
FareCipher: Block Cipher Algorithm
An ARX-based Block Cipher

Fairuz Astra Pratama & Resa Kemal Saharso

Computer Science & Informatics

Institut Teknologi Bandung

Bandung, Indonesia

13514104@std.stei.itb.ac.id, 13514109@std.stei.itb.ac.id

Abstract—Fare Cipher is a block cipher algorithm that is

based upon the commonly used ARX operation (involving

modular addition, bitwise rotation, and XOR operation) and

Feistel Architecture. The main difference of this cipher is that it

operates on several unit of works, combining the use of ARX

operation on 8-bit, 32-bit and 64-bit words to encipher the

message. This cipher works by first expanding the encryption key

into several subkeys that is then used in each enciphering rounds

as a parameter to the Feistel’s round function.

Keywords—block cipher, ARX operation, Feistel architecture

I. INTRODUCTION

In this paper, we will introduce a new block cipher algorithm

called FareCipher, which consist of the approach used when

designing it, the justification for using said approaches, the

algorithm specification, as well as security and performance

analysis of this cipher. Before getting to the algorithm

specification, we will first review the block cipher design

principles that is used when designing this cipher, and also

review the AES block cipher as an example of a commonly

used block cipher.

A. Block Cipher Review

Block cipher is a category of encryption algorithm that

performs encryption and decryption on a fixed-sized chunk

called block. As opposed to stream cipher which operates on

each bit of the message by XOR-ing it with a keystream, block

cipher take a block of the plaintext, convert it into the

corresponding ciphertext block, and vise versa. When

designing a block cipher, there are a couple of design

principles and/or methods that should be taken into account:

1. Shannon’s Principle of Confusion and Diffusion

In order to be resilient against statistical attack, a block

cipher had to fulfill these principles:

a. Confusion principle states that the connection

between plaintext, key, and ciphertext should be made as

complex and involved as possible. This can be realized by

using a complex substitution process, such as S-Box or

modular addition.

b. Diffusion principle states that each bit of the

ciphertext should depend on many bits of the plaintext and

key. The general idea is that a change in one of the

ciphertext/key bit should resulted in about half changed bit

in the ciphertext.

2. Iterated Cipher

An encryption algorithm can be made of an iteration of

relatively simple transformation. Each transformation

iteration will transform it’s input using a subkey, where

each iteration will have a different subkey. The subkey is

usually derived and/or expanded from the encryption key.

3. Feistel Network

Feistel network is a commonly used version of an iterated

cipher architecture. In this architecture, the input block is

divided into two equal size. Each round, one half of the

block is transformed by the round function “f” (using the

iteration subkey) and is XOR-ed by the other half. After

that, both of the half is swapped before the next iteration.

This network is reversible, which means that the round

function “f” can be used for both encryption and

decryption, and doesn’t need to be invertible.

4. S-Box

S-Box is a substitution method that is basically a lookup

table, mapping several input bits to several output bits.

This method is usually the only source of nonlinearity in

an encryption algorithm, and are used in commonly used

block cipher such as AES.

B. AES Review

Also known as Rijndael, AES is one of the most used block

cipher today. AES is a block cipher that uses a 128, 192, or

256 bit key, and have a block size of 32 byte. This cipher

consist of 10, 12, or 14 rounds of enciphering (according to

the key length). Each round will consist of several

transformation, and will use a different ubkey that is

derived/expanded form the encryption key.

In AES, the input and output state is represented in a matrix of

byte. This means that the 16 input block and all of the round’s

input are output are represented in a 4x4 byte matrix. The

subkey length is the same as the block size, and is also

represented in 4x4 byte matrix. Below are a general

explanation of how the four transformation that is used in each

round works:

1. SubBytes: Input bytes substitution using a constant S-Box

2. ShiftRows: Circular shift of each of the the input’s rows.

3. MixColumns: Garble the input columns via multiplication

with a constant matrix.

4. AddRoundKey: XOR between the input and the round

key.

Since each round will need a 16 byte subkey, the encryption

key will need to be expanded into several subkeys. AES does

this by a chain of circular rotation, S-Box substitution, and

XOR operation. After the key is expanded into several subkey,

the next step is the iterative enciphering itself. In general, the

transformation that happened in each enciphering round are as

such:

1. For the first enciphering round,

a. AddRoundKey, XOR the input (initial plaintext) with

the round key

2. For the rest of the enciphering round,

a. SubBytes

b. ShiftRows

c. MixColumns
d. AddRoundKey, XOR the input (output of the previous

round) with the round key

3. After the final enciphering round,

a. SubBytes

b. ShiftRows

c. MixColumns

II. FARECIPHER SPECIFICATION

FareCipher is a block cipher that uses a 256 bit key and have a

block size of 32 byte. This cipher consist of 32 rounds of

enciphering done using the Feistel network architecture. On

each iteration, the round function “f” will receive half of the

32 byte block (16 byte of data) and output a 16 byte of garbled

data using a 128 bit subkey that is expanded from the 256 bit

key. This cipher consists of two main function: the subkey

generation, as well as the round function that will be used in

each rounds of enciphering. The round function will be

assembled into two Feistel network: one that is used for

encrypting message, and the other that is used to decrypt the

message. On both network, the same subkey generator will be

used to generate the subkeys used each round function in the

Feistel network.

A. Approach Used

In most block cipher, encryption is done in a number of

rounds, where each round map the previous round output into

the next intermediary output. Each round also need a key

parameter, which is usually derived / generated form the

encryption key. For example, if an encryption is done in 20

round, each of which require 128 bit subkey, the encryption

key will be expanded into 20x128 bit subkey. The general idea

of FareCipher is to make the Subkey generation do most of the

heavy-lifting, generating a subkey for each of the rounds from

the encryption key (almost like a short keystream generator).

The subkey generator will focus on fulfilling Shannon’s

principle of confusion, making each subkey bit depends on

several encryption key bit. This way, subkeys generated by

different encryption keys will vastly differ.

Using this method, the round function used in each iteration

does not need to care about fulfilling Shannon’s principle of

confusion, since simply XOR-ing the plaintext with the

subkey will guarantee that the relationship between key,

ciphertext, and plaintext remains complex. This way, the

process if encrypting / decrypting each of the block in a

message can be processed more quickly. This is because while

the round function will be called a number of times for each

block that needs to be encrypted or decrypted, the subkey

generator only needed to be called once for each encryption

key used.

FareCipher uses three simple operation during the encrypting

and/or the decrypting process, which is modular addition,

bitwise rotation, and bitwise xor. This operation also usually

known as ARX operation and is usually used in modern

stream cipher such as XChacha20. Modular addition and xor

is used as a substitution process, while the bitwise rotation is

used as a transposition method. Modular addition is also used

as a source of nonlinearity, which can also be provided by

using S-Box lookup. The main difference between the usual

ARX operation, is that while most cipher operates on a fixed

unit of work such as a 32 bit word, FareCipher operates on

several unit of works, combining the use of ARX operation on

8-bit, 32-bit and 64-bit words to encipher the message.

Although S-Box can garble data much faster and thoroughly

than a chain of modular addition, it has several weakness. One

of which, is that in most platforms S-Box lookup are not

executed in constant time, since the array lookup processing

time depends on the index that is being searched. This resulted

in an attack known as cache-timing attack which has been

proved successful against OpenSSL implementation of AES.

Since constant-time S-Box are generally too slow for general

usage, the use of modular addition as a source of nonlinearity

can solve this problem, since it is processed in constant time.

B. Subkey Generations

The subkey generation will expand the 256 bit key into 32 128

bit subkey. This operation is based on ARX operation and will

operate on 32 bit unsigned integer. This means that the 256 bit

key will be interpreted as an array of eight 32 bit unsigned

integer and each of the 128 bit subkey will be interpreted as

four 32 bit unsigned integer. The operation used in the subkey

generation is a combination of:

1. Modular addition between the encryption key integers.

This operation is equal to “a + b mod 2^32”. During this

operation, every integer in the key integer array will add its

value to the next element and element in the last index will

add its value to element in the first index. This is done to

garble the key value itself, so that it differs for each iteration.

2. Bitwise rotation of the encryption key integer as well as

array element rotation. During this operation, each key

integer will be circular-shifted to the left by one bit. After that,

the integer array itself will be circular-shifted to the left by one

element. This is done to garble the key value.

3. XOR operation between the encryption key integer to

make the subkey. In this operation, eight key integer will be

combined to make four subkey integer using XOR operation.

This is done using the formula:

subkey[n] = key[n] ^ key[n+4], 0≤n≤3

The subkey is generated by first repeating the first two step 16

times to garble the encryption key content. This step is done

so that similar key will still produce a vastly differing subkeys.

After that, by repeating all three operations above 32 times,

where each iteration will generate a subkey for the

corresponding round, the 256 bit key will be expanded into 32

128 bit subkey. Each subkey will then be used as a parameter

to the round function in the corresponding encryption

iteration/round.

C. Round Function

The round function transforms 16 bytes of input into 16 bytes

of output which means in each iteration of the round function

half of the block is processed. It consists of 3 operations:

1. XOR operation between the block and the subkey. In

this operation, 16 bytes of plaintext will be combined with 16

bytes of subkey to make 16 bytes of ciphertext using XOR

operation.

2. Modular addition of the first and second half of the

block and duplication of the result. Similar to the modular

addition in the subkey generation, 16 bytes of ciphertext is

split into 2 8 byte integers and it’s values are added creating a

single 8 byte value. The resulting value is then duplicated to

restore the 16 byte length of the block.

3. Bitwise rotation of the block. During this operation, the

block will be circular-shifted to the right by one bit.

The function is simple because it is only for fulfilling

Shannon’s diffusion principle while the confusion principle

has been handled by the subkey generation. The multiple

rounds of Feistel network will also enhance the diffusion

effect. Since the key generation has to be called only once for

an encryption key, every block that is encrypted using the

same key can be encrypted in a relatively short period of time.

D. Feistel Network

The feistel network that is used for encrypting and decrypting

message is the standard Feistel network configuration. For

encryption, the right-half of the block will be transformed

using the round function above, and xor-ed by the left-half

before being swapped. For decryption, the opposite is true, the

left-half will be transformed. The subkey generator will be

used in the same way for both encryption and decryption, but

the order of which the sub key is being used is different. For

encryption, the first round function iteration will use the first

subkey, and incrementing the subkey index for each iteration.

For decryption, the first round function will use the last

subkey, and decrementing it’s index for each iteration.

III. SIMULATION AND ANALYSIS

In this paper, we implement the FareCipher specified above in

C programming language in order to simulate the encryption

process as well as analyze its security properties. Byte arrays

are used for storing key and plaintext, generating subkeys and

modifying blocks based on the round function. 2 operation

modes are implemented for this cipher, which are the

Electronic Code Book (ECB) and the Cipher Block Chaining

(CBC). Electronic Code Book operation mode encrypts and

decrypts blocks individually, while Cipher Block Chaining

operation mode makes it that the processing of a block

depends on the result of the previous block thus making a

dependency between blocks. Below are examples of a

plaintext and the resulting ciphertext:

Key:

27 66 72 73 100 101 104 110 119 120 122 129 132 135 138

142 144 151 159 160 196 212 214 220 224 234 235 237 238

241 248 252

Plaintext:

3 11 28 30 36 42 43 51 61 63 72 88 96 98 111 115 118 120

123 164 165 166 174 177 179 198 197 200 242 248 249 250

Ciphertext:

11 103 172 156 37 204 50 2 157 14 103 232 213 248 174 43

170 194 2 104 171 230 60 72 123 34 118 255 33 22 98 209

The shown example is calculated in 5482 nanoseconds for the

key expansion and 10.222 nanoseconds for block encryption.

The git repository containing the code can be accessed in

https://github.com/FairuzAP/FareCipher.

A. Security Analysis

1) Plaintext Difference

Based on the example above, it can be seen from comparing

the plaintext and ciphertext that the cipher has fulfilled

Shannon’s confusion principle. In addition, based on another

example where the plaintext is changed by 1 bit

(highlighted):

Plaintext :

0x30B1C1E242A2B323D3F485860626F7376787BA4A5A

6AEB1B3C6C5C8F2F8F9FA

Ciphertext :

0xB44791DDA886A0C9D2DB2692ABCF624AAC4E22F7

AD5DF3B7B2496B8F02581A2

The plaintext and ciphertext has a difference of 119 bits

which means almost every bit of the ciphertext is different

from the plaintext, thus also achieving the diffusion

principle. This also guarantees that a bit difference of more

than one will also change the ciphertext drastically.

2) Ciphertext Difference

A 1 bit difference in ciphertext (highlighted) with the same

key results in a vastly different plaintext:

Ciphertext :

0xB6 0x7A 0xB9 0xC2 0x5C 0xC3 0x20 0x29 0xD0 0xE6

0x7E 0x8D 0x5F 0x8A 0xE2 0xBA 0xAC 0x20 0x26 0x8A

0xBE 0x63 0xC4 0x87 0xB2 0x27 0x6F 0xF2 0x11 0x66

0x2D 0x1

Plaintext result :

0x31 0x04 0xE2 0x87 0x65 0x51 0x4F 0x53 0xD2 0x41

0xD6 0xE3 0x21 0xD5 0x0B 0x57 0x65 0x04 0xEF 0x61

0xEC 0x59 0x50 0xFB 0x3E 0xEF 0x09 0xA4 0x99 0xBC

0x24 0x4

This means that there are no correlation in similar

ciphertexts thus preventing cryptanalysis on the ciphertext.

3) Key Difference

A 1 bit difference in key (highlighted) with the same

plaintext also results in a vastly different ciphertext:

Key :

0x1B4248496465696E77787A8184878A8E90979FA0C4D

4D6DCE0EAEBEDEEF1F8FC

Plaintext :

0x30B1C1E242A2B323D3F485860626F7376787BA4A5A

6AEB1B3C6C5C8F2F8F9FA

Ciphertext :

0x3E430D893D10DB08F3CE13FDBF806D3E73DE469C0

E80AFB202D3EF71DAB435A8

4) Key Size

The FareCipher algorithm has a key size of 256 bits, thus

having 2256 possible combination of keys. This large number

of possiblities will slow down attackers that tries to brute

force the algorithm by using every single key possible.

5) Calculation Time

Comparing it’s calculation time to the AES cipher (7382

nanoseconds for key expansion and 1470 nanoseconds for

block encryption) shows that the key generation is actually

faster, albeit it’s block encryption being very slow. It is

predicted that the slow block encryption is caused by the

nonoptimal implementation of the cipher.

IV. CONCLUSION

FareCipher has been proven to be working as a block cipher

algorithm, and messages can be successfully encoded and

decoded using this method. We also analyzed the diffusion of

this cipher and has proven that small changes in the key and

plaintext resulted in largely differing ciphertext. For further

research we recommend doing a more indepth cryptanalysis of

the cipher, as well as making a more efficient implementation

of the cipher to compare its performance against other similar

block cipher.

REFERENCES

[1] https://pdfs.semanticscholar.org/307d/c553e897981853845b6c846e81ba
0f80ee99.pdf

[2] https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[3] http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2017-
2018/Advanced-Encryption-Standard-(AES)-(2018).pdf

