
Implementation of EdDSA and LSB Watermarking
for Lossless Audio Authentication

Felix Limanta
School of Electrical Engineering and Informatics

Institut Teknologi Bandung
Bandung, Indonesia

felixlimanta@gmail.com

Abstract—This paper proposes a watermarking scheme used to
embed and verify a digital signature for a lossless audio file. The
scheme combines EdDSA (Edwards-curve Digital Signature
Algorithm) and LSB (Least Significant Bit) watermarking. This
paper will discuss the design of the proposed scheme, an
implementation as a proof-of-concept, and thorough testing for the
three security concepts supported by a digital signature:
authentication, integrity, and non-repudiation. Test results show
that EdDSA can be implemented and embedded on a lossless audio
file without any discernable differences in audio contents and file
size.

Keywords—EdDSA; LSB watermarking; digital audio; digital
signature

I. INTRODUCTION
As the Internet becomes more easily accessible, information

exchange via the Internet. Social interaction in the virtual world
becomes more common, using either social media or Internet-
based social applications. Such information exchange includes
the exchange of digital audio files. Currently, many websites and
web applications offer a cloud-based digital audio sharing
service; that is, the audio file is not stored in a local hard drive,
but in the cloud. Examples of this service include SoundCloud
and Spotify.

These services are enjoyed by many people: from listening
to professionally-made music to sharing a recording of their own
production. Nevertheless, the ease of access of digital audio files
is not usually bundled with security: integrity and validity of the
audio file, authentication of the audio file owner, or whether the
audio file has been tampered or not. Some digital audio sharing
services implement complex policies to prevent the abuse of its
audio files by irresponsible or malicious parties.

Even so, a digital audio file can be easily disseminated
through the Internet and modified by said irresponsible or
malicious parties. The contents of the audio file can be modified
slightly as to not trip audio copyright violation detection
algorithms. In addition, the author of the audio file can easily
repudiate its ownership because there is no method to verify
which party is the actual owner of the audio.

This paper proposes an audio watermarking scheme, where
the necessary information is embedded within the audio files
themselves, and such no other files or tags are needed.

Therefore, regardless of whether the audio file is downloaded or
spread through the Internet, the integrity and ownership of the
audio file can still be verified. The proposed solution uses a
digital signature with EdDSA combined with LSB
steganography to watermark the audio.

II. THEORETICAL BUILDING BLOCKS

A. Twisted Edwards Curve

Fig. 1. A twisted Edwards curve of the equation 10𝑥𝑥2 + 𝑦𝑦2 = 1 + 6𝑥𝑥2𝑦𝑦2
Source: Wikimedia Commons

A point P = (x, y) lies on a twisted Edwards curve E if it
satisfies the following formula:

 𝑎𝑎𝑥𝑥2 + 𝑦𝑦2 = 1 + 𝑑𝑑𝑥𝑥2𝑦𝑦2 (1)

in which a, d are two different non-zero elements of the field 𝕂𝕂
over which E is defined. For example, edwards25519 is defined
over Fp, where 𝑝𝑝 = 2255 − 19.

A critical property of an elliptic curve, including the twisted
Edwards curve, is the presence of the point addition operation
(“+”). For the twisted Edwards curve, point addition is defined
as:

https://en.wikipedia.org/wiki/File:Twisted_Edwards_curve.svg

 (𝑥𝑥1,𝑦𝑦1) + (𝑥𝑥2,𝑦𝑦2) = � 𝑥𝑥1𝑦𝑦2+𝑥𝑥2𝑦𝑦1
1+𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2

, 𝑦𝑦1𝑦𝑦2+𝑎𝑎𝑥𝑥1𝑥𝑥2
1−𝑑𝑑𝑥𝑥1𝑥𝑥2𝑦𝑦1𝑦𝑦2

� (2)

The formula can be used both for point addition and point
doubling, even with the neutral element (0, 1). Doubling on a
twisted Edwards curve is defined as:

 2 ∙ (𝑥𝑥,𝑦𝑦) = � 2𝑥𝑥𝑦𝑦
𝑎𝑎𝑥𝑥2𝑦𝑦2

, 𝑦𝑦2−𝑎𝑎𝑥𝑥2

2−𝑎𝑎𝑥𝑥2−𝑦𝑦2
� (3)

Scalar multiplication 𝑛𝑛 ∙ 𝑃𝑃 is defined as adding a point P to itself.

B. Extended Twisted Edwards Curve
A point in the twisted Edwards curve can be represented by

a different coordinate system other than Cartesian [1]. A point
(𝑥𝑥, 𝑦𝑦) can be represented by (X, Y, Z, T) satisfying the following
set of equations.

 𝑥𝑥 = X
Z

 𝑦𝑦 = Y
Z
 (4)

 𝑥𝑥 × 𝑦𝑦 = T
Z

The neutral point (0, 1) is equivalent to (0, Z, Z, 0) in
extended homogenous coordinates for any non-zero Z.

Expressing a point in this coordinate system saves time in
addition, which can be costly due to the modular division
involved. The following algorithm for adding two points on a
twisted Edwards curve with 𝑎𝑎 = −1 is described in [1].

Algorithm 1 Extended twisted Edwards point addition

Require: 𝑑𝑑, (X1, Y1, Z1, T1), (X2, Y2, Z2, T2)

1. 𝐴𝐴 ← (Y1 − X1) × (Y2 − X2)
2. 𝐵𝐵 ← (𝑌𝑌1 + 𝑋𝑋1) × (𝑌𝑌2 + 𝑋𝑋2)
3. 𝐶𝐶 ← 2𝑑𝑑T1T2
4. 𝐷𝐷 ← 2Z1Z2
5. 𝐸𝐸 ← 𝐵𝐵 − 𝐴𝐴
6. 𝐹𝐹 ← 𝐷𝐷 − 𝐶𝐶
7. 𝐺𝐺 ← 𝐷𝐷 + 𝐶𝐶
8. 𝐻𝐻 ← 𝐵𝐵 + 𝐴𝐴
9. X3 ← 𝐸𝐸𝐹𝐹
10. Y3 ← 𝐺𝐺𝐻𝐻
11. 𝑇𝑇3 ← 𝐸𝐸𝐻𝐻
12. 𝑍𝑍3 ← 𝐹𝐹𝐺𝐺
13. return (X3, Y3, Z3, T3)

For point doubling, the above algorithm could be used with
equal points as input. Nevertheless, another formula, also
described in [1], saves a few smaller operations.

Algorithm 2 Extended twisted Edwards point doubling

Require: (X1, Y1, Z1, T1)

1. 𝐴𝐴 ← X12
2. 𝐵𝐵 ← Y12
3. 𝐶𝐶 ← 2Z12
4. 𝐻𝐻 ← 𝐵𝐵 + 𝐴𝐴
5. 𝐸𝐸 ← 𝐻𝐻 − (X12 + Y12)2
6. 𝐺𝐺 ← 𝐴𝐴 − 𝐵𝐵
7. 𝐹𝐹 ← 𝐶𝐶 + 𝐺𝐺
8. X3 ← 𝐸𝐸𝐹𝐹
9. Y3 ← 𝐺𝐺𝐻𝐻
10. 𝑇𝑇3 ← 𝐸𝐸𝐻𝐻
11. 𝑍𝑍3 ← 𝐹𝐹𝐺𝐺
12. return (X3, Y3, Z3, T3)

C. Edwards-curve Digital Signature Algorithm (EdDSA)
EdDSA is a public-key signature algorithm similar to

ECDSA proposed by Bernstein et al. in [2]. In RFC 8032 [3],
EdDSA is defined for two twisted Edwards curves:
edwards25519 and edwards448, but EdDSA can also be used on
other curves.

Fig. 2. Illustration of the key generation and signing process of EdDSA
Source: Brian Warner

EdDSA uses a randomly-generated array of bytes with
bitlength of b as its signing key k. In addition, EdDSA also
requires a hash function H with a 2b-bits output length. A
common occurrence is the usage of SHA512 for b = 256 bits. An
integer a is calculated from 𝐻𝐻(𝑘𝑘) = (ℎ0, ℎ1, … , ℎ2𝑏𝑏−1) with:

 𝑎𝑎 = 2𝑏𝑏−2 + ∑ 2𝑖𝑖ℎ𝑖𝑖3≤𝑖𝑖≤𝑏𝑏−3 (5)

The public key A is computed from a base point 𝐵𝐵 ≠ (0, 1) of
order ℓ (chosen following the EdDSA specification [2]), such
that 𝐴𝐴 = 𝑎𝑎 ∙ 𝐵𝐵.

 The signature (𝑅𝑅, 𝑆𝑆) of a message M is generated according
to the following algorithm.

https://blog.mozilla.org/warner/2011/11/29/ed25519-keys/

Algorithm 3 EdDSA Signature Generation

Require: 𝑀𝑀, (ℎ0, ℎ1, … , ℎ2𝑏𝑏−1),𝐵𝐵,𝐴𝐴

1. 𝑎𝑎 ← 2𝑏𝑏−2 + ∑ 2𝑖𝑖ℎ𝑖𝑖3≤𝑖𝑖≤𝑏𝑏−3
2. ℎ ← 𝐻𝐻(ℎ𝑏𝑏 , … , ℎ2𝑏𝑏−1,𝑀𝑀)
3. 𝑟𝑟 ← ℎ mod ℓ
4. 𝑅𝑅 ← 𝑟𝑟 ∙ 𝐵𝐵
5. ℎ ← 𝐻𝐻(𝑅𝑅,𝐴𝐴,𝑀𝑀)
6. 𝑆𝑆 ← (𝑟𝑟 + 𝑎𝑎ℎ) mod ℓ
7. return (𝑅𝑅, 𝑆𝑆)

A signature is considered valid if 𝑅𝑅 ∈ 𝐸𝐸, 𝑆𝑆 ∈ [0, ℓ − 1], and
the following equation holds:

 8𝑆𝑆 ∙ 𝐵𝐵 = 8 ∙ 𝑅𝑅 + 8𝐻𝐻(𝑅𝑅,𝐴𝐴,𝑀𝑀) ∙ 𝐴𝐴. (6)

In practice, the public key and the signatures are output
according to the encoding specified in RFC 8032 [3]. A point
(𝑥𝑥, 𝑦𝑦) is encoded as a b-bit string 𝐸𝐸𝐸𝐸𝐶𝐶(𝑥𝑥,𝑦𝑦), which is the (b-1)-
bit little-endian encoding of y concatenated with a parity bit (1 if
x is positive, 0 otherwise). The value x can be recovered with the
following equation

 𝑥𝑥𝐴𝐴 = ± �(𝑦𝑦𝐴𝐴2 − 1)/(𝑑𝑑𝑦𝑦𝐴𝐴2 + 1) mod 𝑝𝑝 (7)

Signature computations are deterministic; for a given
message M, multiple computations of signatures will produce
identical results. Like other discrete-log-based signature
schemes, EdDSA uses a nonce unique to each signature. In the
signature schemes DSA and ECDSA, this nonce is generated
randomly for each signature; if the random number generator is
predictable when making a signature, the signature can leak the
signing key (as happened with the Sony PlayStation 3 firmware
update signing key).

In contrast, EdDSA chooses the nonce deterministically as
the hash of the signing key and the message. Thus, once a private
key is generated, EdDSA no longer has any further need for a
random number generator in order to make signatures, and there
is no danger that a broken random number generator used to
make a signature will reveal the signing key.

D. LSB Watermarking
A digital watermark is a marker covertly embedded in a

digital object, such as an audio, video, or image data. It is
typically used to identify ownership of the copyright of said data.
Watermarking is the process of hiding digital information in a
cover data. Digital watermarks may be used to verify the
authenticity or integrity of the carrier signal or to show the
identity of its owners.

Fig. 3. LSB steganography illustration
Source: codeproject.com

For multimedia data, the most common method of
watermark embedding is the LSB substitution, in which the least
significant bits of each byte of the cover data are replaced by the
embedded data. By only editing the least significant bits of each
byte, changes from the original cover data are nearly
imperceptible to the human senses.

Despite its simplicity, LSB substitution is considered fragile
watermarking. Although transformations like cropping are
survivable, any addition of undesirable noise or lossy
compression could destroy the embedded message.

E. Raw Audio
Raw audio is the most basic data representation of audio.

Raw audio lacks a signature and a header, which makes
determining a raw audio’s file format significantly harder than
interchange formats due to said lack of signature. In addition, the
lack of a commonly understood header makes determining audio
parameters difficult.

Fig. 4. Signal sampling representation
Source: Wikimedia Commons

Digital audio is stored as samples. A sample the smallest unit
in a digital audio, equivalent to pixels in images. An audio is
composed of a sequence of samples.

Audio information is stored as an array of bytes. To interpret
said array of bytes as samples, and thus a valid audio file, the
following terms and parameters, normally stored in the audio
header, are relevant:

• Sample rate: the number of samples in a second,
measured in hertz. A higher sample rate means that the
played discretized audio more approaches the original,
smooth analog audio. CD quality audio has a sample
rate of 44100 Hz.

• Bit depth: how many bits comprises a sample. The
higher the bit depth, the more accurately the amplitude
of an audio is represented. CD quality audio has a bit
depth of 16 bits (2 bytes), which means that a sample is
represented by a two’s complement two-byte integer.

• Channels: represents sound coming from or going to a
single point. A single microphone produces one channel
of audio, and a single speaker accepts one channel of
audio. Commonly found audio channels are mono (one
channel), stereo (two channels; left and right), and
surround sound (six channels).

• Interleaved: how samples in different channels are
organized. An interleaved audio stores samples
belonging to different channels after one another; that is,
the first samples of each channel are stored sequentially
before the second and the rest. A non-interleaved audio

https://www.codeproject.com/KB/graphics/porcupine/lsb1.jpg
https://en.wikipedia.org/wiki/File:Signal_Sampling.png

stores each channel separately; they may be stored in
one file and each channel is concatenated after the other,
or they may be stored in different files.

Fig. 5. Non-interleaved and interleaved audio with two channels
Source: The Lab Book Pages

• Endianness: the byte ordering used in storing data types
larger than a byte. This is relevant is a sample is
composed of more than a byte (8 bits).

F. Lossless Audio Formats
Lossless audio formats encode and store audio data such that

the audio is the same as the original source. This contrasts with
lossy audio formats such as AAC, MP3, and WMA, which
compress audio using algorithms that modifies the original data.

Because lossy formats modify the original audio data, spatial
domain manipulation (bits and bytes) of lossy audio data is
infeasible; any manipulation must be done in the temporal
domain (signals). Lossless audio data preserves the original
audio, which also preserves any spatial domain manipulation
done to the raw audio data.

III. SOLUTION ANALYSIS AND DESIGN
This paper proposes a watermarking scheme combining the

EdDSA digital signature algorithm and LSB substitution
watermarking. EdDSA is used to generate a digital signature
based on a private key and the audio data and used to verify
whether the audio data has been tampered at all using a valid
public key. LSB substitution watermarking is used to embed the
generated signature to the audio data.

LSB watermarking is chosen because of its simplicity. The
fragility of LSB watermarking is allowed because if the audio
has been tampered, the embedded data will be lost and
verification will fail, which is suitable for the purposes of this
paper.

Embedding the digital signature to one file eliminates the
need of a separate file for authentication. The generated
signature is embedded in the audio body, not the header. The
watermarking scheme processes audio as raw audio and can be
applied to audio stored in a lossless audio format (FLAC, WAV,
etc.).

The overall watermarking scheme design (signing and
verification scheme) is illustrated in the following diagrams.

Fig. 6. Block diagram illustration for audio signing

Fig. 7. Block diagram illustration for audio signature verification

Design rationales for the watermarking scheme will be
elaborated in the following sections.

A. EdDSA Curve Parameters
As explained in Section II.A, EdDSA requires common

curve parameters to be agreed first. This paper uses the Ed25519
signature scheme, which uses the SHA-512 algorithm and the

http://www.labbookpages.co.uk/audio/files/interleave.png

Curve25519 curve. Ed25519 is represented by the twisted
Edwards curve

 −𝑥𝑥2 + 𝑦𝑦2 = 1 − 121665
121666

𝑥𝑥2𝑦𝑦2 (8)

Ed25519 has the following parameters:

• 𝑝𝑝 = 2255 − 19 (prime)

• 𝑏𝑏 = 256

• Encoding of 𝐺𝐺𝐹𝐹(𝑝𝑝): 255-bit little-endian encoding of
{0, 1, … , 𝑝𝑝 − 1}

• 𝐻𝐻(𝑥𝑥) = SHA-512

• 𝑐𝑐 = 3

• 𝑛𝑛 = 254

• 𝑑𝑑 = − 121665
121666

equivalent to
3709570593466943934313808350875456518954
2190163887855330859402835551138798432 in
𝐺𝐺𝐹𝐹(𝑝𝑝)

• 𝐵𝐵 =
(151122213495354007725011514095885315114
54012693041857206046113283949847762202,
4631683569492647816942839400347516314130
7993866256225615783033603165251855960)

• ℓ = 2252 +
27742317777372353535851937790883648493

• 𝑃𝑃𝐻𝐻(𝑥𝑥) = 𝑥𝑥

The signature produced is 64 bytes long and stored as the
encoded form of (𝑅𝑅, 𝑆𝑆).

B. Modifications to LSB Substitution for Raw Audio
Because a sample in raw audio is usually encoded as a

multiple-byte integer, simply replacing the least significant bits
of each byte will produce noticeable differences when the audio
is played back. This is because each byte in a sample is played
as a group and editing the least significant bit in a higher-order
byte can produce more noticeable differences than editing the
most significant bit in a lower-order byte.

To accommodate, the data can simply be embedded in the
least significant bytes of each sample; the first for little-endian
systems, the last for big-endian systems. This practically cuts
down the embedding capacity by the number of bytes in a
sample, but the decrease in capacity does not present a
significant impact due to the small size of the embedded data.

The number of samples needed to store the 64-byte signature
is 512, which represents about two hundredth of a second in a
44100 Hz 16-bit mono audio.

C. Modifying the Data for Digital Signing
Another problem exists when the digital signature of the

audio is going to be embedded: the data after embedding will be
different from the data used to make the signature. In which case,

the digital signature from the watermarked data will differ from
the digital signature embedded.

To overcome this problem, simply set all bits which will be
substituted to zero before generating and embedding the digital
signature. On verification, set all LSB to zero after extracting the
embedded signature, then verify the extracted signature against
the raw audio data.

In the watermarking scheme, to simplify, the generated
digital signature is embedded in the first 512 samples of the raw
audio data, regardless of channels.

IV. IMPLEMENTATION
The proposed watermarking scheme is implemented for

proof-of-concept as a Python script. The following external
libraries are used to simplify the implementation process.

• ffmpeg + pydub: for audio import to raw audio and
export to an interchange lossless format

• gmpy2: as a multi-precision big integer library

• hashlib: provides multiple hash functions

Because data is imported from an interchange format,
parameters such as sample rate or bit depth can be read from the
header.

The script is divided to three functions: key generation,
signing, and verification as detailed below.

• Key Generation
Usage: eddsa-signer.py keys [-h]

 [-sk SIGNING_KEY_PATH]
 [-vk VERIFYING_KEY_PATH]

• Signing
Usage: eddsa-signer.py sign [-h]
 [-i INPUT_PATH]
 [-o OUTPUT_PATH]
 [-sk SIGNING_KEY_PATH]

• Verification
Usage: eddsa-signer.py verify [-h]
 [-i INPUT_PATH]
 [-vk VERIFYING_KEY_PATH]
Output: [True/False]

The keys are stored as 64-byte binary files. All audio formats

supported by ffmpeg can be signed, but the resulting file must
be saved as an uncompressed or lossless audio format (WAV,
FLAC, ALAC, etc.).

V. TESTING
There are three security concepts a digital signature is used

for: authentication, integrity, and non-repudiation. To that end,
the following testing scenarios will be executed:

1. Signing and verifying audio with a correct keypair
(control scenario).

2. Changing the public key used for verification.
3. Modifying the watermarked audio data.
4. Modifying the embedded data signature.

There are two points of data noted from testing: execution
time and signature verification result. For each file, the
signing/verification process is repeated five times to obtain the

average time needed for execution. The signature verification
result is considered valid if and only if, in each repetition, the
signature is valid.

The following keys are used for testing.

TABLE I. KEYS FOR TESTING

Key
Value

base64 integer

Signing key

Hf9MSj7uaU
152zKzYKSL
JnmcpkNXov
h7gPxx7mk8
iMo

9160790357531609488063
6108887987357102399196
8368329668675283148807
66572822301

Verifying
key

OdkAiNDScY
OgTgy06OBS
xtF9MTAvS5
4lcA2FeQHr
TbI

x

-
1039852446134920192
6225252673912412569
6

y

2275331160330021937
4263527184348579404
9167795842587874687
3385658081928969247
3

The following files are used for testing. Only WAV files are
used for testing because WAV files are raw audio with a RIFF
header, so the time measured is outside the conversion from an
interchange format (FLAC, lossy audio) to and from raw audio.

TABLE II. FILES FOR TESTING

Duration (ms) Size (KB)
100 19

1000 188

60000 11251

271728 (full) 50950

Testing is done on a machine with the following
specification.

• Operating System: Windows 10 Home 64-bit (10.0,
Build 16299)

• Processor: Intel(R) Core(TM) i7-7500U CPU @
2.70GHz (4 CPUs), ~2.9GHz

• Memory: 8192MB RAM

• Hard Drive: 1TB NTFS

• Python Interpreter: CPython 3.6.3

A. Control Scenario
The control scenario describes a valid signing/verifying

flow; that is, a matching pair of signing and verifying key is used
on a valid audio data unchanged between the signing and
verification process.

TABLE III. TEST RESULT FOR CONTROL FLOW

Duration
Execution time (ms) Verification result

Signing Verifying Expected Actual
100 15.625 15.625 Pass Pass
1000 15.625 15.625 Pass Pass
60000 162.5 96.875 Pass Pass

271728 643.75 418.75 Pass Pass

Fig. 8. Total executon time of signing/verifying process in the control
scenario

B. Keypair Mismatch
In this scenario, the verifying key in Table I is swapped with

the verifying key below. This scenario tests the watermarking
scheme authentication; that is, a mismatched keypair should not
return a positive (valid) result.

TABLE IV. KEYS FOR TESTING KEYPAIR MISMATCH

Key
Value

base64 integer

Verifying
key

rX2aRBRHQS
BpsVPKbRB/
3Xkvf5FL7Y
GuRO3kmqoy
nmA

x
2066155854751383343
2605821887815929036
8

y

4370154498704909890
3874852211172298850
7328238366765557285
5243395099969889834
9

TABLE V. TEST RESULT FOR KEYPAIR MISMATCH

Duration
Execution time (ms) Verification result

Signing Verifying Expected Actual
100 15.625 15.625 Fail Fail
1000 15.625 15.625 Fail Fail
60000 140.625 81.25 Fail Fail
271728 646.875 375.0 Fail Fail

31.25 31.25

259.375

1062.5

0

200

400

600

800

1000

1200

100 1000 60000 271828

Total execution time

Fig. 9. Total executon time of signing/verifying process in the keypair-
mismatch scenario

C. Modified Data
In this scenario, the audio data is modified after the audio has

been watermarked. This is done by changing the bits of the first
byte of the raw audio data to zero, except the LSB (to preserve
the signature). This scenario tests for integrity; that is, a corrupt
file should not return a positive (valid).

TABLE VI. TEST RESULT FOR MODIFIED DATA

Duration
Execution time (ms) Verification result

Signing Verifying Expected Actual
100 15.625 15.625 Fail Fail
1000 15.625 15.625 Fail Fail
60000 168.75 90.625 Fail Fail
271728 656.25 381.25 Fail Fail

Fig. 10. Total executon time of signing/verifying process in the modified-data
scenario

D. Modified Signature
In this scenario, the embedded signature itself is modified.

This is done by flipping the LSB where the first bit of the
signature is embedded. This scenario tests for integrity; that is,
an invalid signature should not return a positive (valid).

TABLE VII. TEST RESULT FOR MODIFIED SIGNATURE

Duration
Execution time (ms) Verification result

Signing Verifying Expected Actual
100 15.625 15.625 Fail Fail
1000 15.625 15.625 Fail Fail
60000 150.0 103.125 Fail Fail

271728 659.375 425.0 Fail Fail

Fig. 11. Total executon time of signing/verifying process in the modified-
signature scenario

VI. ANALYSIS

A. Performance
Testing results show that the signing and verifying process

execution time has a lower bound of 15.625 milliseconds. This
is caused by the overhead in importing and exporting audio, as
well as loading the internal processes involved, such as loading
the libraries involved.

For larger files, the execution time increases linearly with the
audio file size. In general, the signing process takes about 1.5
times longer than the verification process. This may be caused
by the need to import, hash, and export the watermarked audio
file.

B. Correctness
Judging by the verification result, it can be concluded that

using EdDSA for signing lossless audio is feasible. The
signature signing and verification method correctly identified
tampered audio files and signature, thus fulfilling the integrity
aspect of security, and verifies the signer of the audio file,
fulfilling the authentication and nonrepudiation aspect of
security.

C. Robustness
Due to inherent limitations on operating on the spatial

domain, the watermarking scheme is very much fragile. Any
modification to the original data or the embedded signature itself
will invalidate the embedded signature. This renders signing
more common lossy audio formats (MP3, AAC, OGG, etc.)
impossible.

31.25 31.25

221.875

1021.875

0

200

400

600

800

1000

1200

100 1000 60000 271828

Total execution time

31.25 31.25

259.375

1037.5

0

200

400

600

800

1000

1200

100 1000 60000 271828

Total execution time

31.25 31.25

253.125

1084.375

0

200

400

600

800

1000

1200

100 1000 60000 271828

Total execution time

A more robust signature embedding would operate in the
temporal domain and manipulate audio as signals, instead of bits
and bytes. Embedding in the temporal domain would make
signing lossy formats possible, but is significantly more difficult
to do than simply manipulating bits and bytes.

VII. CONCLUSION
Three points of conclusion can be inferred for this paper:

1. An EdDSA digital signature can be used to protect an
audio file in three security concepts: authentication,
integrity, and non-repudiation.

2. The proposed watermarking scheme is simple to use and
can be used to generate, embed, and verify digital
signature for all lossless audio formats without any
further need for additional files or tags and without
significantly changing the watermarked audio.

3. This scheme can further be improved by changing the
watermarking method used; of note is temporal (signal)
manipulation.

REFERENCES

[1] H. Hisil, K. K.-H. Wong, G. Carter and E. Dawson, "Twisted Edwards Curves
Revisited," Advances in Cryptology - ASIACRYPT 2008 Lecture Notes in Computer
Science, pp. 326-343, 2008.

[2] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, "High-speed high-
security signatures," Cryptographic Hardware and Embedded Systems – CHES
2011 Lecture Notes in Computer Science, pp. 124-142, 2011.

[3] S. Josefsson and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm
(EdDSA)," January 2017. [Online]. Available: https://tools.ietf.org/html/rfc8032.
[Accessed 15 April 2018].

[4] Y. Romalier and S. Pelissier, "Practical fault attack against the Ed25519 and EdDSA
signature schemes," 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2017.

[5] T. Lange, "Extended coordinates with a=-1 for twisted Edwards curves,"
hyperelliptic, [Online]. Available: https://hyperelliptic.org/EFD/g1p/auto-twisted-
extended-1.html. [Accessed 18 May 2018].

[6] D. J. Bernstein, P. Birkner, T. Lange and C. Peters, "ECM using Edwards curves,"
Mathematics of Computation, vol. 82, no. 282, pp. 1139-1179, 2012.

[7] B. Warner, "How do Ed5519 keys work?," Mozilla Blog, 29 November 2011.
[Online]. Available: https://blog.mozilla.org/warner/2011/11/29/ed25519-keys/.
[Accessed 17 May 2018].

[8] D. Connor, "Sample Rate and Bitrate: The Guts of Digital Audio," The Stereo Bus
Blog, [Online]. Available: https://thestereobus.com/2008/01/12/sample-rate-and-
bitrate-the-guts-of-digital-audio/. [Accessed 17 May 2018].

[9] E. L. Blake, "Raw Audio File Formats Information," Fmtz, [Online]. Available:
https://web.archive.org/web/20160525083851/http://www.fmtz.com/misc/raw-
audio-file-formats. [Accessed 17 May 2018].

[10] J. Robert, Pydub, GitHub, 2018.
[11] R. Munir, Diktat Kuliah IF5054 Kriptografi, Bandung: Departemen Teknik

Informatika Institut Teknologi Bandung, 2005.

DECLARATION
I hereby declare that this paper is my own writing, not an
adaptation, translation, or plagiarized from others’ paper.

Bandung, May 17, 2018

Felix Limanta 13515065

	I. Introduction
	II. Theoretical Building Blocks
	A. Twisted Edwards Curve
	B. Extended Twisted Edwards Curve
	C. Edwards-curve Digital Signature Algorithm (EdDSA)
	D. LSB Watermarking
	E. Raw Audio
	F. Lossless Audio Formats

	III. Solution Analysis and Design
	A. EdDSA Curve Parameters
	B. Modifications to LSB Substitution for Raw Audio
	C. Modifying the Data for Digital Signing

	IV. Implementation
	V. Testing
	A. Control Scenario
	B. Keypair Mismatch
	C. Modified Data
	D. Modified Signature

	VI. Analysis
	A. Performance
	B. Correctness
	C. Robustness

	VII. Conclusion
	Declaration

