
Fuzzy-search on Content-Addressable Filesystem
with Threshold Cryptosystem

Aufar Gilbran - 13513015
Informatics / Computer Science

School of Electrical Engineering and Informatics
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

aufargilbran@gmail.com

Abstract—This paper aims to provide a unique approach to
create a applicative usage of threshold cryptosystem, specifically
secret sharing, on content-addressable filesystem. Through some
careful file structure modification, secret sharing cryptosystem
can be used to do fuzzy-search on these filesystems which files is
addressed by its full content. Fuzzy-searching allow us to get
content of the file by its partial content, which significantly
increase the usability of this type of filesystem to be used by
human.

Keywords—threshold cryptosystem, secret sharing, content-
addressable filesystem

I. INTRODUCTION

Filesystems are the core structure responsible for managing
files created by a user. Filesystem help us to read, write, delete
and update the file by receiving what we wanted the to be and
update the block of data located in the disk accordingly. There's
no computer system that doesn't use filesystem because most
user want to have some data to be persistent, thus filesystem is
essential. Since disk access is very slow, a good filesystem
needs to manage operations done by user efficiently, that is
with as minimum disk access as possible.

There are many types of filesystem, some are specific to the
device/medium and some are created for efficient disk access
but all of those filesystems are created to meet the user
demand. The most important user demand is functionality. User
want filesystems that provides functionality that supports the
operation that the user wanted. We could have a filesystem that
implement all known functionality that any user demand, but
any user wouldn't want to use a monolithic filesystem because
it would take too much time to run user operations. Because of
that, filesystems are created for a specific cause in mind.

One of the many filesystem types that are known are the
content-addressable filesystem. Content-addressable filesystem
manage user files by mapping between the digest of the file
and its location on the disk. Thus, to locate a file in the
filesystem, the user just need to provide its content digest to the
filesystem and the filesystem look at the mapping and then
return the located file to the user. This is done in a very quick

manner because there's no need to traverse a directory structure
like general usage filesystem. The problem is, a content-
addressable are limited in functionality because we need to
keep track on all the digest of a file content. Of course, it is the
system that keep track of the mapping between file digest and
file location, but what if the user need a specific file with only
some of its content?

There is a technique that is commonly used to search by
partial content called fuzzy-searching. Fuzzy-searching let us
find our desired string with some of its non-overlapping
substring. This technique is useful for human because most of
the time we cannot remember a full, exact string that we
desired but it is easier for to remember that the string we are
searching have some keywords. The goal of this technique is to
retrieve our string with keywords that we do remember. This
technique is useful for the kind of functionality that we need in
a content-addressable filesystem to make usage of the
filesystem easier.

The next problem is how to verify the file with some of its
partial content when what we have is only the file content
digest. To solve this problem, we need to do some modification
to how a file is structured in normal content-addressable
filesystem. We also need to be able to verify a string with some
other partial string. This could be done with the threshold
cryptosystem.

In this paper, we will discuss the content-addressable
filesystem, how it was structured and used, and how we can
add fuzzy-searching functionality with threshold cryptosystem
(specifically secret sharing) that can be useful on this type of
filesystem.

II. FUNDAMENTAL KNOWLEDGE AND THEOREM

The following knowledges and theorems are essential to
implement fuzzy-searching functionality on a content-
addressable filesystem.

A. Content-addressable Filesystem

Knowledge of filesystem is the key to impelement a new
functionality to a filesystem. Specifically, knowledge of

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

content-addressable filesystem is crucial to understand how to
integrate the functionality into our filesystem. But first, before
we can implement a new functionality to a filesystem, we need
to each term that may be required to understand the
implementation of the new functionality.

File is a form of abstraction used for storing information,
which is available to a computer program and is usually based
on some kind of persistent storage. A file need to be persistent
in the sense that it remains available for other programs to use
after the program that created it has finished executing.

Filesystem is used to control how data is stored and
retrieved. Without a filesystem, information placed in a storage
area would be one large body of data with no way to tell where
one piece of information stops and the next begins. By
separating the data into blocks of information and giving each
block a specific name, the information is separated and can be
easily identified.

There are many different kinds of filesystems. Each one has
different structure and logic, properties of speed, flexibility,
security, size and more. Some filesystems have been designed
to be used for specific applications. For this paper, we only
need to understand the content-addressable filesystem.

Content-addressable filesystem is based on content-
addressable storage also referred to as associative storage,
which mechanism is for storing information that can be
retrieved based on its content, not its storage location. It is
typically used for high-speed storage and retrieval of fixed
content. Content-addressable filesystem add one more level of
abstraction from content-addressable storage to a filesystem,
thus the operations return a digest of the file which can be
mapped into its storage location.

Knowledge of content-addressable filesystem is

B. Shamir's Secret Sharing Threshold Cryptosystem

Threshold Cryptosystem is a cryptosystem such that, in
order to decrypt an encrypted message in the system, several
key holders (more than some threshold number) must
cooperate in the decryption process. The message is encrypted
with a public key and then the corresponding private key is
distributed among the participating parties.

Let n be the number of key holders. The threshold
cryptosystem is called (k,n)-threshold, if at least t of these key
holders can efficiently decrypt the ciphertext, while less than k
of these key holders will not be able to get any useful
information. Obviously it is possible to define (k,n)-threshold
signature scheme, where at least k parties are required for
creating a signature. Threshold versions of encryption schemes
can be built for many public encryption schemes. The goal of
these schemes is to be more secure as the original scheme.

Shamir's Secret Sharing is an algorithm in cryptography
created by Adi Shamir, creator of RSA. It is a form of secret
sharing, where a secret is divided into different shares, giving
each participant its own unique share. Some of the shares or all
of them are needed in order to reconstruct the secret.

The following is the algorithms to distribute the secret to
each of key holders:

• Suppose we want to use a (k,n)-threshold scheme to
share our secret S.

• Choose random prime P number and k-1 positive
integers a1, a2, …, ak-1, with ai < P. Let a0 = S. Build
the polynomial f(x) = a0 + a1x + a2x2 + … + ak-1xk-1.

• To give the i-th participant their share, we need to
compute (ni, f(ni)), with ni is a unique integer assigned
to the i-th participant. It should be different with nj for
i ≠ j. The computation result it the share for the i-th
participant

To resconstruct the secret, we can use any subset of k of
key holder's share and find the coefficient of the polynomial
using polynomial interpolation. The secret is then the constant
term a0.

C. Fuzzy-search

In string theorem, fuzzy searching is the technique to find
desired strings provided a pattern with approximations (rather
than exactly equal). The closeness of a match is measured in
terms of the number of operations necessary to convert the
string into an exact match. This number is called the edit
distance between the string and the pattern.

However, in this paper we only use fuzzy-search as a
concept and functionality. That is, the user can provide some
patterns and the algorithm then returns the string desired. In
fact, we will not use the standard measurement of closeness to
find the exact match and instead use Shamir's Secret Sharing
decryption process to validate the correctness.

III. PROPOSED DESIGN

For fuzzy-searching functionality become available in our
filesystem, we need to have our own design of the filesystem.
This design should describe the following points:

• File structure

• File operations

• Filesystem operations

For simplicity, we also need an assumption that holds true
for every operation and structure in the filesystem without loss
of generality. This makes sure that the explanation for the
design is a simple as possible but general enough to be used at
different type of machines and devices.

Let us call the new designed filesystem as AGFS with the
assumption that every file on AGFS is a plaintext file and
filesystem operations are operating on byte level. AGFS will
have standard architecture and operations like other content-
addressable filesystem but with some modifications on file
structure and operations addition. These modifications and
addition are required to keep the needed data to verify fuzzy-
searching closeness to its corresponding data and also define
operations interface between user program and the filesystem.

We also assume that the file “cannot” be changed. To
change the file, instead of updating the current blocks we
delete the old file and write new file. This mechanism is used

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

because when we change the file on a content-addressable
filesystem, we need to update all the header of the file. This
makes the usual update operations pointless and we can just
discard update operations to keep things simple.

Before we look at each filesystem architecture, we need to
define how user can provide the pattern for fuzzy-searching.
We use a variant of fuzzy-search, that is we do not provide a
single pattern but multiple patterns. We will call the possible
pattern for fuzzy-searching as tag for the rest of the paper.
Filesystem users will provide tags to locate file in fuzzy-search
manner. These tags are generated from the content of the file
that is split by each words. Each unique word then become a
tag for fuzzy-searching.

The following are modifications from standard content-
addressable filesystem made to support the fuzzy-searching
functionality.

A. File Structure

File structure in a filesystem commonly have file entry, file
header, and file content sections (or blocks). These section
defines and keep information required for the filesystem to
process file operations applied to the file and pointers to locate
related file sections.

In AGFS, the file structure is defined as follows:

• File Entry

The file entry is a block in the upper level of storage
area that function as an entry point of a file. This entry
point should have a pointer to the file header location
on disk and the location of the file content on disk.
This block include informations that can be used by
the filesystem to determine what can be done on the
file by user.

For AGFS, the file entry should keep additional
informations required to construct the secret that is
distributed using Shamir's Secret Sharing scheme. The
secret is the file header explained later. These
information should be capable to do a mapping
between fuzzy-search tag that is possibly provided by
the user to the actual share linked to the pattern.

The mapping is done by using one property of
Shamir's Secret Sharing scheme, that is, to construct
the secret on (k,n)-threshold scheme, only k subset out
of n is required. These means that the shares is
actually interchangeable. Suppose that we have h1, h2,

and h3 with hi is the i-th participant. If the 3rd

participant were to suddenly bail out of the
cooperation, we can still proceed the decryption
process with 4th participant or 5th participant share.
This property means that each tag can be assigned
with whatever shares currently available. Thus,
populating the mapping table becomes trivial task.

• File Header

The file header is one or more blocks that keeps
informations about the files, so the filesystem know
what to do to process the user request operation for

file. In standard content-addressable storage, the file
header section also define the file content digest
which usually used to point to the file location in the
storage. Usually, on content-addressable filesystem
and its derivatives, the file content digest is not used
as the digest already points to the file entry which
have the content's location on the storage. In our new
filesystem, we will exploit the digest and exploit its
convention to add information required by our
filesystem.

For AGFS, the file header section is used to actually
validate the closeness of the file with tags provided by
user. We added a new field to the header that is a
magic string unique to our filesystem. Magic string is
a string that exists solely for the purpose of verifying.
In our cause, we want to know wether or not the
secret construction actually contains the magic string.

File header in AGFS act as a secret that is distributed
by the Shamir's Secret Sharing scheme. This can be
done as follows:

◦ The file header has magic string that besides act
as a verification string, it also act as a pad to
make sure the total file header size is 64-bit.

◦ The file header (including file content digest and
file type) is used as a secret and then distributed
using Shamir's Secret Sharing scheme to get the
shares. The scheme used is proportional to the
number of tags available. So if there's n tag and
we only require at least k tag to construct the
secret, we use the (k,n)-threshold scheme to
distribute the share.

Since the file header also includes the file content
digest, each file with the different content or different
file type will have different secret. Thus, the shares
will be different if the file is different. This implies
that different share will not be able to construct the
original file header and the filesystem will decide that
the file is not a match since the magic string will not
be the same.

At the creation of the file, the filesystem need to
create the mapping table between the shares and
fuzzy-search tags locatable from file entry section.
Implementation details of mapping table creating is
explained later in this paper.

B. File Operations

The only change we need to introduce to the file operations
are the offset of the file header. Since there is the newly added
magic string before the standard file header, we need to make
sure that every file operations start operate with additional B bit
offset, with B is the magic string size.

C. Filesystem Operations

File operations are defined as an interface between user
programs and the filesystem. When user program need to do a
specific operation on the file, it calls the filesystem operation

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

defined in the filesystem with the interface proper parameters
to modify the file.

Some filesystem operations in AGFS needs to be modified
to accommodate the fuzzy-searching functionality. The
modification takes place on CREATE, UPDATE, and OPEN
operations with the modification as follows:

• CREATE

File creation is provided by the CREATE operation on
filesystem. In standard content-addressable
filesystem, the CREATE operation will do the
following:

◦ Check to see if the file already exists by checking
the digest existence.

◦ Allocate Space on the disk for the file.

◦ Insert a pointer to the first block of the file entry.

In AGFS, we add more steps to add mapping table
between fuzzy-searching tags and secret shares
distributed by Shamir's Secret Sharing scheme with
file header as the secret. The additional steps are as
follow:

◦ Create a list of fuzzy-searching tags created by
splitting the file content by words.

◦ Create a list of shares distributed by Shamir's
Secret Sharing scheme.

◦ For each tag in tag list, assign to any share on the
share list that is not assigned yet as the
corresponding share value for the tag.

◦ Write a pointer on the file entry section to the
first tag-share mapping.

After these operations, the file entry section will have
a pointer to list of tag-share mapping.

• UPDATE

As mentioned before, the update operation are to be
deprecated and replaced by the DELETE and
CREATE operation. Although we say replaced, to
make the filesystem to be compatible with current
technologies, we only change the logic of UPDATE
operations to call CREATE and DELETE. The
UPDATE operation will work as follow:

◦ Keep the file before update in the memory.

◦ Apply the update to the file in memory.

◦ Create new file with its content from the file in
memory.

◦ If the new file is created successfully, delete the
old file.

This mechanism make sure that the tags and content
digest are always updated atomically.

• OPEN

Because we added a magic string before the digest,
we need to slightly change the OPEN operation to
read the message digest B bits after the pointed
location provided by file entry section with B is the
size of the magic string.

Other than these operations, filesystem operations are the
same with standard content-addressable filesystem.

There is additional operation that is needed for the fuzzy-
search to be working as intended. We will call operation as
SEARCH. The operation is working as follows:

• SEARCH

Fuzzy-finding is provided by this operation. The
operation take list of tags as its parameter, and then
reconstruct the secret for each file header in the
storage. If the secret is valid, that is the magic string is
identifiable, then the file entry is a match.

Aside from these modifications, we use the standard
architecture from content-addressable filesystem for our
filesystem. The overall architecture of the new filesystem are
illustrated by Figure 1.

Figure 1. Overall filesystem and file architecture

IV. EXPERIMENT AND ANALYSIS

Experimentation on AGFS will done mostly on the fuzzy-
searching functionality that is added on top of standard
content-addressable filesystem.

The experiment will be done in these scenarios:

• The created a new file on AGFS and then fuzzy search
the new file using some of its content

• Fuzzy-search with wrong share, but the correct ones
still above the threshold

• Fuzzy-search when there is two or more files

For these experiment, we will assume that the magic string
is 7c60 in hexadecimal representation. Also, the experiments

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

will be done with (2, n)-threshold scheme, such that it is
required to have at least 2 tags to get a match.

A. File creation and fuzzy search on AGFS

This scenario assume that standard content-addressable
filesystem operation are working as intended. Thus, we only
need to check if the mapping actually works.

The following table describe the experiment result (bold is
input and normal is output:

File 1

File Header (Hexadecimal Representation)

7c600ac6b5f3b72f

File Content

fuzzy searching is awesome

Mapping Table

At 0x0000 At 0x0010 At 0x0100 At 0x0110

Next: 0x0010 Next: 0x0100 Next: 0x0110 Next: NULL

Tag: fuzzy Tag:
searching

Tag: is Tag: awesome

Share:
801404bd12a
4e49bc6f5e

Share:
80283121f4ac
b506d1acd

Share:
803c225ae6a
43ac22c2bc

Share:
80418a09e8a
dc62d2f0f6

Fuzzy-search

Tags: fuzzy, is
File mapped shares:
[801404bd12a4e49bc6f5e,
803c225ae6a43ac22c2bc]
Secret: 7c600ac6b5f3b72f

Table 1. File creation and fuzzy-search experiment result

As seen from the experiment result in Table 1, the file
operations CREATE created a linked list mapping with each
element in the list map a tag to a share and vice-versa. It also
correctly construct the secret in which the filesystem can
verifiy the existence of the magic string (7c60).

From the experiment result, we know that the mapping
table size will be proportional to the amount of unique words in
the file content. This is a waste of space since basically we
need O(n) more space for n words file. This may or may not
pose a problem, depending on the system specific needs.

The fuzzy search also has horrible performance since all the
tags need to be matched against all possible tags listed in the
file mapping tables. The complexity to match a file is O(WT),
with W is the number of words in the file and T is the number
of tags the fuzzy-search provides.

B. Fuzzy-search with the wrong share

For this scenario, we will use the last experiment table, but
with different fuzzy-searching parameters given to the
filesystem.

File 1

File Header (Hexadecimal Representation)

7c600ac6b5f3b72f

File Content

fuzzy searching is awesome

Mapping Table

At 0x0000 At 0x0010 At 0x0100 At 0x0110

Next: 0x0010 Next: 0x0100 Next: 0x0110 Next: NULL

Tag: fuzzy Tag:
searching

Tag: is Tag: awesome

Share:
801404bd12a
4e49bc6f5e

Share:
80283121f4ac
b506d1acd

Share:
803c225ae6a
43ac22c2bc

Share:
80418a09e8a
dc62d2f0f6

Fuzzy-search

Tags: fuzzy, are, awesome
File mapped shares:
[801404bd12a4e49bc6f5e,
00000000000000000000,
80418a09e8adc62d2f0f6]
Secret: 004bd12a4e49bc6f5e
Tags: fuzzy, searching, are
File mapped shares:
[801404bd12a4e49bc6f5e,
80283121f4acb506d1acd,
00000000000000000000]
Secret: 7c600ac6b5f3b72f

Table 2. Fuzzy-search with wrong share included result

The experiment result from Table 2 shows us that if there's
a wrong share included the algorithm correctness is determine
whether there is enough correct shares before the wrong share.
This undeterministic behavior is very bad for a filesystem.
Thus, it is better to just let the match fail when there is a tag
that does not exist in the mapping table.

C. Fuzzy-search when there is two or more files

For this scenario, because a different file will unlikely to
have the same mapping table (which will increase the
likelihood of wrong share), we assume that the filesystem will
let the match fail when there is a tag that does not exist in the
mapping table. The filesystem will inform the user program
with exception.

We will use the previous file in the filesystem and create a
new file to test this. The only difference of these file will be the
content of these two files, which makes the content digest on
the file header to be different too.

File 1

File Header (Hexadecimal Representation)

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

7c600ac6b5f3b72f

File Content

fuzzy searching is awesome

Mapping Table

At 0x0000 At 0x0010 At 0x0100 At 0x0110

Next: 0x0010 Next: 0x0100 Next: 0x0110 Next: NULL

Tag: fuzzy Tag:
searching

Tag: is Tag: awesome

Share:
801404bd12a
4e49bc6f5e

Share:
80283121f4ac
b506d1acd

Share:
803c225ae6a
43ac22c2bc

Share:
80418a09e8a
dc62d2f0f6

Fuzzy-search

Tags: fuzzy, is, awesome
File mapped shares:
[801404bd12a4e49bc6f5e,
803c225ae6a43ac22c2bc,
80418a09e8adc62d2f0f6]
Secret: 7c600ac6b5f3b72f
Tags: awesome, cryptosystem
File mapped shares:
[801404bd12a4e49bc6f5e,
00000000000000000000]
Secret: failed match exception by filesystem

File 2

File Header (Hexadecimal Representation)

7c60c3fbe3d14c2f

File Content

awesome threshold cryptosystem

Mapping Table

At 0x0000 At 0x0010 At 0x0100

Next: 0x0010 Next: 0x0100 Next: NULL

Tag: awesome Tag: threshold Tag: cryptosystem

Share:
8011e3b67aeeabcc
f036a

Share:
8023ff26e19d95de
dd2a5

Share:
80320b56974c802f
39de0

Fuzzy-search

Tags: fuzzy, is, awesome
File mapped shares:
00000000000000000000,
00000000000000000000
80320b56974c802f39de0]
Secret: failed match exception by filesystem
Tags: awesome, cryptosystem
File mapped shares:
[8011e3b67aeeabccf036a,
80320b56974c802f39de0]
Secret: 7c60c3fbe3d14c2f

Table 3. Fuzzy-search when there is two or more files
experiment result

Experiment result from Table 3 shows us that the fuzzy-
search feature working as intended when there are multiple
files. Each of the file's file header (the secret) can be
constructed back from the tag and if the tag is wrong, the file
will not be matched.

The experiment also show us how space-inefficient the
AGFS architecture is. For each file, AGFS will create the
mapping for corresponding to the file, even if the tag is exists
in other files. This mapping table will effectively reduce the
amount of effective disk space available to the user by 3 to 4
times the original size, which is undesirable.

The fuzzy-search on multiple files also bring performance
hit, since AGFS need to scan through all file entry in the
storage. This implies that a fuzzy-search is proportional not
only to the number of words in the file, but also the number of
files in the storage. The complexity for doing a fuzzy-search is
O(NWT), with N is the number of files, W is the number of
words in the file, and T is the number of tags the fuzzy-search
provides.

V. CONCLUSIONS

Cryptography has always been about securing informations
and knowledge. In this paper, we see that cryptography can be
beneficial in fields other than security. The possibility of a
previously impossible feat that cryptography can achieve make
the author hopes for more applications of cryptography that is
beneficial in fields other than security.

The use of cryptography for filesystem addressing is a
completely possible feat, in the sense that correctness of the
functionality is achieved. It still lack of efficiency because
there is no prior mature study to this application of
cryptography. The author hope for further study, improving
filesystem architecture to be more efficient but as effetive as
AGFS.

ACKNOWLEDGMENT

I thank Allah S.W.T. for health and strength so I can finish
this paper, Mr. Rinaldi Munir for his teaching in Cryptography
course during this semester, and also my friends and fellow
students in Informatics Institut Teknologi Bandung for their
supports and assistance.

REFERENCES

[1] Grosshans, Daniel. File Systems: Design and Implementation.
Englewood Cliffs, NJ: Prentice-Hall, 1986. Print.

[2] Shamir, Adi (1979), "How to share a secret", Communications of the
ACM 22 (11): 612–613, doi:10.1145/359168.359176

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

ORIGINALITY STATEMENT

I hereby declare that this paper is my own writing, not an
adaptation, nor translation of other's paper and not plagiarism.

Bandung, 19th May 2016

Aufar Gilbran

13513015

Makalah ke-2 IF4020 Kriptografi, Semester II Tahun 2015/2016

	I. Introduction
	II. Fundamental Knowledge and Theorem
	A. Content-addressable Filesystem
	B. Shamir's Secret Sharing Threshold Cryptosystem
	C. Fuzzy-search

	III. Proposed Design
	A. File Structure
	B. File Operations
	C. Filesystem Operations

	IV. Experiment and Analysis
	A. File creation and fuzzy search on AGFS
	B. Fuzzy-search with the wrong share
	C. Fuzzy-search when there is two or more files

	V. Conclusions
	Acknowledgment
	References
	Originality Statement

