
Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

An Implementation and Analysis on Elliptic Curve

Digital Signature Algorithm and Its Variants

Pipin Kurniawati

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

13513089@std.stei.itb.ac.id

Abstract—This paper aims to provide implementation and

analysis of digital signature in some schemes. These days, the

usage of digital signature can protect the integrity of the files

from alteration and corruption of the data, could provide an

early warning of possible virus and malware inside the file and

also could prevent it by deleting the files or simply not open the

files. Other usage for this type of digital signature is to

authenticate the actual owner or creator of the file. The digital

signature this paper provided is using ECDSA and two of its

variants to provide secure signature and using SHA1 for

digesting the message.

Keywords—digital signature, ECDSA, SHA1, authenticate.

I. INTRODUCTION

The concept of securing messages through cryptography

has a long history. Indeed, Julius Caesar is credited with

creating one of the earliest cryptographic systems to send

military messages to his generals.

Throughout history, however, there has been one central

problem limiting widespread use of cryptography. That

problem is key management. In cryptographic systems, the

term key refers to a numerical value used by an algorithm to

alter information, making that information secure and visible

only to individuals who have the corresponding key to recover

the information. Consequently, the term key management

refers to the secure administration of keys to provide them to

users where and when they are required.

Historically, encryption systems used what is known as

symmetric cryptography. Symmetric cryptography uses the

same key for both encryption and decryption. Using

symmetric cryptography, it is safe to send encrypted messages

without fear of interception. However, there always remains

the difficult problem of how to securely transfer the key to the

recipients of a message so that they can decrypt the message.

A major advance in cryptography occurred with the invention

of public-key cryptography. The primary feature of public-key

cryptography is that it removes the need to use the same key

for encryption and decryption. With public-key cryptography,

keys come in pairs of matched “public” and “private” keys.

The public portion of the key pair can be distributed in a

public manner without compromising the private portion,

which must be kept secret by its owner. An operation (for

example, encryption) done with the public key can only be

undone with the corresponding private key.

The invention of public-key cryptography was of central

importance to the field of cryptography. It provides secure

encryption and digital signature. Digital signature is a chunk

of data which contain the identity of the owner of the

transmitted data and the data itself. Usually, digital signature

is using asymmetric cryptography to prevent duplication or

reconstruction of the signature by unintended party. The

signature is generated using creators’ or owner’s private key,

and validated using the corresponding public key.

However, like any other inventions in cryptography, digital

signature has disadvantages too. Elliptic Curve Digital

Signature Algorithm is one of the digital signature schemes

and is the most secure digital signatures scheme according to

many cryptologist. These days, many researches are

developing different variants of ECDSA resulting many new

variants of ECDSA.. This paper implements, analyzes, and

describes three different variants of ECDSA.

II. FUNDAMENTAL THEORIES

A. Elliptic Curve Cryptography

Elliptic curve cryptography is based on the arithmetic of

points on an elliptic curve
[3]

. Elliptic curves are represented by

cubic equations similar to those used for calculating the

circumference of an ellipse. An elliptic curve E over a field K

is defined by a equation
[1]

:

Where α1, α2, α3, α4, α6 ϵ K and ∆≠0, where ∆ is defined as

follows

Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

where

 , and

The number of points on an elliptic curve, n, is the order of

elliptic curve. Set of all points (x, y) which satisfies the above

equation along with ∞, a point at infinity, are the points on the

elliptic curve. The condition Δ ≠ 0 ensures that the elliptic

curve is smooth, that is, there are no points at which the curve

has two or more distinct tangent lines.

A.1. Point Addition

Addition of points on an elliptic curve is defined by

Chord and Tangent rule. Let P = (x1, y1) and Q = (x2, y2) be

two distinct points on an elliptic curve E. Then the sum R, of P

and Q, is defined as follows: Draw a line connecting P and Q

extend it to intersect the elliptic curve at a third point. Then

the sum, R is the negative of the third point. Negative of a

point is defined by reflection of the point about the x-axis.

The double R, of P, is defined as follows: Draw the

tangent line to the elliptic curve at P. Let it intersects the

elliptic curve at a second point. Then the double R is the

reflection of this point about the x-axis.

Figure 1. Point Addition

Source: https://i.imgur.com/EdPk12E.gif

A.2. Point Multiplication

Point Multiplication is the arithmetic operation which

computes kp where k is an integer and p is a point on elliptic

curve. It is done by repeated addition. For example Q=kp

means Q is obtained by adding p k times to itself (p + p +

p....k times). Cryptanalysis involves determining k given P and

Q. This operation dominates the execution time of elliptic

curve cryptographic schemes.

Figure 2. Point Multiplication

Source:

http://www.purplealienplanet.com/sites/default/files/image/poi

nt_doubling.png

B. Digital Signature Algorithm

A digital signature is an electronic version of a written

signature. Digital Signature Algorithm (DSA) can be used by

the recipient of a message to verify that the message has not

been altered during transit as well as ascertain the originator’s

identity. Digital signature can be used in proving to the

recipient or a third party that the message was, in fact, signed

by the originator. Digital signatures may also be generated for

stored data and programs so that the integrity of the data and

programs may be verified at any later time
[1]

.

The DSA is used by a signatory to generate a digital

signature on data and by a verifier to verify the authenticity of

the signature. Each signatory has a public and private key. The

private key is used in the signature generation process and the

public key is used in the signature verification process. For

both signature generation and verification, the data or message

is reduced by means of the Secure Hash Algorithm (SHA)

specified in FIPS 180-1. An adversary, who does not know the

private key of the signatory, cannot generate the correct

signature of the signatory. In other words, signatures cannot be

forged. However, by using the signatory’s public key, anyone

can verify a correctly signed message.

Simply put, the process of digitally signing starts by taking

a mathematical summary (called a hash code) of the message

or data. This hash code is a uniquely-identifying digital

fingerprint of the message. If even a single bit of the message

changes, the hash code will dramatically change. The next step

in creating a digital signature is to sign the hash code with

owner’s private key. This signed hash code is then appended

to the check.

The recipient of the message can verify the hash code sent

by the sender, using his/her public key. At the same time, a

https://i.imgur.com/EdPk12E.gif
http://www.purplealienplanet.com/sites/default/files/image/point_doubling.png
http://www.purplealienplanet.com/sites/default/files/image/point_doubling.png

Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

new hash code can be created from the received message and

compared with the original signed hash code. If the hash codes

match, then the recipient has verified that the check has not

been altered. The recipient also knows that only the actual

owner/sender could have sent the message because only

he/she has the private key that signed the original hash code.

C. Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm (ECDSA) was

first proposed in 1992 by Scott Vanstone in response to NISTs

proposal of DSS. It was later accepted in 1998 as an ISO

standard, ANSI standard in 1999, IEEE standard, and NIST

standard in 2000.

ECDSA is a lightweight signature algorithm because it

operates in elliptic curve group. ECDSA uses multiplication in

elliptic curve, which is same as repeated additions of two

points, as a basic operation. In general, there are three main

components in every digital signature algorithm, those are key

generation, signature generation, and signature verification.

Key generation is the first thing to do when using digital

signature. When a sender sends a message to a receiver, they

must agree on a set of domain parameters of the elliptic curve

that they will use later. The sender must have a private key dA

(a random value less than n, n is the order of the curve). The

sender must keep the private key to themselves. The sender

also have a public key QA (the value of QA depends on the

private key, QA = dA * G, G is a generator point). The sender

can share her public key to the receiver for verification.

 When the sender sends a message, he/she will sign it with

a function called signature generation. Meanwhile when

receiving a message, the receiver can prove that the message

comes from the actual sender and it was not altered during the

sending process with signature verification. The procedure of

signature generation and verification will be explained later

on.

III. PROCEDURES OF ECDSA

 As mentioned previously, there are three main procedures
of digital signature algorithm. Those are key generation,
signature generation, and signature verification. ECDSA has
also these 3 components which will be explained in the
following items along with its security analysis.

A. Key Pair Generation

Let Alice be the signatory for a message M. Alice performs

the following steps to generate a public and private key:

 Select a unique and unpredictable integer, d, in the

interval [1, n-1], n is the order of the curve

 Compute Q = dg, g is a generator point

 Alice’s private key is d

 Alice’s public key is the combination of E, g, n, and Q

B. Signature Generation

When Alice sends a message, she will sign it with a

function called signature generation. There are six steps in

generating an ECDSA signature:

 Select a unique and unpredictable integer k in the

interval [1,n-1]

 Compute kg = (x1,y1), where x1 is an integer

 Compute r = x1 mod n; If r = 0, then go to step 1

 Compute h = H(M), where H is one hash algorithm, for

example SHA1 (as used in this implementation) e =

HASH (m)

 Compute s = k
-1

(h + dr) mod n; If s = 0, then go to
step1

 The signature of Alice for message M is the integer pair
(r, s)

C. Signature Verification

Let Bob be the receiver of message M signed by Alice.

Bob can verify the authenticity of Alice’s signature (r, s) for

message M by performing the following steps:

 Verify that values r and s are in the interval [1,n-1]. If

not, then the signature is not valid

 Compute w = s
-1

 mod n.

 Compute e = HASH(m), where H is the same secure

hash algorithm used by Alice in generating the

signature

 Compute u1 = ew mod n

 Compute u2 = rw mod n

 Compute (x0,y0) = u1g + u2Q

 Compute v = x0 mod n

 The signature for message M is verified only if v = r,

otherwise the signature is not valid

IV. PROCEDURES OF VARIANT 1 (ECGDSA)

This variant of ECDSA is called Elliptic Curve German

Digital Signature Algorithm. The ECGDSA signature scheme

was developed in 1990. Two ideas were behind the ECGDSA

development: Firstly, to transfer ElGamal’s concept of a

digital signature scheme based on the discrete logarithm

problem in the multiplicative group of some finite field to

elliptic curves. Secondly, to run the new scheme on RSA

hardware — existing or just under development. As these

hardware implementations did not support fast modular

division, the scheme makes use of the modification suggested

by Agnew, Mullin, and Vanstone by avoiding modular

inversions for the calculation of ephemeral keys.

As mentioned above, one of the disadvantages of ECDSA

scheme is the calculation of inverse in signing phase.

Calculation of inverse is one of the expensive operations in

Modular Arithmetic, so avoiding it will reduce the cost and

time. In ECGDSA, inverse calculation is done in the key pair

generation phase and not in Signing phase. A key will remain

constant for a stable amount of time so signing is done more

frequently than key generation. ECGDSA will save time and

cost than ECDSA.

Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

A. Key Pair Generation

Let Alice be the signatory for a message M. Alice needs to

perform the following steps in order to generate a public and

private key.

 Select a unique and unpredictable integer, d, in the

interval [1,n-1], n is the order of the curve

 Compute Q = (d
-1

 mod n)g, g is a generator point

 Alice’s private key is d

 Alice’s public key is the combination (E, g, n, Q)

B. Signature Generation

When Alice sends a message, she will sign it with a

function called signature generation. There are six steps in

generating an ECDSA signature:

 Select a unique and unpredictable integer k in the

interval [1,n-1]

 Calculate kg = (x1,y1), where x1 is an integer

 Calculate r = x1 mod n; If r = 0, then go to step 1

 Calculate h = H(M), where H is one hash algorithm,

for example SHA1 (as used in this implementation) e =

HASH (m)

 Calculate s = (kr-h) d mod n; If s = 0, then go to step1

 The signature of A for message M is the integer pair

(r,s)

C. Signature Verification

Let Bob be the receiver of message M signed by Alice.

Bob can verify the authenticity of Alice’s signature (r, s) for

message M by performing the following steps:

 Verify that values r and s are in the interval [1,n-1]. If

not, then the signature is not valid

 Calculate w = r
-1

 mod n

 Calculate e = HASH(m), where H is the same secure

hash algorithm used by Alice in generating the

signature

 Calculate u1 = ew mod n

 Calculate u2 = sw mod n

 Calculate (x0,y0) = u1g + u2Q

 Calculate v = x0 mod n

 The signature for message M is verified only if v = r,

otherwise the signature is not valid

V. PROCEDURES OF VARIANT 2

In ECGDSA (Variant 1), there is no need of finding

inverse in signing phase but there is a need in

key generation phase. In this scheme proposed by Zhang, Q, et

al. there is no need in finding inverse in both key generation

and signing phase. This scheme embeds the information of

signature into a point on the ellipse.

A. Key Pair Generation

Let Alice be the signatory for a message M. Alice needs to

perform the following steps in order to generate a public and

private key.

 Select a unique and unpredictable integer, d, in the

interval [1,n-1], n is the order of the curve

 Compute Q = (dg mod n), g is a generator point

 Alice’s private key is d

 Alice’s public key is the combination (E, g, n, Q)

B. Signature Generation

When Alice sends a message, she will sign it with a

function called signature generation. There are six steps in

generating an ECDSA signature:

 Select a unique and unpredictable integer k in the

interval [1,n-1]

 Calculate kg = (x1,y1), where x1 is an integer

 Calculate r = x1 mod n; If r = 0, then go to step 1

 Calculate h = H(M), where H is one hash algorithm,

for example SHA1 (as used in this implementation) e =

HASH (m)

 Calculate s = (kh + (r xor h)d)g mod n; If s = 0, then

go to step1

 The signature of A for message M is the integer pair

(r,s)

C. Signature Verification

Let Bob be the receiver of message M signed by Alice.

Bob can verify the authenticity of Alice’s signature (r, s) for

message M by performing the following steps:

 Verify that values r and s are in the interval [1,n-1]. If

not, then the signature is not valid

 Calculate e = HASH(m), where H is the same secure

hash algorithm used by Alice in generating the

signature

 Calculate w = e
-1

 mod n

 Calculate u = (r xor e) mod n

 Calculate (x0,y0) = w(s – uQ)

 Calculate v = x0 mod n

 The signature for message M is verified only if v = r,

otherwise the signature is not valid

VI. IMPLEMENTATION AND EXPERIMENT DESIGN

This paper implements the ECDSA along with its two

variants to create digital signature embedded in a message

string, and also the reverse process to verify the digital

signature. The language used by this implementation is JAVA,

with a NetBeans IDE. Figure 3. shows the main user interface.

User can generate pair key by selecting the ‘Generate Key’

command. The program will call a function to generate public

key based on user’s private key. User can also embed the

digital signature to a message after entering a private key and

then verify the message after entering a public key.

Figure 3. Main User Interface

Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

By embedding digital signature, three concepts in security

is covered. Those are authenticity, integrity, and non-

repudiation. In this experiment, normal flow scenario is done

to show the work of 3 ECDSA schemes. Each of the command

for key generation, signature generation, and signature

verification will run on the three schemes. The experiment

uses curve with the parameters shown in Table 1.

Table 1. Elliptic Curve Parameters

Parameter Value

prime 4451685225093714772084598273548427

a 4451685225093714772084598273548424

b 2061118396808653202902996166388514

koblitz 32

xG 188281465057972534892223778713752

yG 3419875491033170827167861896082688

n 4451685225093714776491891542548933

In conducting the time complexity comparison of the three

ECDSA schemes, the execution time of each command and

each data/message size will be recorded. The result of

execution time will be taken from an average of five attempts

for each command.

VII. EXPERIMENT RESULTS AND ANALYSIS

A. Time Complexity

Time taken for key generation, signature generation, and

signature verification of all the schemes/variants are measured

and detailed consecutively in Table 2, Table 3, and Table 4.

Here the key size used in each experiment is 192 bits and the

processor used for implementation is shown below.

 Processor: Intel(R) Core(TM) i3-2100 CPU @3.10GHz

3.40GHz

 RAM: 6.00 GB

 System Type: 64-bit Operating System

 Hard Disk: 1TB

 Operating System: Microsoft Windows 7 Ultimate

Tabel 2. Time taken for generating key using ECDSA variants

Algorithm Execution Time (ms)

ECDSA 78

Variant 1 83

Variant 2 78

As shown in the table above, variant 1 of ECDSA needs

the longest execution time in generating pair key. This could

happen because variant 1 (ECGDSA) involves inverse

calculation in the key pair generation phase. Calculation of

inverse is one of the expensive operations in Modular

Arithmetic, so using it will increase the cost and time

complexity.

Tabel 3. Time taken for generating signature using ECDSA

and its variants in millisecond

Message

Size (kB)

Execution Time (ms)

ECDSA Variant 1 Variant 2

20 49 44 73

40 93 78 141

80 180 151 279

160 349 296 562

320 681 577 1099

The correlation between the data size and execution time

in generating digital signature can be shown in the chart

below.

Figure 4. Time taken for generating signature in millisecond

Tabel 4. Time taken for verifying signature using ECDSA and

its variants in millisecond

Message

Size (kB)

Execution Time (ms)

ECDSA Variant 1 Variant 2

20 87 85 109

40 125 125 218

80 190 193 437

160 259 274 869

320 347 393 1732

The correlation between the data size and execution time

in verifying digital signature can be shown in the following

figure 5.

Figure 5. Time taken for verifying signature in millisecond

Paper for Course IF4020 Cryptography – Semester I Year of 2016/2017

As shown in the two charts above, it can be seen that the

execution time for generating and verifying digital signature

for each scheme increase linearly with the increasing size of

the data. This can occur because the algorithm needs time to

create message digest. Moreover, with increasing size of the

message given, the difference of execution time for the three

schemes will be more visible.

In general, variant 2 of ECDSA needs the longest

execution time to generate and verify the digital signature.

This can happen as a result of the usage of elliptic curve.

Variant 2 uses more elliptic curve operations and the time

taken in each of the phases is large compared to the other

schemes.

B. Security Analysis of ECDSA

Public key is generated by computing the point Q, where

Q=dg. In order to crack the elliptic curve key, eavesdropper

Eve would have to discover the secret key d when Q and g are

provided. The order of the Elliptic curve, E is a prime number

n, then computing d given dg and g would take roughly 2n=2

operations
[2]

. For example, if the key length n is 192 bits, then

Eve will be required to compute about 296 operations. If Eve

had a super computer and could perform one billion operations

per second, it would take her around two and a half trillion

years to find the secret key. This is the elliptic curve discrete

logarithm problem behind ECDSA. The curve parameter

should be chosen so carefully to secure Elliptic curve from

well known attacks.

The secret k used for signing two or more messages should

be generated independent of each other. In particular, a

different secret k should be used for signing different

messages otherwise the private key d can be recovered.

However if a secure random or pseudorandom number

generator is used, then the chance of generating a repeated k

value is negligible. If same secret k is used to generate

signature of two different messages M1 and M2 then it will

result in two signatures (r,s1) and (r, s2).

s1 = k
-1

(h1 + dr),

s2 = k
-1

(h2 + dr)

where h1 = SHA1(M1) and h2 = SHA1 (M2)

ks1- ks2 = h1+dr-h2-dr

k = (h1-h2)/(s1-s2)

d =(ks-h)/r

VIII. CONCLUSION

 These are the conclusions for this paper proposed
algorithm and implementation:

 Variant 1 of ECDSA needs has the longest execution

time in generating pair key in comparison with ECDSA

and variant 2 scheme. This could happen because

variant 1 (ECGDSA) involves inverse calculation in the

key pair generation phase.
 Variant 2 needs the longest execution time to generate

and verify the digital signature because it uses more

elliptic curve operations.

 Execution time for generating and verifying digital

signature for each scheme increase linearly with the

increasing size of the data.

 This implementation can be developed by using the

safer hash function to give a better security.

ACKNOWLEDGMENT

The author would like to thank her parents for their utmost
support. The author would also give her gratitude to Mr.
Rinaldi Munir for the knowledge they gave in class and all
their support on the course IF4021 Cryptography for the last
semester, and also for the chance to write this paper. Last but
not least, the author would also like to thank other people who
had given their help and support in any way that lead to the
finishing of this paper.

REFERENCES

[1] Aqeel Khalique ,Kuldip Singh Sandeep Soodv,”Implementation of
Elliptic Curve Digital Signature Algorithm”, International Journal of
Computer Applications 2010.

[2] Hung-Zih Liao, Yuan-Yuan Shen, ”On the Elliptic Curve Digital
Signature Algorithm”Tunghai Science Vol. 8: 109126 July, 2006

[3] N. Koblitz,” Elliptic curve cryptosystems”, Mathematics of Computation
48, 1987, pp. 203-209

[4] Rinaldi, Bahan Kuliah IF3058 Kriptografi: Digital Signature

[5] https://www.vocal.com/cryptography/dsa-digital-signature-algorithm/
accessed on December, 18th 2016 at 2.23 pm

[6] https://developer.blackberry.com/native/reference/core/com.qnx.doc.cry
pto.lib_ref/topic/manual/ecc_ecgdsa.html accessed on December, 16th
2016 at 3.25 pm

ORIGINALITY STATEMENT

I hereby declare that this paper is my own writing, not an

adaptation, nor translation of others’ papers, and not a work of

plagiarism.

Bandung, December 18
th

 2016

Pipin Kurniawati - 13513089

https://www.vocal.com/cryptography/dsa-digital-signature-algorithm/
https://developer.blackberry.com/native/reference/core/com.qnx.doc.crypto.lib_ref/topic/manual/ecc_ecgdsa.html
https://developer.blackberry.com/native/reference/core/com.qnx.doc.crypto.lib_ref/topic/manual/ecc_ecgdsa.html

