
IF4020 Cryptography 2
nd

 Paper, Semester II 2015/2016

Chaos-Based Random Number Generator for Salt:

Gacha

Rifkiansyah Meidian C. - 13511084

Informatics Major

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

rifkiansyahmeidian@gmail.com

Abstract—Password salts are commonly added to give

more security to passwords, ensuring that they are harder to

crack even if the password database were to be stolen away.

However, salt are normally stored in a table, allowing

whoever stole the password to crack faster with the salt.

Chaos-based Random Number Generator, while chaotic,

remain a pseudo random number generator due to its

properties. This paper will introduce a method to create a

salt that does not need to be stored in table, and can be used

for dynamic salt changes if needed.

Keywords—Chaos Theory, Salt, Hash.

I. INTRODUCTION

Passwords are a key to an account security. As long as

the password isn’t known, the only one who could access

an account would be the owner of the account. As an

effect, passwords should be protected with layer upon

layers of protection.

Protection of passwords can range from user’s own

protection by using a complex sequence of characters,

secure connection when sending the table, to adding bits

and hashing in order to make the password more secure.

Among those, there are one method known as Salting, a

method that uses Salt which is extra bits added to the

password before being hashed. Those extra bits are

normally randomized and fixed, and normally stored in a

table alongside the hashed password for authorization.

New salt are generated for each new password.[1]

Usually, the salt used does not need to be changed.

However, this poses a threat on the moment that an

attacker managed to steal the salt table to get the

password. While the salt prevents the attacker from

stealing the password fairly quickly with the addition of

salt, a strong enough computing ability would be able to

steal the password faster still using the stolen salt table and

the method known as the rainbow table[2].

Pseudo-Random Number Generator is an algorithm

where a mathematical formula or precalculated table

produces sequences of seemingly random number.[3]

Chaos Theory is a system where tiny, or even

microscopic change in the initial conditions can result in

significant changes in the behavior of the system[3]. While

the result cannot be known, it is still considered pseudo-

random number generator due to its ability to be

reproduced using the exactly same initial condition and

factors.

 On this paper is the notion of using chaos-theory-based

pseudo-random number generator to use for password salt

with user ID and login time as the seed is proposed. The

theory behind this is the thought that if the salt was stored

on the table, then the attacker can use it at any time.

However, by using pseudo-random number generator as

salt, the need of storing salt diminished since the salt can

just be checked by generating the salt the second time with

the perfectly same seed which is user ID and login time. It

also removes the salt from plain sight of the attackers.

The algorithm used for the pseudo-random number

generator should satisfy the chaos theory, and a simple one

will be used for this paper. Furthermore, the method that

hashes the password can also be changed freely. However,

this paper will use the SHA-1 hashing algorithm as an

example.

II. THEORY BASIS

1. Random Number Generator

An Ideal Random Number Generator is a discrete

memoryless information source that generates

equiprobable symbols[4]. An RNG is made to generate

sequence of independent and identically distributed

random variables.

In practice, there are two types of random number

generator. The first is Pseudo-random Number Generator,

and the second is True Random Number Generator.

Pseudo-random Number Generator works by using a

certain algorithm to generate a seemingly random number

or sequence of numbers from predetermined seeds.

Reusing those seed will result in the same number to

appear when the algorithm is executed. Due to this, PRNG

is efficient, deterministic and periodic, which made it

useful for simulation and modeling purposes.

True Random Number Generator works by

generating a totally random number without any seeds or

inputs whatsoever. In theory, it introduces randomness

from physical phenomena to use in a computer[5]. TRNG

IF4020 Cryptography 2
nd

 Paper, Semester II 2015/2016

generally inefficient due to the time required to produce

number. It is also nondeterministic where none of the

initial situation contributes to the result of the RNG.

2. Chaos Theory

A chaotic system is a system where tiny changes of the

initial conditions of the system can result in dramatic

changes of the overall behavior of the system.

Among mathematical equations that can create chaotic

behavior, one such equation is the logistic equation:

X(n+1) = R X(n) (1 - X(n))
Where R is a parameter, X(n) is the variable at the n

th

iteration value between 0 and 1, and n can be considered a

running variable.[8]

The sensitivity of the above diagram is at best between

3.57 and 4, as shown by figure 2.1. Because of that, R is

required to be between the two numbers.

Figure 2.1 Bifurcation diagram of the logistic

map.(en.wikipedia.org/wiki/Chaos_theory)

Mathematically, the condition for a system to be

defined as chaotic is as follows:

1. Having a dense collection of points with periodic

orbits,

2. Being sensitive to the initial condition, and

3. Being topologically transitive.[6]

Despite the seemingly random appearance of results,

chaos remains deterministic due to the fact that if the

initial condition is exactly the same, then the result will

exactly be the same.

3. Salt

Salt are fixed bits generated to be added to a password

before hashing to increase security of the password.

Normally, Salt are generated with true random generator

since there is no need for any deterministic attribute of the

Salt. It is then stored in a salt table along with the hashed

password which had been concatenated with the Salt. Salt

makes the password hashes significantly harder to crack[7].

III. DESIGN

For the proposed random number generator, User ID

will be used along with the timestamp of the last time user

login as a seed for the algorithm. The time when user

registers will be treated as a login time for the first time.

The mathematical equation that will be used for the

random number generator is the logistic equation on part

II.

Since x is required to be between 0 and 1, adjustments

will be made for the User ID and timestamp to fit on the

equation.

As an example, the following user ID and timestamp is

used.

ID: 1086

Time: 15/05/2016, 18:13

Thus, the adjustment will be as follows:

Seed I(from ID): 0.1086

Seed II(from timestamp): 0.15052016

Iteration(from timestamp): 1813

Since the iteration requires to be 1000 or above, the

number of iteration will be 1000+n, where n is the number

of iteration from the timestamp. For the case above, the

total iteration will be 2813.

Also, because the iteration requires R to be between

3.57 and 4 to be chaotic, alterations need to be made for

the equation to fit. The process for the variables above are

as following:

In theory, Seed II will not go over 0.43 due to the

properties of the timestamp, eliminating the need to taking

care of numbers outside 3.57 and 4.

Next, the resulting number will be concatenated with a

password then hashed with a hashing algorithm.

IV. ANALYSIS

The result of chaos equation above is as follows:

real seedI = 0.1086;

real seedII = 0.15052016

real n = 3.57;

int iterate = 2813;

bifurcation(y,r) {

return r*y*(1-y);

}

n = n+seedII;

for(int q=0; q<iterate; q++){

 bifurcation(seedI,n);

IF4020 Cryptography 2
nd

 Paper, Semester II 2015/2016

Figure 4.1, Several Results of Logistic Equation.

The 2813rd result is 0.806397969308579, which will

be concatenated with the password and hashed.

As an example, the password used is admin, which

concatenated resulting in: admin0.806397969308579. The

resulting SHA-1 hash is

6cdf5bc241aa6d9c6dd5b9884a136f79e42475b9

A possible defect in this system is when the local time is

tampered with, which can cause failure in authorization

when the user logs in next time. A possible solution is to

use system time synchronized to the internet so the actual

time used is always the same time.

A second run is done with the same parameters, except

that the date is 16/05/2016, which translates into the seed

0.16052016. The 2813rd result is 0.7473897118290384,

which concatenated with the password ‘admin’ results in

SHA-1 hash of:

8886accdee538621e10e50b33d2ba2a1b805789b

Another run with the parameters of the first run results

in the same number of 0.806397969308579. This makes it

viable for the user authorization to work by using the data

from last login time. Also, with the second run it is proven

that changing 1 number makes the result differ greatly,

which offers protection that is further extended by

hashing.

Figure 4.2, Several Results of second run.

REFERENCES

[1] https://en.wikipedia.org/wiki/Salt_(cryptography),

Salt(cryptography). Visited on 04/05/2016

[2] http://goodmath.scientopia.org/2013/03/02/passwords-hashing-and-

salt/, Passwords, Hashing, and Salt. Visited on 05/05/2016

[3] https://www.random.org/randomness/, Pseudo-Random Number

Generator. Visited on 05/05/2016

[4] Stojanovki, Toni and Kocarev, Ljupco. Chaos-Based Random

Number Generators—Part I: Analysis. IEEE Transactions on

Circuits and Systems, 2001.

[5] https://www.random.org/randomness/, True Random Number

Generators(TRNGs), last visited 15/05/2016

[6] http://mathworld.wolfram.com/Chaos.html, Chaos. Visited on

16/05/2016

[7] http://php.net/manual/en/faq.passwords.php#faq.passwords.salt,

What is a salt?. Visited on 17/05/2016

[8] https://universe-review.ca/R01-09-chaos.htm, Bifurcation. Visited

on 17/05/2016

[9] http://introcs.cs.princeton.edu/java/94diffeq/, Numerical Solutions

to Differential Equations, Creative Exercises. Visited on

18/05/2016

Bandung, 18 Mei 2016

Rifkiansyah Meidian Cahyaatmaja , 13511084

https://en.wikipedia.org/wiki/Salt_(cryptography)
http://goodmath.scientopia.org/2013/03/02/passwords-hashing-and-salt/
http://goodmath.scientopia.org/2013/03/02/passwords-hashing-and-salt/
https://www.random.org/randomness/
https://www.random.org/randomness/
http://mathworld.wolfram.com/Chaos.html
http://php.net/manual/en/faq.passwords.php#faq.passwords.salt
https://universe-review.ca/R01-09-chaos.htm
http://introcs.cs.princeton.edu/java/94diffeq/

