻(𝑥𝑥) = SHA-512 

• 𝑐𝑐 = 3 

• 𝑛𝑛 = 254 

• 𝑑𝑑 = − 121665
121666

 

equivalent to 
3709570593466943934313808350875456518954
2190163887855330859402835551138798432 in 
𝐺𝐺𝐹𝐹(𝑝𝑝) 

• 𝐵𝐵 = 
(151122213495354007725011514095885315114
54012693041857206046113283949847762202, 
4631683569492647816942839400347516314130
7993866256225615783033603165251855960) 

• ℓ = 2252 +
27742317777372353535851937790883648493 

• 𝑃𝑃𝐻𝐻(𝑥𝑥) = 𝑥𝑥 

The signature produced is 64 bytes long and stored as the 
encoded form of (𝑅𝑅, 𝑆𝑆). 

 

B. Modifications to LSB Substitution for Raw Audio 
Because a sample in raw audio is usually encoded as a 

multiple-byte integer, simply replacing the least significant bits 
of each byte will produce noticeable differences when the audio 
is played back. This is because each byte in a sample is played 
as a group and editing the least significant bit in a higher-order 
byte can produce more noticeable differences than editing the 
most significant bit in a lower-order byte. 

To accommodate, the data can simply be embedded in the 
least significant bytes of each sample; the first for little-endian 
systems, the last for big-endian systems. This practically cuts 
down the embedding capacity by the number of bytes in a 
sample, but the decrease in capacity does not present a 
significant impact due to the small size of the embedded data. 

The number of samples needed to store the 64-byte signature 
is 512, which represents about two hundredth of a second in a 
44100 Hz 16-bit mono audio. 

 

C. Modifying the Data for Digital Signing 
Another problem exists when the digital signature of the 

audio is going to be embedded: the data after embedding will be 
different from the data used to make the signature. In which case, 

the digital signature from the watermarked data will differ from 
the digital signature embedded. 

To overcome this problem, simply set all bits which will be 
substituted to zero before generating and embedding the digital 
signature. On verification, set all LSB to zero after extracting the 
embedded signature, then verify the extracted signature against 
the raw audio data. 

In the watermarking scheme, to simplify, the generated 
digital signature is embedded in the first 512 samples of the raw 
audio data, regardless of channels. 

IV. IMPLEMENTATION 
The proposed watermarking scheme is implemented for 

proof-of-concept as a Python script. The following external 
libraries are used to simplify the implementation process. 

• ffmpeg + pydub: for audio import to raw audio and 
export to an interchange lossless format 

• gmpy2: as a multi-precision big integer library 

• hashlib: provides multiple hash functions 

Because data is imported from an interchange format, 
parameters such as sample rate or bit depth can be read from the 
header. 

The script is divided to three functions: key generation, 
signing, and verification as detailed below. 

• Key Generation 
Usage: eddsa-signer.py keys [-h] 

                      [-sk SIGNING_KEY_PATH] 
                      [-vk VERIFYING_KEY_PATH] 

• Signing 
Usage: eddsa-signer.py sign [-h] 
               [-i INPUT_PATH] 
               [-o OUTPUT_PATH] 
               [-sk SIGNING_KEY_PATH] 

• Verification 
Usage: eddsa-signer.py verify [-h] 
               [-i INPUT_PATH] 
               [-vk VERIFYING_KEY_PATH] 
Output: [True/False] 

 
The keys are stored as 64-byte binary files. All audio formats 

supported by ffmpeg can be signed, but the resulting file must 
be saved as an uncompressed or lossless audio format (WAV, 
FLAC, ALAC, etc.). 

 

V. TESTING 
There are three security concepts a digital signature is used 

for: authentication, integrity, and non-repudiation. To that end, 
the following testing scenarios will be executed: 

1. Signing and verifying audio with a correct keypair 
(control scenario). 

2. Changing the public key used for verification. 
3. Modifying the watermarked audio data. 
4. Modifying the embedded data signature. 

There are two points of data noted from testing: execution 
time and signature verification result. For each file, the 
signing/verification process is repeated five times to obtain the 



average time needed for execution. The signature verification 
result is considered valid if and only if, in each repetition, the 
signature is valid. 

The following keys are used for testing. 

TABLE I.  KEYS FOR TESTING 

Key 
Value 

base64 integer 

Signing key 

Hf9MSj7uaU
152zKzYKSL
JnmcpkNXov
h7gPxx7mk8
iMo 

9160790357531609488063
6108887987357102399196
8368329668675283148807
66572822301 

Verifying 
key 

OdkAiNDScY
OgTgy06OBS
xtF9MTAvS5
4lcA2FeQHr
TbI 

x 

-
1039852446134920192
6225252673912412569
6 

y 

2275331160330021937
4263527184348579404
9167795842587874687
3385658081928969247
3 

 

The following files are used for testing. Only WAV files are 
used for testing because WAV files are raw audio with a RIFF 
header, so the time measured is outside the conversion from an 
interchange format (FLAC, lossy audio) to and from raw audio. 

TABLE II.  FILES FOR TESTING 

Duration (ms) Size (KB) 
100 19 

1000 188 

60000 11251 

271728 (full) 50950 
 

Testing is done on a machine with the following 
specification. 

• Operating System: Windows 10 Home 64-bit (10.0, 
Build 16299) 

• Processor: Intel(R) Core(TM) i7-7500U CPU @ 
2.70GHz (4 CPUs), ~2.9GHz 

• Memory: 8192MB RAM 

• Hard Drive: 1TB NTFS 

• Python Interpreter: CPython 3.6.3 

 

A. Control Scenario 
The control scenario describes a valid signing/verifying 

flow; that is, a matching pair of signing and verifying key is used 
on a valid audio data unchanged between the signing and 
verification process. 

 

 

 

TABLE III.  TEST RESULT FOR CONTROL FLOW 

Duration 
Execution time (ms) Verification result 

Signing Verifying Expected Actual 
100 15.625 15.625 Pass Pass 
1000 15.625 15.625 Pass Pass 
60000 162.5 96.875 Pass Pass 

271728 643.75 418.75 Pass Pass 
 

 

Fig. 8. Total executon time of signing/verifying process in the control 
scenario 

 

B. Keypair Mismatch 
In this scenario, the verifying key in Table I is swapped with 

the verifying key below. This scenario tests the watermarking 
scheme authentication; that is, a mismatched keypair should not 
return a positive (valid) result. 

TABLE IV.  KEYS FOR TESTING KEYPAIR MISMATCH 

Key 
Value 

base64 integer 

Verifying 
key 

rX2aRBRHQS
BpsVPKbRB/
3Xkvf5FL7Y
GuRO3kmqoy
nmA 

x 
2066155854751383343
2605821887815929036
8 

y 

4370154498704909890
3874852211172298850
7328238366765557285
5243395099969889834
9 

 

TABLE V.  TEST RESULT FOR KEYPAIR MISMATCH 

Duration 
Execution time (ms) Verification result 

Signing Verifying Expected Actual 
100 15.625 15.625 Fail Fail 
1000 15.625 15.625 Fail Fail 
60000 140.625 81.25 Fail Fail 
271728 646.875 375.0 Fail Fail 
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Fig. 9. Total executon time of signing/verifying process in the keypair-
mismatch scenario 

 

C. Modified Data 
In this scenario, the audio data is modified after the audio has 

been watermarked. This is done by changing the bits of the first 
byte of the raw audio data to zero, except the LSB (to preserve 
the signature). This scenario tests for integrity; that is, a corrupt 
file should not return a positive (valid). 

TABLE VI.  TEST RESULT FOR MODIFIED DATA 

Duration 
Execution time (ms) Verification result 

Signing Verifying Expected Actual 
100 15.625 15.625 Fail Fail 
1000 15.625 15.625 Fail Fail 
60000 168.75 90.625 Fail Fail 
271728 656.25 381.25 Fail Fail 

 

 

Fig. 10. Total executon time of signing/verifying process in the modified-data 
scenario 

 

D. Modified Signature 
In this scenario, the embedded signature itself is modified. 

This is done by flipping the LSB where the first bit of the 
signature is embedded. This scenario tests for integrity; that is, 
an invalid signature should not return a positive (valid). 

 

TABLE VII.  TEST RESULT FOR MODIFIED SIGNATURE 

Duration 
Execution time (ms) Verification result 

Signing Verifying Expected Actual 
100 15.625 15.625 Fail Fail 
1000 15.625 15.625 Fail Fail 
60000 150.0 103.125 Fail Fail 

271728 659.375 425.0 Fail Fail 
 

 

Fig. 11. Total executon time of signing/verifying process in the modified-
signature scenario 

 

VI. ANALYSIS 

A. Performance 
Testing results show that the signing and verifying process 

execution time has a lower bound of 15.625 milliseconds. This 
is caused by the overhead in importing and exporting audio, as 
well as loading the internal processes involved, such as loading 
the libraries involved. 

For larger files, the execution time increases linearly with the 
audio file size. In general, the signing process takes about 1.5 
times longer than the verification process. This may be caused 
by the need to import, hash, and export the watermarked audio 
file.  

 

B. Correctness 
Judging by the verification result, it can be concluded that 

using EdDSA for signing lossless audio is feasible. The 
signature signing and verification method correctly identified 
tampered audio files and signature, thus fulfilling the integrity 
aspect of security, and verifies the signer of the audio file, 
fulfilling the authentication and nonrepudiation aspect of 
security. 

 

C. Robustness 
Due to inherent limitations on operating on the spatial 

domain, the watermarking scheme is very much fragile. Any 
modification to the original data or the embedded signature itself 
will invalidate the embedded signature. This renders signing 
more common lossy audio formats (MP3, AAC, OGG, etc.) 
impossible. 
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A more robust signature embedding would operate in the 
temporal domain and manipulate audio as signals, instead of bits 
and bytes. Embedding in the temporal domain would make 
signing lossy formats possible, but is significantly more difficult 
to do than simply manipulating bits and bytes. 

 

VII. CONCLUSION 
Three points of conclusion can be inferred for this paper: 

1. An EdDSA digital signature can be used to protect an 
audio file in three security concepts: authentication, 
integrity, and non-repudiation. 

2. The proposed watermarking scheme is simple to use and 
can be used to generate, embed, and verify digital 
signature for all lossless audio formats without any 
further need for additional files or tags and without 
significantly changing the watermarked audio. 

3. This scheme can further be improved by changing the 
watermarking method used; of note is temporal (signal) 
manipulation. 
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