
Galois Field with Power of Prime Order in

Cryptography

Dewita Sonya Tarabunga

13515021

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

dewitast20@gmail.com

Abstract— Elliptic Curve Cryptography was claimed to

be more power-efficient system to use rather than

usual integer system in message encryption and

decryption and needed less key length to provide

similar security. In this paper, the writer will try to

implement another field system to use i.e Galois field

and compare it with Elliptic Curve Cryptography.

Galois field will surely needed less key than ECC

because we can choose much smaller prime. Basically,

the idea is to use usual operation (multiplication) but

on higher dimensions. This paper will implement

Galois Field in ElGamal algorithm.

Keywords— Cryptography, Elliptic Curve

Cryptography, Galois Field, El-Gamal

I. INTRODUCTION

The notion of cryptography has developed

throughout history and currently has a lot of

meanings. But, the simplest and first meaning of

cryptography is a system that provide secure

communication in the presence of malicious third

parties, known as adversaries [1]. That is, when two

or more people want to share messages between

each other, and they do not want another person

outside their group to know anything about the

messages, they will use cryptography to ensure the

security of the messages.

Encryption and decryption is two main processes of

cryptography. Encryption is a process to turn

messages to some meaningless sentence. And on the

other side, decryption is a process to turn that

meaningless sentence back to original messages. By

using the right key and the right system, only the

right people will have access to the original

message.

Throughout history, there are two widely used

cryptosystem, namely symmetric key cryptography

and public key cryptography. Both have their own

advantages and disadvantages. There are numbers of

encryption and decryption algorithm that are

developed on both systems. RSA and El-Gamal [2]

is examples of public key cryptography. On this

paper, we will only focus on ElGamal algorithm.

That is because ElGamal is a cryptographic

algorithm that works on finite field.

One of the disadvantages of symmetric key

cryptography is the needs to maintain a lot of key.

This is because if some person A wants to

communicate to B and C, and A does not want B to

have access to the messages that A send to C, then

he has to have two separate different keys. The more

people A wants to communicate to, the more keys he

has to manage. With public key cryptography, this

would not happen because the key used to

communicate is public, thus every one just have to

maintain one private key for theirselves and the rest

is public.

Elliptic Curve is an algebraic structure that forms a

finite field under the geometric operations of tangent

line [3]. It also works as an underlying structure for

public key cryptography. El-Gamal formerly

implemented in ℤ𝑝, group of integers modulo 𝑝 with

usual addition and multiplication operation. With

Elliptic Curve field, due to its complex operation, it

is claimed that Elliptic Curve Cryptography will

provide equivalent security with less key length,

thus lessen the cost of encryption and decryption

without lessen the security.

The field of integer modulo 𝑝, ℤ𝑝 is an example of

Galois Field that will be discussed more later. The

idea on this paper is to use Galois Field, but on much

higher dimensions. The addition operation can still

be used, but the multiplication will be much more

complex because the trivial multiplication operation

on vector of integers will not work. The author will

implement El-Gamal on both fields, Elliptic Curve

and Galois Field with higher dimensions and

compare some aspect.

II. FUNDAMENTAL THEORIES

A. ElGamal
ElGamal is one of an example of algorithm for

public key cryptography created by Taher

Elgamal [4]. It is based on another algoritm on

key exchange called Diffie-Hellman. Basically,

the underlying problem is called the discrete

logarithm problem that stated as follow:

Given any group 𝐺 and any two elements 𝑎, 𝑏 ∈
𝐺, find some 𝑘 ∈ ℕ such that 𝑏𝑘 = 𝑎 respect to

operation in group G.

The security of ElGamal algorithm relies heavily

upon the underlying group 𝐺 and its

multiplication operation. In reality, any cyclic

group is sufficient to be used as the group on

ElGamal algorithm. But, the more complex the

group and its operation, the stronger the

encryption will be because it will increase the

cost of computing the multiplication in the

group.

There are three main process in ElGamal: key

generation, encryption, and decryption that each

will be explained.

1. Key Generation

o Define some cyclic group 𝐺, and choose

one base element 𝑎 ∈ 𝐺,
o Choose one 𝑘 ∈ ℕ, 1 ≤ 𝑘 < |𝐺|,
o Compute 𝑏 = 𝑎𝑘

Finally, 𝐺, 𝑎, and 𝑏 are the public keys

whereas 𝑘 is the only private key. So, we

have to publish 𝐺, 𝑎, 𝑏 and keep the private

key, 𝑘, as a secret.

2. Encryption

The encryption algoritm is based on the

public keys already described above.

o Choose one 𝑙 ∈ ℕ, 1 ≤ 𝑙 < |𝐺|,
o Calculate 𝑐1 = 𝑎𝑙

o Let 𝑚 ∈ 𝐺 is the message, then compute

𝑐2 = 𝑚𝑏𝑙

Finally, the pair (𝑐1, 𝑐2) is the encrypted

message.

3. Decryption

o Compute 𝑚 = 𝑐2𝑐1
−𝑘

The algorithm works because

𝑐2𝑐1
−𝑘 = 𝑚𝑏𝑙𝑎−𝑘𝑙

 = 𝑚𝑎𝑘𝑙𝑎−𝑘𝑙

 = 𝑚

B. Group
In mathematics, group is a set of elements with

some defined binary operation that satisfies four

conditions, namely closure, associativity,

identity, invertibility [5]. Group is important in

this paper because a set of elements that will be

used along with ElGamal needs to be a group,

otherwise the algorithm will not work. The four

condition of group 𝐺 with operation 𝑎 ∙ 𝑏 = 𝑎𝑏

is:

1. Closure

The operation ∙ of group 𝐺 has to be closed,

that is, for every two elements 𝑎, 𝑏 ∈ 𝐺, then

𝑎𝑏 ∈ 𝐺. In other words, 𝑎𝑏 must also be an

element of 𝐺.

2. Associativity

The operation ∙ also must be associative, that

is, for every three elements 𝑎, 𝑏, 𝑐 ∈ 𝐺, then

(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐). The order of the operation

does not matter and can not change the final

result. Because of that, we can write (𝑎𝑏)𝑐 =
𝑎(𝑏𝑐) = 𝑎𝑏𝑐.

3. Identity

There must be an element 𝑒 ∈ 𝐺 such that for

every 𝑎 ∈ 𝐺, then 𝑎𝑒 = 𝑒𝑎 = 𝑎. That

element is called the identity element of 𝐺.

Furthermore, this element is unique.

4. Inverse

For every element 𝑎 ∈ 𝐺, there exist 𝑏 ∈ 𝐺,

such that 𝑎𝑏 = 𝑏𝑎 = 𝑒. This element is

called the inverse of 𝑎 and also unique in 𝐺.

We will denote the inverse of 𝑎 as 𝑎−1. It is

trivial to prove that 𝑒−1 = 𝑒.

One very important family of group is a cyclic

group. A group is cyclic if and only if there exist

𝑎 ∈ 𝐺, such that if 𝑏 ∈ 𝐺, then there exist 𝑘 ∈
ℕ, 1 ≤ 𝑘 ≤ |𝐺|, such that 𝑏 = 𝑎𝑘. Such an

element 𝑎 is called a generator of 𝐺. In fact, if

𝑚 = |𝐺|, then every elements of 𝐺 that have 𝑚

as their order is a generator of 𝐺.

C. Elliptic Curve Cryptography
Elliptic Curve Cryptograhy is a system based on

algebraic structure made by Elliptic Curve over

finite field [3]. It has been proved that the defined

discrete Elliptic Curve along with its operation

that based on tangent line satisfies the four axiom

of group. It also has been proved that the group

created is a cyclic group. Thus, it can be used as

an underlying system for ElGamal algorithm.

There was a claim that, due to the complexity of

operation in Elliptic Curve, then it can provide

equivalent security as usual group with much

less key length, thus decreasing the needs of

power and the cost of computing. It also has been

widely used, especially in machine that can only

provide limited power, such as handphone.

Elliptic curve is defined as plane curve over an

integer modulo 𝑝, which consist of the points

satisfying the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, along

with a point at infinity as the identity element.

Gambar 1 ECC Addition

Sumber: https://i.imgur.com/EdPk12E.gif

The group operation is showed above. To add

two points together, first draw a line connecting

both points. The line will intersect the curve in

one other point, beside those two points. Reflect

that point about the 𝑦-axis to get the result. With

that operation and some result from geometry, it

can be proved that Elliptic Curve is closed,

associative, has identity element (namely, ∞),

and every element has inverse.

Formally, if we want to compute 𝑅(𝑥𝑅 , 𝑦𝑅) =

𝑃(𝑥𝑝 , 𝑦𝑝) + 𝑄(𝑥𝑄 + 𝑦𝑄), then

𝑥𝑅 = 𝑘2 − 𝑥𝑃 − 𝑥𝑄

𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃
where

𝑘 = (𝑦𝑃 − 𝑦𝑄)(𝑥𝑃 − 𝑥𝑄)−1

There is some difference of formula if we want

to add some point to itself, 𝑃 + 𝑃 = 2𝑃. This is

because there is no definition of inverse of 0

when we want to calculate 𝑘. So, the formal

definition of above problem is as follow.

Let 𝑅(𝑥𝑅 , 𝑦𝑅) = 2𝑃(𝑥𝑝, 𝑦𝑝), then

𝑥𝑅 = 𝑘2 − 2𝑥𝑝

𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃
where

𝑘 = (3𝑥𝑝
2 + 𝑎)(2𝑦𝑃)−1

where 𝑎 is the coefficient of 𝑥3 of the curve

equation.

After we define the addition of point to itself, one

most important operation is the multiplication of

point to integer, 𝑘𝑃, where 𝑘 > 2. Using the

definition of 2𝑃 and 𝑃 + 𝑄, we can easily

multiplication of 𝑘𝑃 using only those two

operation. For example, if we want to compute

5𝑃, then

5𝑃 = (𝑃 + 2(2𝑃))
It can be seen that the only operation involved is

of two kind, i.e. 𝑃 + 𝑄 and 2𝑃.

Gambar 2 ECC Multiplication

Sumber: www.slideshare.net/MartijnGrooten/

D. Galois Field
Field is an algebraic strucure that is much

stronger that group. Basically, field 𝐹 is a set of

element that has two defined operation, namely

addition and operation such that 𝐹 is an additive

group (forms a group along with addition

operation) [5]. Let 0 be the identity element of 𝐹

as an additive group. Then, 𝐹 − {0} must form a

multiplicative group (forms a group along with

multiplication operation). Furthermore, 𝐹 must

satisfy the distributive condition, that is, for any

𝑎, 𝑏, 𝑐 ∈ 𝐹, then

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

It is known that the order of any field can be

finite or infinite. ℝ, the field of rational number

along with usual addition and multiplication is an

example of field with infinte order. On the other

side, ℤ𝑝 the field of integer modulo 𝑝 along with

modular addition and multiplication is an

example of field with finite order.

A great result due to Galois, show that the order

of field with finite order can only be of the form

𝑝𝑘 , where 𝑝, 𝑘 ∈ ℕ is a natural number and 𝑝 is

a prime number. Furthermore, Galois also show

that the number of field with order 𝑝𝑘 for every

𝑝, 𝑘 ∈ ℕ, 𝑝 prime is only one, up to

isomorphisms. That is, given any 𝑝, 𝑘 ∈ ℕ,if

there are any two fields 𝐹 anf 𝐺 such that |𝐹| =

https://i.imgur.com/EdPk12E.gif
http://www.slideshare.net/MartijnGrooten/

|𝐺| = 𝑝𝑘, then 𝐹 ≅ 𝐺.

Galois Field is a finite field. Because of the result

above, for every possible order of finite field,

there is exist exactly one Galois Field of that

order. Galois Field with order 𝑝𝑘 denoted as ℤ𝑝𝑘,

defined as vector that consist of 𝑘 elements of

ℤ𝑝. Now, we are left with the definition of

addition and multiplication of Galois Field.

The addition of Galois Field is pretty trivial, i.e.

to sum the vector element-wise. If 𝑎 =
(𝑎1, 𝑎2, … , 𝑎𝑘), 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘) ∈ ℤ𝑝𝑘, then

𝑎 + 𝑏 = (𝑎1 + 𝑏1, … , 𝑎𝑘 + 𝑏𝑘)
with + denote the addition in ℤ𝑝.

For the multiplication, maybe the most trivial

operation that first comes up is element-wise

multiplication. Unfortunately, that

multiplication do not satisfy the field conditions.

For example (0, 1), (1, 0) ∈ ℤ22 − {(0, 0)} but

the multiplication is (0,1)(1,0) = (0,0) ∉
ℤ22 − {(0, 0)}

The definition of multiplication that is finally

used is polynomial multiplication. Map elements

of field to coefficient of some polynomial of

degree less than 𝑘. Obviously, this mapping is

bijective. To ensure the closure, the result of

multiplication must be taken modulo some

irreducible polynomial of degree 𝑘. This

operation has been proved to satisfy all the field

conditions.

It has been proved that the multiplicative group

of any Galois field is in fact, a cyclic group.

Because of that reason, Galois Field can be

applied to the ElGamal algorithm as well as

Elliptic Curve.

Galois Field has been used in one of the most

famous symmetric key algorithm named AES.

AES uses the Galois Field 𝑍28 with 𝑥8 + 𝑥4 +
𝑥3 + 𝑥2 as its modulo irreducible polynomial.

This field also called Rijndael Field in tribute to

the algorithm creator, Rijndael.

III. IMPLEMENTATION

To compare the usage of the two algebraic structure,

both algebraic structure, Elliptic Curve and Galois

Field will be implemented in ElGamal algorithm.

The selection of the algoritm is due to its properties

that depends a lot to its underlying algebraic

structure. The implementations will not include the

message encoding (the conversion of plaintext to

element of algebraic structure). So, the analysis will

be based only of the encryption and decryption of

the elements of algrebaic strucutre.

A. Elliptic Curve

To implement elliptic curve, the most important

thing is to implement Point because elliptic curve

works on two dimensional point. Below are the

implementation of some important method on

Point.

def negate(self):

 self.ordinat = (self.modulo

- self.ordinat) % self.modulo

 return self

def gradient(self, point):

 dx = (self.absis -

point.absis) % self.modulo

 if dx<0:

 dx += self.modulo

 dy = (self.ordinat -

point.ordinat) % self.modulo

 if dy<0:

 dy += self.modulo

 if dx==0:

 return None

 return (dy * invmod(dx,

self.modulo)) % self.modulo

def equal(self, point):

 return self.absis ==

point.absis and self.ordinat ==

point.ordinat and self.modulo ==

point.modulo

def is_inf(self):

 return self.modulo == -1

def print(self):

 res = "(" + str(self.absis)

+ "," + str(self.ordinat) + ")"

 return res

Only the very basic operations are covered on

above implementatoion. More crucial methods

will be covered on another class implementation,

the elliptic curve. Below is the elliptic curve

implementation along with its method

 def contains(self, point):

 lhs = (point.ordinat

** 2) % self.modulo

 rhs = (point.absis **

3) % self.modulo

 rhs %= self.modulo

 rhs += (point.absis *

self.coef) % self.modulo

 rhs %= self.modulo

 rhs += self.const

 rhs %= self.modulo

 return (rhs==lhs)

 def gradient(self, point):

 dx = (3 * point.absis

* point.absis + self.coef) %

self.modulo

 dy = (point.ordinat +

point.ordinat) % self.modulo

 if dy==0:

 return None

 dy = invmod(dy,

self.modulo)

 return (dx * dy) %

self.modulo

 def square(self, point):

 if point.is_inf():

 return point

 grad =

self.gradient(point)

 if grad == None:

 return INF

 absis = (grad * grad

- point.absis - point.absis) %

self.modulo

 if absis<0:

 absis +=

self.modulo

 ordinat = (grad *

(point.absis - absis) -

point.ordinat) % self.modulo

 if ordinat<0:

 ordinat +=

self.modulo

 return Point(absis,

ordinat, self.modulo)

 def add(self, point1,

point2):

 if

point1.equal(point2):

 return

self.square(point1)

 if point1.is_inf():

 return point2

 if point2.is_inf():

 return point1

 grad =

point1.gradient(point2)

 if grad == None:

 return INF

 absis = (grad * grad

- point1.absis - point2.absis) %

self.modulo

 if absis<0:

 absis +=

self.modulo

 ordinat = (grad *

(point1.absis - absis) -

point1.ordinat) % self.modulo

 if ordinat<0:

 ordinat +=

self.modulo

 return Point(absis,

ordinat, self.modulo)

 def multiply(self, k,

point):

 ans = INF

 rest = point

 while k>0:

 if k&1:

 ans =

self.add(ans, rest)

 rest =

self.square(rest)

 k >>= 1

 return ans

 def solve(self, x):

 rhs =

(x*x*x+x*self.coef+self.const) %

self.modulo

 if self.modulo==2:

 return rhs

 if modpow(rhs,

(self.modulo - 1) // 2,

self.modulo) != 1:

 return None

 ans = 0

 while (ans * ans) %

self.modulo != rhs:

 ans += 1

 return ans

 def print(self):

 res = "y^2 = x^3 + "

+ str(self.coef) + "x + " +

str(self.const) + " mod " +

str(self.modulo)

 return res

B. Galois Field

In the other hand, because Galois Field

multiplication can best be seen as polynomial

multiplication, thus it is the most important

aspect to be implemented. Below is the

implementation of the most important method of

Polynomial.

def truncate(self):

 while len(self.coef)>1 and

self.coef[-1] == 0:

 del self.coef[-1]

 self.degree =

len(self.coef) - 1

def decrement_degree(self):

 self.degree -= 1

 del self.coef[-1]

def shift(self):

 if self.coef[-1] > 0:

 self.degree += 1

 self.coef.insert(0,

0)

def add(self, pol):

 degree = max(self.degree,

pol.degree)

 self.coef += [0 for _ in

range(degree - self.degree)]

 pol.coef += [0 for _ in

range(degree - pol.degree)]

 self.coef = [(self.coef[i]

+ pol.coef[i]) % self.modulo for i

in range(degree + 1)]

 self.degree = degree

 self.truncate()

 pol.truncate()

def power(self, k):

 if k == 1:

 return

 tmp = self.copy()

 self.coef = [0]

 self.degree = 0

 while k > 0:

 if (k&1) == 1:

 self.add(tmp)

 tmp.add(tmp)

 k >>= 1

def subtract(self, pol):

 degree = max(self.degree,

pol.degree)

 self.coef += [0 for _ in

range(degree - self.degree)]

 pol.coef += [0 for _ in

range(degree - pol.degree)]

 self.coef = [(self.coef[i]

- pol.coef[i] + self.modulo) %

self.modulo for i in range(degree

+ 1)]

 self.degree = degree

 self.truncate()

 pol.truncate()

def multiply(self, pol):

 degree = self.degree +

pol.degree

 coef = [0 for _ in

range(degree + 1)]

 for i in range(self.degree

+ 1):

 for j in

range(pol.degree + 1):

 coef[i + j] +=

(self.coef[i] * pol.coef[j]) %

self.modulo

 coef[i + j] %=

self.modulo

 self.coef = coef[:]

 self.degree = degree

def mod(self, pol):

 if self.degree <

pol.degree:

 return

 res =

Polynomial(self.modulo,

[self.coef[i] for i in

range(pol.degree)])

 base =

Polynomial(self.modulo)

 cpol = pol.copy()

 cpol.power(invmod(cpol.coef

[-1], self.modulo))

 cpol.decrement_degree()

 base.subtract(cpol)

 if self.coef[pol.degree] >

0:

 base.power(self.coef[pol.de

gree])

 res.add(base)

 base.power(invmod(self.coef

[pol.degree], self.modulo))

 md =

Polynomial(self.modulo, base.coef)

 for i in range(pol.degree +

1, self.degree + 1):

 md.shift()

 if md.degree ==

pol.degree:

 k = md.coef[-

1]

 md.decrement_degree()

 base.power(k)

 md.add(base)

 base.power(invmod(k,

self.modulo))

 if self.coef[i] > 0:

 md.power(self.coef[i])

 res.add(md)

 md.power(invmod(self.coef[i

], self.modulo))

 self.coef = res.coef[:]

 self.degree = res.degree

def print(self):

 string = ''

 for i in range(self.degree

+ 1):

 tmp =

str(self.coef[i])

 if i>0:

 tmp += 'x^' +

str(i)

 if i < self.degree:

 tmp += ' + '

 string += tmp

 print(string)

It can be seen that some of the most important

operations are already covered on polynomial

implementation. That is because Galois Field

multiplication is basically just polynomial

multiplication. That makes the implementation

of Galois Field much more easier because it can

directly uses the implementation above. Below is

the implementation of Galois Field.

def copy(self):

 return

GaloisField(self.prime,

self.power, self.poly.coef,

self.modulo.coef)

def add(self, other):

 self.poly.add(other.poly)

def multiply(self, other):

 self.poly.multiply(other.po

ly)

 self.poly.mod(self.modulo)

def powerr(self, k):

 k %= self.order

 if k == 1:

 return

 tmp = self.copy()

 self.poly.coef = [1]

 self.poly.degree = 0

 while k > 0:

 if (k&1) == 1:

 self.multiply(tmp)

 tmp.multiply(tmp)

 k >>= 1

def print(self):

 self.poly.print()

The implementation is much shorter because it

has a polynomial as one of its attribute, thus it

can call needed polynomial method on that

polynomial atrribute.

IV. ANALYSIS

Analysis will be done on every stage, key

generation, encryption and decryption.

A. Key Generation

First thing to do before encryption and

decryption is to define one group G to work with.

In elliptic curve, this means defining some

elliptic curve equation in the form

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏
along with its modulo.

And for Galois Field, this can be done only by

defining the order of the group, since then we can

uniquely determine the prime and its power. One

notable thing is determining Galois Field is much

easier than determining elliptic curve. Determine

the prime modulo for large numbers is equivalent

to finding large prime numbers which is very

hard compared to finding a rather small prime

but with large power. The hardest part of

defining the Galois Field is to determine the

modular polynomial because the polynomial

must be irreducible. But, there is already some

algorithm or criterion to produce irreducible

polynomial for any degree. The most famous one

is Eisenstein Criterion.

For the analysis, the group for elliptic curve is

𝑦2 = 𝑥3 + 2𝑥 + 4 𝑚𝑜𝑑 257
and for Galois Field is the order is 256 = 28, and

the modular irreducible polynomial is

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1
That polynomial also used on Rijndael Field in

AES algorithm. Both orders are chosen because

the two numbers only differ by one, although the

elements in elliptic curve would not be exactly

257.

The next step is to choose one base point. Base

point must be one of the element of the group. In

this case, Galois Field win the competition again

because choosing one element of Galois Field is

more simple than of elliptic curve. For Galois

Field, we only need to randomize integer from 0

to 𝑝 − 1, 𝑘 times, where 𝑝𝑘 is the field order.

Whereas for elliptic curve, we have to choose

one point that satisfy the equation, which is not

that trivial. To continue, the base point for Galois

Field is

𝑥6 + 𝑥3 + 𝑥 + 1
which is generated and for elliptic curve is (2,4).

The next step is to choose random number as the

private key. It can be any number, but for this

paper, we will choose 𝑘 = 15 as private key (for

no reason, it’s just a random number). Private

keys usually are smaller than the group order.

But, in elliptic curve case, the order of the group

created by some equation and its modulo is not

really trivial, which is one of the disadvantages

of elliptic curve.

Last step is to multiply the base point 𝑘 times to

get an element of group as the public key. Both

group will be compared based on its complexity

in Big-Oh notation. For elliptic curve, it uses

mathematics to multiply two points, thus the

complexity is 𝑂(1), and the overall complexity

to multiply base point 𝑘 times to itself is

𝑂(log 𝑘) by using divide and conquer. For

Galois Field, the complexity of the above

implementation on polynomial multiplication is

𝑂(𝑛2), but the best known algorithm for

polynomial multiplication is 𝑂(𝑛 log 𝑛), by

using Fast Fourier Transform. So, the overall

complexity is 𝑂(𝑛 log 𝑛 log 𝑘), where 𝑛 is the

polynomial degree. It can be seen that the

complexity is much worse than that of elliptic

curve.

The result of multiplication for Galois Field is

𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1
and for the elliptic curve is

(35, 162)

which both equivalent to 30 𝑚𝑜𝑑 257.

By using timeit library from Python, the time to

do multiplication for elliptic curve and Galois

Field is 1.36736s and 17.91904s respectively.

B. Encryption

The first step to encrypt a message is to choose

one random integer less than the group order. In

this paper, we are going to use 𝑙 = 21 (again, for

no reason, just another random number). Just like

private key, it can actually be any number

without any restriction other than less than group

order. In fact, any number larger than group

order can be used, but is worthless.

The next step is to calculate the multiplication of

base point to itself 𝑙 times as before. Because the

complexity and time measurement are already

done before, it will not be explained again here.

This shows that elliptic curve win in this part

because its complexity that is much smaller. The

result of the multiplication for Galois Field is

𝑥7 + 𝑥5 + 𝑥3
and for elliptic curve is

(255, 136)

which both equivalent to 249 𝑚𝑜𝑑 257. Above

results will be one of the ciphertext.

The last step is to compute the second part of the

ciphertext (ElGamal produce a pair of ciphertext

for a message). This part is similar to the

previous part and also to the computation of

public key. But before, we have to determine the

message in a form of group element. For this

purpose, we will determine it in random. Let’s

say that the message for Galois Field is

𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1
and for elliptic curve is (77,197). Both are

obtained by random.

Now, it is time to compute the second part of the

ciphertext. For Galois Field it’s

𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1
and for elliptic curve it is (64, 176). The analysis

and time measurement are similar to the previous

one.

C. Decryption

This part is to show that the overall algorithm

really works, i.e., that the plaintext acquired from

the decryption process is the same as the original

message. The process that is used is again,

multiplication. This makes elliptic curve much

faster with its smaller multiplication complexity.

The first and only part is to multiply the second

part of the ciphertext pair to the 𝑘-th power of

the inverse of the first part of the ciphertext pair.

The result for Galois Fiels is below

𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1
and for elliptic curve is (77, 197). It can be seen

from the previous section that the above result is

exactly the original message.

D. Other

There are already a lot of encode/decode method

to convert message to a point in elliptic curve.

For example, there is Koblitz method that maps

one character to one point in ellipti curve and

there also other better algorithms. To use Galois

Field in ElGamal, there must be some encoding

algorithm that maps a message to a Galois Field

element, and it has to be able to work on any

Galois Field. The most trivial way is to divide

message to blocks and every character mapped

into its ASCII. But, this way is too simple and

easier to crack. Therefore, we have to find

another good algorithm before we are able to

implement Galois Field in real world situation.

Another consideration that made Elliptic Curve

used widely is the claim that it is too complex

and not really well-studied. So, there is no

special property that makes the discrete

logarithm easier to break. On the other side,

Galois Field is a very well-known field in

mathematics and cryptography. So, there could

be any properties that can be used to break the

discrete logarithm problem although there has

not been any proof.

VI. CONCLUSION

After analyzing and comparing some cryptographic

aspect between the usage of Galois Field and Elliptic

Curve in ElGamal algorithm, it can be seen that both

algebraic structure have their own advantages and

disadvantages. Although both algebraic strucure

satisfy the conditions to be used on ElGamal

algorithm.

In term of computing cost, Elliptic Curve has a much

better speed compared to the other algorithm.

Whereas Galois Field gives worse complexity and

thus is not suitable for devices that has less power

source such as mobile phone. But, the key

generation and key management process of Galois

Field is easier and better than that of Elliptic Curve,

because key are relatively small for group with

similar order.

There is still a lot of improvement that can be made

on the implementation of both algebraic structure.

For example, we can use Tonelli-Shanks algorithm

to find modular square root to be used on Elliptic

Curve. Other example is to use Fast Fourier

Transform for polynomial multiplication, reducing

the complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛), a much

better complexity.

VII. ACKNOWLEDGMENT

I would like to thank God for His grace and

kindness, I can finish this paper for Cryptography

class with His help. I also want to thank Mr Rinaldi

Munir for teaching us in this class for one semester.

I would like to thank you my family and friends,

which have helped me finish this paper. Without all

of them, I would be having a trouble finishing this

paper.

REFERENCES

[1] Rinaldi Munir, Slide Pengantar Kriptografi 2018

[2] Rinaldi Munir, Slide Algoritma ElGamal 2018
[3] Rinaldi Munir, Slide Elliptic Curve Cryptography 2018

[4] Taher ElGamal, ‘A Public Key Cryptosystem and a

Signature Scheme Based on Discrete Logarithm’
[5] Thomas W. Hungerford, ‘Abstract Algebra: An

Introduction’

ORIGINALITY STATEMENT

I hereby declare that this paper is my own writing,

not an adaptation, nor translation of other’s paper

and nor plagiarism.

Bandung, 14 May 2018

Dewita Sonya Tarabunga

13515021

