
Secure Token Generator for Accessing Application

Program Interface (API)
Implemented at Sci-Learn (e-Learning Platform) Using Pseudo Random Generator and

Invertible Burg Structure Encryption Algorithm

Daniar Heri Kurniawan

Department of Informatics

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Jl. Ganesha 10 Bandung 40132, Indonesia

daniar.h.k@gmail.com

Abstract—in this sophisticated technology era, security is the

term that got attention the most, especially for the system that is

dealing with personal information. Generating a token is one of

the process, which is needed in almost every system in order to

give the user an additional access beyond the system’s interface.

The token should be secure and unique for each user to prevent

from malicious user exploitation. As we concern about security

breaching, Sci-Learn is a proper system to implement the secure

token generator because the token is needed almost in every case.

Sci-Learn is an e-Learning platform that can be accessed through

www.sci-learn.com. This e-Learning platform can be differed

from other e-Learning system because it combines gamification

and social network features to create engaging e-Learning

environment. In the existing system such as Twitter, Google

maps, and Facebook, they are using additional variable such as

username and password to make sure the uniqueness and the

security for accessing their Application Program Interface (API).

Application Program Interface enables the other system/software

to use some features of the particular system. Regardless of the

various implementation and the needs for accessing system’s

API, this paper only focus on explaining the design and

implementation of secure token generator in Sci-Learn.

Moreover, the token will be generated using Invertible Burg

Structure (IBS) algorithm, pseudo random generator, and SHA-

256 function that will provide a secure random characters for the

identification purpose. For further development, the generator

can be implemented to generate a CSRF (Cross Site Request

Forgery) token for the client.

Keywords—secure token generator; invertible burg structure;

sci-learn; e-Learning platform; security

I. INTRODUCTION (HEADING 1)

Secure token generator is very important in every system
because it should secure enough to prevent from the brute force
attract. In the Sci-Learn’s API system, token is used for
identification. However, the generated token should be able to
be validated in the server for further security checking. The
length of the token that is produced is 256 bit or 32 characters.
That is related to the length of hash result. Function SHA-256
is considered to be used because it is secure and have not been

broken yet. The combination of function is arranged in order to
produce a secure random token. The token is also depending on
user’s username and password so it can be reproduced for
further authentication checking.

The Invertible Burg Structure, will be called IBS from here
after, is a block cipher algorithm that customized by the writer
to provide the better level of security. The explanation about
IBS can be found in the next section. By combining IBS,
pseudo random generator and SHA-256 function, secure token
will be provided to access Sci-Learn’s API securely.

II. SCI-LEARN

Sci-Learn is an e-Learning platform that is still in
development stage. It aims for providing a new learning
environment especially that related to gamification aspects and
social network features. Beside providing a User Interface (UI),
Sci-Learn also provide an API access that is used for a research
on the field of multi-agent system. The purpose of the research
is to develop a multi-agent system for testing proposed
recommendation functions which support learners to find
suitable information, knowledge, and other learners from huge
information and communication in a social learning platform.

.

Figure II-1 Signup page of Sci-Learn

In order to confirm run ability of such functions, it is

required to input a certain amount of quantity of data, but it is

difficult to prepare the data to test them in advance. By using

the API, the multi-agent system will simulate various

behaviors of the learners by creating data for testing.

A. Development Approach

Web 2.0 introduces the new way of collaboration among
internet users by creating and sharing their contents. As the
increasing number of information technology development in
the education field, it provides collaboration and interaction
space between teacher and student. The contribution of social
network (Facebook, Google+, Twitter, etc) becoming very
important in the educational environment because the teacher
and the student can use it for discussing the course material
regardless of the school/class schedules.

There are a lot of teacher that are using e-Learning system /
Learning Management System (LMS) for storing course’s
material and social network for discussion room. Besides, the
implementation of Game Based Learning (GBL) is also
increasing. However, the most famous concept in the field of
game that widely used in educational system is gamification.
Gamification is not like GBL because gamification is only
applying the theory or concept of game without needs any
game to be played.

Figure II-2 Profile page of Sci-Learn

According to gamification concept and social network

features, Sci-Learn is developed to provide an e-Learning
platform that can accommodate the teacher’s and student’s
needs. The existing system such as Edx, Coursera, Moodle, and
Khan Academy does not support social media features.
Therefore Sci-Learn will give a new user experience and can
be integrated to other existing e-Learning system to support
scalability and compatibility. The detail integration will be
described in API section.

B. Functionality

Sci-Learn is not only implementing e-Learning
functionality, but also the social network features and
gamification approach to attract user engagement. Below are
the full functionality that will be implemented.

- Share content

- Create content

- Like, comment, edit, and delete content

- Profile page

- Publication review

- Online course review

- Online class

- Create series content

- Chatting

- Collect assignment

- Online Test

- Popular and recommended post

Figure II-3 Timeline Page of Sci-Learn

C. Sci-Learn Application Program Interface (API)

An API expresses a software component in terms of its
operations, inputs, outputs, and underlying types, defining
functionalities that are independent of the respective
implementations, which allows definitions and
implementations to vary without compromising the interface. A
good API makes it easier to develop a program by providing all
the building blocks, which are then put together by the
programmer. In this system, the API will provide every aspect
of Sci-Learn features. However, the user should do a specific
configuration in order to have a full access to the API.

Figure II-4 Option menu to generate API Token

III. INVERTIBLE BURG STRUCTURE

Invertible Burg Structure (IBS) is a block cipher encryption
algorithm with the block length is 16 Bytes. The key length is
start from 8 Bytes to 32 Bytes. The length of the key is up to
the user, IBS only use the hash of the key to create the subkey.
However, the main key also used in some particular process
that will not be covered in this paper. The main key will be
used to generate subkey with total 12 subkeys. The number of
round in IBS is 4 round. Each round consists of 3 process that
will be described in the encryption stage section.

Figure III-1 IBS Encryption Schema

A. Subkey Generation

There are total 12 subkeys which are consist of 2 types (5
Byte and 4 Byte). Below is the subkey generation algorithm.
The number of round is four. Each round will use one round
function that consists of two 5-Bytes subkey and one 4-Bytes
subkey. The subkey are generated based on the SHA-256 of
main key. The hash is used to create a 12 different subkey by
doing 4 rounds processing.

Figure III-2 IBS Subkey Generation Schema

public class SubKey {

 private ArrayList<Integer> hashOfKey;

 public ArrayList<RoundKey> arrayRoundKey;

 private int roundNumber;

 public SubKey(int roundNumber){

 this.roundNumber = roundNumber;

 hashOfKey = new ArrayList<Integer>();

 arrayRoundKey = new ArrayList<>();

 }

 public void generateSubKey(ArrayList<Integer> mainKey){

 int firstSeed = getFirstSeed(mainKey);

 int secondSeed = getSecondSeed(mainKey);

 hashOfKey=commonOperation.getHash(mainKey.toString());

 hashOfKey = shuffleArrayList(firstSeed,secondSeed,

 hashOfKey);

 for (int i = 0; i < roundNumber; i++) {

 RoundKey roundKey = new RoundKey();

 roundKey.generateRoundKey(getBlockHash(i), mainKey);

 arrayRoundKey.add(roundKey);

 }

 }

 private ArrayList<Integer> getBlockHash(int i) {

 int firstIdx = i*8;

 return new ArrayList<Integer>(hashOfKey.subList(

 firstIdx, firstIdx+8));

 }

 private ArrayList<Integer> shuffleArrayList(int

 firstSeed, int secondSeed, ArrayList<Integer>

 hashOfMsg2) {

 Collections.shuffle(hashOfMsg2, new

 Random(Long.valueOf(firstSeed)));

 Collections.shuffle(hashOfMsg2, new

 Random(Long.valueOf(secondSeed)));

 return hashOfMsg2;

 }

 private int getFirstSeed(ArrayList<Integer> mainKey) {

 ArrayList<Integer> arraySeed = commonOperation.XOR(

 new ArrayList<Integer>(mainKey.subList(0, 3)),

 new ArrayList<Integer>(mainKey.subList(3, 6)));

 int result= Integer.valueOf(arraySeed.get(0)

 +""+arraySeed.get(1)+ ""+arraySeed.get(2));

 return result;

 }

 private int getSecondSeed(ArrayList<Integer>mainKey) {

 Integer seed = commonOperation.XOR(

 (mainKey.get(5)), (mainKey.get(6)));

 int result= Integer.valueOf(seed+""+mainKey.get(7));

 return result;

 }

}

Figure III-3 IBS Subkey Algorithm (JAVA)

B. Encryption and Decryption Stage

In this section, the process that will be explained only for
the encryption process because the decryption is obviously
depicted from the reverse version of encryption process. In the
this process, there are 3 round or iteration done by reversing
the direction of encryption. In the first round, plaintext will be
encrypted from the first index. In the second round, the cipher
text from first round will be re-encrypted from the last bit.
Finally in the last round, the ciphertext from the second
encryption is got encrypted for the third time, but the
encryption is started from the first index. For each round,
subkey that have been used are exactly similar. Moreover, for
each round there are 12 subkey that used independently. The
bigger picture will be explained through the image below.

Plaintext + Key

Subkey Generation

Encryption Process

Cipher text

hash = SHA-256 (Key)

Devide the hash into 4 seed

Generate subkey per round

Result each round :

- subKey4Byte

- subKey5Byte1

- subKey5Byte2

Final subkey (12 new keys)

4 times

public ArrayList<Integer>

 startEncryptionModeCBC(ArrayList<Integer> plainText){

 plainText = commonOperation.adjustSizeOfPlaintext(

 plainText, blockSize);

 ArrayList<Integer> result = (ArrayList<Integer>)

 plainText.clone();

 /*algorithm started*/

 for (int j = 0; j < 3; j++) {

 SubKey subKey = new SubKey(roundNumber);

 subKey.generateSubKey(mainKey);

 subKey.print();

 for (int i = 0; i < roundNumber; i++) {

 result = encrypt(subKey.arrayRoundKey.get(i),

 result);

 }

 Collections.reverse(result);

 }

 return result;

}

Figure III-4 IBS Encryption Schema

/*To encrypt*/

public static ArrayList<Integer> blockE(RoundKey roundKey,

 ArrayList<Integer> blockPlainText){

 Encryption encryption = new Encryption();

 blockPlainText = encryption.firstSubtitutionEnc(

 roundKey.key4Bytes, blockPlainText);

 for (int i = 0; i < 5; i++) {

 blockPlainText = encryption.chainingOperation(

 roundKey.key5Bytes2.get(i),blockPlainText);

 }

 blockPlainText = encryption.secondSubtitutionEnc(

 roundKey.key5Bytes1, blockPlainText);

blockPlainText = encryption.sBoxEnc("daniar",

 blockPlainText);

 return blockPlainText;

}

Figure III-5 IBS Encryption Schema for Each Round

C. Experiment Result

The IBS algorithm is tested using one block plaintext (16
characters) to check its randomness after got changed one bit in
any position. This algorithm supports padding, so if the length
of plaintext is less than 16 characters, it will give padding in
the plain text. The padding will be removed for further
decryption process.

Plaintext 1 Plain Text 2

Daniar Heri K. Dbniar Heri K.

Ciphertext 1 Ciphertext 2

9699 072a c835 e7e2 af8a
fb80 8a36 540e

a9a4 c44e 657c cdd5 b097
6bef afac 9e1c

Figure III-6 Example IDS Encryption 1

Plaintext 1 Plain Text 2

Daniar Heri K. Daniar Heri L.

Ciphertext 1 Ciphertext 2

9699 072a c835 e7e2 af8a
fb80 8a36 540e

a98b 066b e1aa 16ba 9ae8
0e1a 58bb 2243

Figure III-7 Example IDS Encryption 2

Both of the example above show that the ciphertext for the

slightly different plaintext is 100% different. We can

generalize this result that a single bit of change can effect

another bit almost perfect. Testing IBS using the longer

plaintext, the result showed that the average percentage of

similarity is lower than 0.5 %. For further testing, the source

code can be downloaded at the link below:

 https://github.com/daniarherikurniawan/Invertible-Burg-

Structure-Block-Cipher

IV. PSEUDO RANDOM GENERATOR

A pseudorandom number generator (PRNG), also known as
a deterministic random bit generator DRBG, is an algorithm for
generating a sequence of numbers that approximates the
properties of random numbers. The sequence is not truly
random in that it is completely determined by a relatively small
set of initial values, called the PRNG's state, which includes a
truly random seed.

The PRNG that is used is the default random generator
implemented in Java JDK. It was used because the
performance and the randomness are already tested and
recommended by a lot of java developers. The pseudorandom
generator is used to shuffle the array of integer in the subkey
generation process. The seed for the PRNG is part of main
key’s hash result.

V. SECURE TOKEN GENERATOR

There are three step of generating API token in Sci-Learn.
The first is the client request a token generation. Then the
server will take user’s salt and user’s password from the data
base to generate the token. Server will not save the token in the
server, because it will be changed dynamically for security
purpose. Finally the token will be sent to user. Whenever the
user using token to access the API, server will check it by re-
compute the token as mentioned in the first step. The step by
step process is depicted in the picture below:

Figure V-1 Token Generation Schema

Plaintext = Salt + User’s Password

Ciphertext = IBS_Encryption(Plaintext)

Secure_token = SHA_256(Ciphertext)

Plaintext = Salt + User’s

Password

TokenGenerationRequest()

SendToClient()

Beside of the main application (Sci-Learn), the writer

created another system called multi agent system that can
simulate the use of Sci-Learn API. Each of the token will
represent a user and the multi-agent will do some actions based
on the behavior that are defined as shown in the Figure V-3.

Figure V-3 Agent System That Will Simulate User's Behaviour through Sci-
Learn API Access

A. SHA-256

The SHA-256 compression function operates on a 512-bit

message block and a 256-bit intermediate hash value. It is

essentially a 256-bit block cipher algorithm which encrypts

the intermediate hash value using the message block as key.

Hence there are two main components to describe: (1) the

SHA-256 compression function, and (2) the SHA-256

message schedule.

One of the drawbacks with SHA-2 is that there are some

older applications and operating systems that do not support it.

Compatibility problems are the main reason why SHA-2

algorithms have not been adopted more rapidly. Windows XP

Service Pack 2 or lower does not support the use of SHA-2.

The use of SHA-2 on websites may pose a problem if the end

user has an older operating system.

B. Salt

Salt is random data that is used as an additional input to a

one-way function that "hashes" a password or passphrase. The

primary function of salts is to defend against dictionary attacks

versus a list of password hashes and against pre-computed

rainbow table attacks.

VI. RESULT AND ANALYSIS

In this paper, there is a new block cipher encryption
algorithm that is introduced, called Invertible Burg Structure
Algorithm. Besides, the algorithm is combined with secure
hash function, SHA-256, to generate secure API token. The
token is implemented in e-Learning system that also developed
by the writer called Sci-Learn. The result of this result is very
satisfying because the schema that is proposed is worked well
in Sci-Learn platform. The experiment result of IBS algorithm
also shows that the substitution and transposition worked well
for creating truly different chipertext for slightly different
plaintext (differed by one bit).

For the future work, the secure token generation schema
could be implemented for preventing surface attack on the
website by providing CSRF token for the client. Moreover, the
pseudo random generator still could be improved by referring
to different pseudorandom generator in widely used library
such as google v8 engine pseudorandom generator function.

ACKNOWLEDGMENT (Heading 5)

Daniar Heri Kurniawan, as the author of this paper, want to
express his deepest gratitude to Dr. Ir. Rinaldi Munir, M.T. as
the lecturers of Cryptography Course, ITB 2016. Special
thanks to all of my family, my friends in Informatics 2012, and
other people that give any form of support to me to finish this
paper.

Figure V-2 Token is Successfully Generated

REFERENCES

[1] FIPS 2012. Secure Hash Standard (SHS). Technical Report FIPS PUB

180-4. Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD.

[2] A Model for Determining Information Release By – Andrei Sabelfeld
and Andrew C. Myers, Software Security: theories and system 2nd
Mext_NSF-JSPS international symposium, ISSS-2003.

[3] https://cseweb.ucsd.edu/~mihir/papers/gb.pdf. Access at: 5/17/2016

