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Abstract— Elliptic Curve Cryptography was claimed to 

be more power-efficient system to use rather than 

usual integer system in message encryption and 

decryption and needed less key length to provide 

similar security. In this paper, the writer will try to 

implement another field system to use i.e Galois field 

and compare it with Elliptic Curve Cryptography. 

Galois field will surely needed less key than ECC 

because we can choose much smaller prime. Basically, 

the idea is to use usual operation (multiplication) but 

on higher dimensions. This paper will implement 

Galois Field in ElGamal algorithm. 
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I.   INTRODUCTION 

The notion of cryptography has developed 

throughout history and currently has a lot of 

meanings. But, the simplest and first meaning of 

cryptography is a system that provide secure 

communication in the presence of malicious third 

parties, known as adversaries [1]. That is, when two 

or more people want to share messages between 

each other, and they do not want another person 

outside their group to know anything about the 

messages, they will use cryptography to ensure the 

security of the messages. 

 

Encryption and decryption is two main processes of 

cryptography. Encryption is a process to turn 

messages to some meaningless sentence. And on the 

other side, decryption is a process to turn that 

meaningless sentence back to original messages. By 

using the right key and the right system, only the 

right people will have access to the original 

message. 

 

Throughout history, there are two widely used 

cryptosystem, namely symmetric key cryptography 

and public key cryptography. Both have their own 

advantages and disadvantages. There are numbers of 

encryption and decryption algorithm that are 

developed on both systems. RSA and El-Gamal [2] 

is examples of public key cryptography. On this 

paper, we will only focus on ElGamal algorithm. 

That is because ElGamal is a cryptographic 

algorithm that works on finite field. 

 

One of the disadvantages of symmetric key 

cryptography is the needs to maintain a lot of key. 

This is because if some person A wants to 

communicate to B and C, and A does not want B to 

have access to the messages that A send to C, then 

he has to have two separate different keys. The more 

people A wants to communicate to, the more keys he 

has to manage. With public key cryptography, this 

would not happen because the key used to 

communicate is public, thus every one just have to 

maintain one private key for theirselves and the rest 

is public. 

 

Elliptic Curve is an algebraic structure that forms a 

finite field under the geometric operations of tangent 

line [3]. It also works as an underlying structure for 

public key cryptography. El-Gamal formerly 

implemented in ℤ𝑝, group of integers modulo 𝑝 with 

usual addition and multiplication operation. With 

Elliptic Curve field, due to its complex operation, it 

is claimed that Elliptic Curve Cryptography will 

provide equivalent security with less key length, 

thus lessen the cost of encryption and decryption 

without lessen the security. 

 

The field of integer modulo 𝑝, ℤ𝑝 is an example of 

Galois Field that will be discussed more later. The 

idea on this paper is to use Galois Field, but on much 

higher dimensions. The addition operation can still 

be used, but the multiplication will be much more 

complex because the trivial multiplication operation 

on vector of integers will not work. The author will 

implement El-Gamal on both fields, Elliptic Curve 

and Galois Field with higher dimensions and 

compare some aspect. 

 

 



II.  FUNDAMENTAL THEORIES 

 

A. ElGamal 
ElGamal is one of an example of algorithm for 

public key cryptography created by Taher 

Elgamal [4]. It is based on another algoritm on 

key exchange called Diffie-Hellman. Basically, 

the underlying problem is called the discrete 

logarithm problem that stated as follow: 

 

Given any group 𝐺 and any two elements 𝑎, 𝑏 ∈
𝐺, find some 𝑘 ∈ ℕ such that 𝑏𝑘 = 𝑎 respect to 

operation in group G. 

 

The security of ElGamal algorithm relies heavily 

upon the underlying group 𝐺 and its 

multiplication operation. In reality, any cyclic 

group is sufficient to be used as the group on 

ElGamal algorithm. But, the more complex the 

group and its operation, the stronger the 

encryption will be because it will increase the 

cost of computing the multiplication in the 

group. 

 

There are three main process in ElGamal: key 

generation, encryption, and decryption that each 

will be explained. 

 

1. Key Generation 

o Define some cyclic group 𝐺, and choose 

one base element 𝑎 ∈ 𝐺, 
o Choose one 𝑘 ∈ ℕ, 1 ≤ 𝑘 < |𝐺|, 
o Compute 𝑏 = 𝑎𝑘 

 

Finally, 𝐺, 𝑎, and 𝑏 are the public keys 

whereas 𝑘 is the only private key. So, we 

have to publish 𝐺, 𝑎, 𝑏 and keep the private 

key, 𝑘, as a secret. 

 

2. Encryption 

The encryption algoritm is based on the 

public keys already described above. 

o Choose one 𝑙 ∈ ℕ, 1 ≤ 𝑙 < |𝐺|, 
o Calculate 𝑐1 = 𝑎𝑙  

o Let 𝑚 ∈ 𝐺 is the message, then compute 

𝑐2 = 𝑚𝑏𝑙 

 

Finally, the pair (𝑐1, 𝑐2) is the encrypted 

message. 

 

3. Decryption 

o Compute 𝑚 = 𝑐2𝑐1
−𝑘 

 

The algorithm works because 

𝑐2𝑐1
−𝑘 = 𝑚𝑏𝑙𝑎−𝑘𝑙 

              = 𝑚𝑎𝑘𝑙𝑎−𝑘𝑙 

              = 𝑚 
 

B. Group 
In mathematics, group is a set of elements with 

some defined binary operation that satisfies four 

conditions, namely closure, associativity, 

identity, invertibility [5]. Group is important in 

this paper because a set of elements that will be 

used along with ElGamal needs to be a group, 

otherwise the algorithm will not work. The four 

condition of group 𝐺 with operation 𝑎 ∙ 𝑏 = 𝑎𝑏 

is: 

 

1. Closure 

The operation ∙ of group 𝐺 has to be closed, 

that is, for every two elements 𝑎, 𝑏 ∈ 𝐺, then 

𝑎𝑏 ∈ 𝐺. In other words, 𝑎𝑏 must also be an 

element of 𝐺. 

 

2. Associativity 

The operation ∙ also must be associative, that 

is, for every three elements 𝑎, 𝑏, 𝑐 ∈ 𝐺, then 

(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐). The order of the operation 

does not matter and can not change the final 

result. Because of that, we can write (𝑎𝑏)𝑐 =
𝑎(𝑏𝑐) = 𝑎𝑏𝑐. 

 

3. Identity 

There must be an element 𝑒 ∈ 𝐺 such that for 

every 𝑎 ∈ 𝐺, then 𝑎𝑒 = 𝑒𝑎 = 𝑎. That 

element is called the identity element of 𝐺. 

Furthermore, this element is unique. 

 

4. Inverse 

For every element 𝑎 ∈ 𝐺, there exist 𝑏 ∈ 𝐺, 

such that 𝑎𝑏 = 𝑏𝑎 = 𝑒. This element is 

called the inverse of 𝑎 and also unique in 𝐺. 

We will denote the inverse of 𝑎 as 𝑎−1. It is 

trivial to prove that 𝑒−1 = 𝑒. 

 

One very important family of group is a cyclic 

group. A group is cyclic if and only if there exist 

𝑎 ∈ 𝐺, such that if 𝑏 ∈ 𝐺, then there exist 𝑘 ∈
ℕ, 1 ≤ 𝑘 ≤ |𝐺|, such that 𝑏 = 𝑎𝑘. Such an 

element 𝑎 is called a generator of 𝐺. In fact, if 

𝑚 = |𝐺|, then every elements of 𝐺 that have 𝑚 

as their order is a generator of 𝐺. 

 

C. Elliptic Curve Cryptography 
Elliptic Curve Cryptograhy is a system based on 

algebraic structure made by Elliptic Curve over 

finite field [3]. It has been proved that the defined 

discrete Elliptic Curve along with its operation 

that based on tangent line satisfies the four axiom 

of group. It also has been proved that the group 

created is a cyclic group. Thus, it can be used as 

an underlying system for ElGamal algorithm. 

 

There was a claim that, due to the complexity of 

operation in Elliptic Curve, then it can provide 

equivalent security as usual group with much 

less key length, thus decreasing the needs of 



power and the cost of computing. It also has been 

widely used, especially in machine that can only 

provide limited power, such as handphone. 

 

Elliptic curve is defined as plane curve over an 

integer modulo 𝑝, which consist of the points 

satisfying the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, along 

with a point at infinity as the identity element. 

 

 
Gambar 1 ECC Addition 

Sumber: https://i.imgur.com/EdPk12E.gif 

 

The group operation is showed above. To add 

two points together, first draw a line connecting 

both points. The line will intersect the curve in 

one other point, beside those two points. Reflect 

that point about the 𝑦-axis to get the result. With 

that operation and some result from geometry, it 

can be proved that Elliptic Curve is closed, 

associative, has identity element (namely, ∞), 

and every element has inverse.  

 

Formally, if we want to compute 𝑅(𝑥𝑅 , 𝑦𝑅) =

𝑃(𝑥𝑝 , 𝑦𝑝) + 𝑄(𝑥𝑄 + 𝑦𝑄), then 

𝑥𝑅 = 𝑘2 − 𝑥𝑃 − 𝑥𝑄 

𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 
where 

𝑘 = (𝑦𝑃 − 𝑦𝑄)(𝑥𝑃 − 𝑥𝑄)−1 

 

There is some difference of formula if we want 

to add some point to itself, 𝑃 + 𝑃 = 2𝑃. This is 

because there is no definition of inverse of 0 

when we want to calculate 𝑘. So, the formal 

definition of above problem is as follow. 

Let 𝑅(𝑥𝑅 , 𝑦𝑅) = 2𝑃(𝑥𝑝, 𝑦𝑝), then 

𝑥𝑅 = 𝑘2 − 2𝑥𝑝 

𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 
where 

𝑘 = (3𝑥𝑝
2 + 𝑎)(2𝑦𝑃)−1 

where 𝑎 is the coefficient of 𝑥3 of the curve 

equation. 

 

 

After we define the addition of point to itself, one 

most important operation is the multiplication of 

point to integer, 𝑘𝑃, where 𝑘 > 2. Using the 

definition of 2𝑃 and 𝑃 + 𝑄, we can easily 

multiplication of 𝑘𝑃 using only those two 

operation. For example, if we want to compute 

5𝑃, then 

5𝑃 = (𝑃 + 2(2𝑃)) 
It can be seen that the only operation involved is 

of two kind, i.e. 𝑃 + 𝑄 and 2𝑃. 

 

 
Gambar 2 ECC Multiplication 
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D. Galois Field 
Field is an algebraic strucure that is much 

stronger that group. Basically, field 𝐹 is a set of 

element that has two defined operation, namely 

addition and operation such that 𝐹 is an additive 

group (forms a group along with addition 

operation) [5]. Let 0 be the identity element of 𝐹 

as an additive group. Then, 𝐹 − {0} must form a 

multiplicative group (forms a group along with 

multiplication operation). Furthermore, 𝐹 must 

satisfy the distributive condition, that is, for any 

𝑎, 𝑏, 𝑐 ∈ 𝐹, then 

 

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 
 

It is known that the order of any field can be 

finite or infinite. ℝ, the field of rational number 

along with usual addition and multiplication is an 

example of field with infinte order. On the other 

side, ℤ𝑝 the field of integer modulo 𝑝 along with 

modular addition and multiplication is an 

example of field with finite order. 

 

A great result due to Galois, show that the order 

of field with finite order can only be of the form 

𝑝𝑘 , where 𝑝, 𝑘 ∈ ℕ is a natural number and 𝑝 is 

a prime number. Furthermore, Galois also show 

that the number of field with order 𝑝𝑘 for every 

𝑝, 𝑘 ∈ ℕ, 𝑝 prime is only one, up to 

isomorphisms. That is, given any 𝑝, 𝑘 ∈ ℕ,if 

there are any two fields 𝐹 anf 𝐺 such that |𝐹| =

https://i.imgur.com/EdPk12E.gif
http://www.slideshare.net/MartijnGrooten/


|𝐺| = 𝑝𝑘, then 𝐹 ≅ 𝐺. 

 

Galois Field is a finite field. Because of the result 

above, for every possible order of finite field, 

there is exist exactly one Galois Field of that 

order. Galois Field with order 𝑝𝑘 denoted as ℤ𝑝𝑘, 

defined as vector that consist of 𝑘 elements of 

ℤ𝑝. Now, we are left with the definition of 

addition and multiplication of Galois Field. 

 

The addition of Galois Field is pretty trivial, i.e. 

to sum the vector element-wise. If 𝑎 =
(𝑎1, 𝑎2, … , 𝑎𝑘), 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘) ∈ ℤ𝑝𝑘, then 

𝑎 + 𝑏 = (𝑎1 + 𝑏1, … , 𝑎𝑘 + 𝑏𝑘) 
with + denote the addition in ℤ𝑝. 

 

For the multiplication, maybe the most trivial 

operation that first comes up is element-wise 

multiplication. Unfortunately, that 

multiplication do not satisfy the field conditions. 

For example (0, 1), (1, 0) ∈ ℤ22 − {(0, 0)} but 

the multiplication is (0,1)(1,0) = (0,0) ∉
ℤ22 − {(0, 0)} 

 

The definition of multiplication that is finally 

used is polynomial multiplication. Map elements 

of field to coefficient of some polynomial of 

degree less than 𝑘. Obviously, this mapping is 

bijective. To ensure the closure, the result of 

multiplication must be taken modulo some 

irreducible polynomial of degree 𝑘. This 

operation has been proved to satisfy all the field 

conditions. 

 

It has been proved that the multiplicative group 

of any Galois field is in fact, a cyclic group. 

Because of that reason, Galois Field can be 

applied to the ElGamal algorithm as well as 

Elliptic Curve. 

 

Galois Field has been used in one of the most 

famous symmetric key algorithm named AES. 

AES uses the Galois Field 𝑍28  with 𝑥8 + 𝑥4 +
𝑥3 + 𝑥2 as its modulo irreducible polynomial. 

This field also called Rijndael Field in tribute to 

the algorithm creator, Rijndael. 

 

III.   IMPLEMENTATION 

To compare the usage of the two algebraic structure, 

both algebraic structure, Elliptic Curve and Galois 

Field will be implemented in ElGamal algorithm. 

The selection of the algoritm is due to its properties 

that depends a lot to its underlying algebraic 

structure. The implementations will not include the 

message encoding (the conversion of plaintext to 

element of algebraic structure). So, the analysis will 

be based only of the encryption and decryption of 

the elements of algrebaic strucutre. 

A. Elliptic Curve 

To implement elliptic curve, the most important 

thing is to implement Point because elliptic curve 

works on two dimensional point. Below are the 

implementation of some important method on 

Point. 

 
def negate(self): 

 self.ordinat = (self.modulo 

- self.ordinat) % self.modulo 

 return self 

 

def gradient(self, point): 

 dx = (self.absis - 

point.absis) % self.modulo 

 if dx<0: 

  dx += self.modulo 

 dy = (self.ordinat - 

point.ordinat) % self.modulo 

 if dy<0: 

  dy += self.modulo 

 if dx==0: 

  return None 

 return (dy * invmod(dx, 

self.modulo)) % self.modulo 

 

def equal(self, point): 

 return self.absis == 

point.absis and self.ordinat == 

point.ordinat and self.modulo == 

point.modulo 

 

def is_inf(self): 

 return self.modulo == -1 

 

def print(self): 

 res = "(" + str(self.absis) 

+ "," + str(self.ordinat) + ")" 

 return res 

 

Only the very basic operations are covered on 

above implementatoion. More crucial methods 

will be covered on another class implementation, 

the elliptic curve. Below is the elliptic curve 

implementation along with its method 

 
 def contains(self, point): 

  lhs = (point.ordinat 

** 2) % self.modulo 

  rhs = (point.absis ** 

3) % self.modulo 

  rhs %= self.modulo 

  rhs += (point.absis * 

self.coef) % self.modulo 

  rhs %= self.modulo 

  rhs += self.const 

  rhs %= self.modulo 

  return (rhs==lhs) 

 

 def gradient(self, point): 

  dx = (3 * point.absis 

* point.absis + self.coef) % 

self.modulo 

  dy = (point.ordinat + 



point.ordinat) % self.modulo 

  if dy==0: 

   return None 

  dy = invmod(dy, 

self.modulo) 

  return (dx * dy) % 

self.modulo 

 

 def square(self, point): 

  if point.is_inf(): 

   return point 

  grad = 

self.gradient(point) 

  if grad == None: 

   return INF 

  absis = (grad * grad 

- point.absis - point.absis) % 

self.modulo 

  if absis<0: 

   absis += 

self.modulo 

  ordinat = (grad * 

(point.absis - absis) - 

point.ordinat) % self.modulo 

  if ordinat<0: 

   ordinat += 

self.modulo 

  return Point(absis, 

ordinat, self.modulo) 

 

 def add(self, point1, 

point2): 

  if 

point1.equal(point2): 

   return 

self.square(point1) 

  if point1.is_inf(): 

   return point2 

  if point2.is_inf(): 

   return point1 

  grad = 

point1.gradient(point2) 

  if grad == None: 

   return INF 

  absis = (grad * grad 

- point1.absis - point2.absis) % 

self.modulo 

  if absis<0: 

   absis += 

self.modulo 

  ordinat = (grad * 

(point1.absis - absis) - 

point1.ordinat) % self.modulo 

  if ordinat<0: 

   ordinat += 

self.modulo 

  return Point(absis, 

ordinat, self.modulo) 

 

 def multiply(self, k, 

point): 

  ans = INF 

  rest = point 

  while k>0: 

   if k&1: 

    ans = 

self.add(ans, rest) 

   rest = 

self.square(rest) 

   k >>= 1 

  return ans 

 

 def solve(self, x): 

  rhs = 

(x*x*x+x*self.coef+self.const) % 

self.modulo 

  if self.modulo==2: 

   return rhs 

  if modpow(rhs, 

(self.modulo - 1) // 2, 

self.modulo) != 1: 

   return None 

  ans = 0 

  while (ans * ans) % 

self.modulo != rhs: 

   ans += 1 

  return ans 

 

 def print(self): 

  res = "y^2 = x^3 + " 

+ str(self.coef) + "x + " + 

str(self.const) + " mod " + 

str(self.modulo) 

  return res 

 

 

B. Galois Field 

In the other hand, because Galois Field 

multiplication can best be seen as polynomial 

multiplication, thus it is the most important 

aspect to be implemented. Below is the 

implementation of the most important method of 

Polynomial. 

 
def truncate(self): 

 while len(self.coef)>1 and 

self.coef[-1] == 0: 

  del self.coef[-1] 

 self.degree = 

len(self.coef) - 1 

 

def decrement_degree(self): 

 self.degree -= 1 

 del self.coef[-1] 

 

def shift(self): 

 if self.coef[-1] > 0: 

  self.degree += 1 

  self.coef.insert(0, 

0) 

 

def add(self, pol): 

 degree = max(self.degree, 

pol.degree) 

 self.coef += [0 for _ in 

range(degree - self.degree)] 

 pol.coef += [0 for _ in 

range(degree - pol.degree)] 

 self.coef = [(self.coef[i] 



+ pol.coef[i]) % self.modulo for i 

in range(degree + 1)] 

 self.degree = degree 

 self.truncate() 

 pol.truncate() 

 

def power(self, k): 

 if k == 1: 

  return 

 tmp = self.copy() 

 self.coef = [0] 

 self.degree = 0 

 while k > 0: 

  if (k&1) == 1: 

   self.add(tmp) 

  tmp.add(tmp) 

  k >>= 1 

 

def subtract(self, pol): 

 degree = max(self.degree, 

pol.degree) 

 self.coef += [0 for _ in 

range(degree - self.degree)] 

 pol.coef += [0 for _ in 

range(degree - pol.degree)] 

 self.coef = [(self.coef[i] 

- pol.coef[i] + self.modulo) % 

self.modulo for i in range(degree 

+ 1)] 

 self.degree = degree 

 self.truncate() 

 pol.truncate() 

 

def multiply(self, pol): 

 degree = self.degree + 

pol.degree 

 coef = [0 for _ in 

range(degree + 1)] 

 for i in range(self.degree 

+ 1): 

  for j in 

range(pol.degree + 1): 

   coef[i + j] += 

(self.coef[i] * pol.coef[j]) % 

self.modulo 

   coef[i + j] %= 

self.modulo 

 self.coef = coef[:] 

 self.degree = degree 

 

def mod(self, pol): 

 if self.degree < 

pol.degree: 

  return 

 res = 

Polynomial(self.modulo, 

[self.coef[i] for i in 

range(pol.degree)]) 

 base = 

Polynomial(self.modulo) 

 cpol = pol.copy() 

 cpol.power(invmod(cpol.coef

[-1], self.modulo)) 

 cpol.decrement_degree() 

 base.subtract(cpol) 

 if self.coef[pol.degree] > 

0: 

 

 base.power(self.coef[pol.de

gree]) 

  res.add(base) 

 

 base.power(invmod(self.coef

[pol.degree], self.modulo)) 

 md = 

Polynomial(self.modulo, base.coef) 

 for i in range(pol.degree + 

1, self.degree + 1): 

  md.shift() 

  if md.degree == 

pol.degree: 

   k = md.coef[-

1] 

  

 md.decrement_degree() 

   base.power(k) 

   md.add(base) 

  

 base.power(invmod(k, 

self.modulo)) 

  if self.coef[i] > 0: 

  

 md.power(self.coef[i]) 

   res.add(md) 

  

 md.power(invmod(self.coef[i

], self.modulo)) 

 self.coef = res.coef[:] 

 self.degree = res.degree 

 

def print(self): 

 string = '' 

 for i in range(self.degree 

+ 1): 

  tmp = 

str(self.coef[i]) 

  if i>0: 

   tmp += 'x^' + 

str(i) 

  if i < self.degree: 

   tmp += ' + ' 

  string += tmp 

 print(string) 

 

It can be seen that some of the most important 

operations are already covered on polynomial 

implementation. That is because Galois Field 

multiplication is basically just polynomial 

multiplication. That makes the implementation 

of Galois Field much more easier because it can 

directly uses the implementation above. Below is 

the implementation of Galois Field. 

 
def copy(self): 

 return 

GaloisField(self.prime, 

self.power, self.poly.coef, 

self.modulo.coef) 

 



def add(self, other): 

 self.poly.add(other.poly) 

 

def multiply(self, other): 

 self.poly.multiply(other.po

ly) 

 self.poly.mod(self.modulo) 

 

def powerr(self, k): 

 k %= self.order 

 if k == 1: 

  return 

 tmp = self.copy() 

 self.poly.coef = [1] 

 self.poly.degree = 0 

 while k > 0: 

  if (k&1) == 1: 

  

 self.multiply(tmp) 

  tmp.multiply(tmp) 

  k >>= 1 

 

def print(self): 

 self.poly.print() 

 

The implementation is much shorter because it 

has a polynomial as one of its attribute, thus it 

can call needed polynomial method on that 

polynomial atrribute. 

 

IV.   ANALYSIS 

Analysis will be done on every stage, key 

generation, encryption and decryption.  

 

A. Key Generation 

First thing to do before encryption and 

decryption is to define one group G to work with. 

In elliptic curve, this means defining some 

elliptic curve equation in the form 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 
along with its modulo. 

 

And for Galois Field, this can be done only by 

defining the order of the group, since then we can 

uniquely determine the prime and its power. One 

notable thing is determining Galois Field is much 

easier than determining elliptic curve. Determine 

the prime modulo for large numbers is equivalent 

to finding large prime numbers which is very 

hard compared to finding a rather small prime 

but with large power. The hardest part of 

defining the Galois Field is to determine the 

modular polynomial because the polynomial 

must be irreducible. But, there is already some 

algorithm or criterion to produce irreducible 

polynomial for any degree. The most famous one 

is Eisenstein Criterion. 

 

For the analysis, the group for elliptic curve is 

𝑦2 = 𝑥3 + 2𝑥 + 4 𝑚𝑜𝑑 257 
and for Galois Field is the order is 256 = 28, and 

the modular irreducible polynomial is 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 
That polynomial also used on Rijndael Field in 

AES algorithm. Both orders are chosen because 

the two numbers only differ by one, although the 

elements in elliptic curve would not be exactly 

257. 

 

The next step is to choose one base point. Base 

point must be one of the element of the group. In 

this case, Galois Field win the competition again 

because choosing one element of Galois Field is 

more simple than of  elliptic curve. For Galois 

Field, we only need to randomize integer from 0 

to 𝑝 − 1, 𝑘 times, where 𝑝𝑘 is the field order. 

Whereas for elliptic curve, we have to choose 

one point that satisfy the equation, which is not 

that trivial. To continue, the base point for Galois 

Field is 

𝑥6 + 𝑥3 + 𝑥 + 1 
which is generated and for elliptic curve is (2,4). 
 

The next step is to choose random number as the 

private key. It can be any number, but for this 

paper, we will choose 𝑘 = 15 as private key (for 

no reason, it’s just a random number).  Private 

keys usually are smaller than the group order. 

But, in elliptic curve case, the order of the group 

created by some equation and its modulo is not 

really trivial, which is one of the disadvantages 

of elliptic curve. 

 

Last step is to multiply the base point 𝑘 times to 

get an element of group as the public key. Both 

group will be compared based on its complexity 

in Big-Oh notation. For elliptic curve, it uses 

mathematics to multiply two points, thus the 

complexity is 𝑂(1), and the overall complexity 

to multiply base point 𝑘 times to itself is 

𝑂(log 𝑘) by using divide and conquer. For 

Galois Field, the complexity of the above 

implementation on polynomial multiplication is 

𝑂(𝑛2), but the best known algorithm for 

polynomial multiplication is 𝑂(𝑛 log 𝑛), by 

using Fast Fourier Transform. So, the overall 

complexity is 𝑂(𝑛 log 𝑛 log 𝑘), where 𝑛 is the 

polynomial degree. It can be seen that the 

complexity is much worse than that of elliptic 

curve. 

 

The result of multiplication for Galois Field is 

𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1 
and for the elliptic curve is 

(35, 162) 

which both equivalent to 30 𝑚𝑜𝑑 257. 

 

By using timeit library from Python, the time to 

do multiplication for elliptic curve and Galois 

Field is 1.36736s and 17.91904s respectively. 



B. Encryption 

The first step to encrypt a message is to choose 

one random integer less than the group order. In 

this paper, we are going to use 𝑙 = 21 (again, for 

no reason, just another random number). Just like 

private key, it can actually be any number 

without any restriction other than less than group 

order. In fact, any number larger than group 

order can be used, but is worthless. 

 

The next step is to calculate the multiplication of 

base point to itself 𝑙 times as before. Because the 

complexity and time measurement are already 

done before, it will not be explained again here. 

This shows that elliptic curve win in this part 

because its complexity that is much smaller. The 

result of the multiplication for Galois Field is  

𝑥7 + 𝑥5 + 𝑥3 
and for elliptic curve is 

(255, 136) 

which both equivalent to 249 𝑚𝑜𝑑 257. Above 

results will be one of the ciphertext. 

 

The last step is to compute the second part of the 

ciphertext (ElGamal produce a pair of ciphertext 

for a message). This part is similar to the 

previous part and also to the computation of 

public key. But before, we have to determine the 

message in a form of group element. For this 

purpose, we will determine it in random. Let’s 

say that the message for Galois Field is 

𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1 
and for  elliptic curve is (77,197). Both are 

obtained by random. 

 

Now, it is time to compute the second part of the 

ciphertext. For Galois Field it’s 

𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1 
and for elliptic curve it is (64, 176). The analysis 

and time measurement are similar to the previous 

one. 

 

C. Decryption 

This part is to show that the overall algorithm 

really works, i.e., that the plaintext acquired from 

the decryption process is the same as the original 

message. The process that is used is again, 

multiplication. This makes elliptic curve much 

faster with its smaller multiplication complexity. 

 

The first and only part is to multiply the second 

part of the ciphertext pair to the 𝑘-th power of 

the inverse of the first part of the ciphertext pair. 

The result for Galois Fiels is below 

𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1 
and for elliptic curve is (77, 197). It can be seen 

from the previous section that the above result is 

exactly the original message. 

 

D. Other 

There are already a lot of encode/decode method 

to convert message to a point in elliptic curve. 

For example, there is Koblitz method that maps 

one character to one point in ellipti curve and 

there also other better algorithms. To use Galois 

Field in ElGamal, there must be some encoding 

algorithm that maps a message to a Galois Field 

element, and it has to be able to work on any 

Galois Field. The most trivial way is to divide 

message to blocks and every character mapped 

into its ASCII. But, this way is too simple and 

easier to crack. Therefore, we have to find 

another good algorithm before we are able to 

implement Galois Field in real world situation. 

 

Another consideration that made Elliptic Curve 

used widely is the claim that it is too complex 

and not really well-studied. So, there is no 

special property that makes the discrete 

logarithm easier to break. On the other side, 

Galois Field is a very well-known field in 

mathematics and cryptography. So, there could 

be any properties that can be used to break the 

discrete logarithm problem although there has 

not been any proof. 

 

VI.   CONCLUSION 

After analyzing and comparing some cryptographic 

aspect between the usage of Galois Field and Elliptic 

Curve in ElGamal algorithm, it can be seen that both 

algebraic structure have their own advantages and 

disadvantages. Although both algebraic strucure 

satisfy the conditions to be used on ElGamal 

algorithm. 

 

In term of computing cost, Elliptic Curve has a much 

better speed compared to the other algorithm. 

Whereas Galois Field gives worse complexity and 

thus is not suitable for devices that has less power 

source such as mobile phone. But, the key 

generation and key management process of Galois 

Field is easier and better than that of Elliptic Curve, 

because key are relatively small for group with 

similar order. 

 

There is still a lot of improvement that can be made 

on the implementation of both algebraic structure. 

For example, we can use Tonelli-Shanks algorithm 

to find modular square root to be used on Elliptic 

Curve. Other example is to use Fast Fourier 

Transform for polynomial multiplication, reducing 

the complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛), a much 

better complexity. 
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