
SCAC-MAT
Stream Cipher Algorithm with Ikeda Map Trajectories

Andre Susanto
Department of Informatics Engineering

Institut Teknologi Bandung
Indonesia

13512028@std.stei.itb.ac.id

Abstract—Stream ciphers are used widely to encrypt
continuous data streams such as WiFi or cellphone signals. In
order to “mask” data, they need special bit stream generators
that generate random sequences. The resulting sequences would
determine the algorithms’ security, if they were random and
hard to be predicted, then the algorithm would be secure, on the
contrary, if they contained repeated pattern or were easily
predicted, then the algorithm would not be secure. Chaotic Maps
functions are one way of achieving good random numbers as
their chaotic behavior are extremely sensitive to initial parameter
modifications, making it impossible to predict future sequence
without knowing the correct initial parameters. In this paper, we
presented our stream cipher algorithm, which was called
“SCAC-MAT”, which used Ikeda Map trajectories to generate
random number sequences. Experiments showed us
characteristics of strong cipher that SCAC-MAT had, although
further studies might be needed to study one potential problem.

Keywords—Stream Cipher; Ikeda Map; Chaos; Chaotic
Random Number Generator; Chaotic Stream Cipher.

I. INTRODUCTION
Since Caesar’s era, cryptography has been used to protect

valuable information from enemy. It was also used in the
World Wars by all parties involved to make sure that precious
information did not reach enemies’ ears. Nowadays, modern
cryptography is used in wide area of IT security [1].

In modern cryptography, Stream Cipher is used to encrypt
continuous data stream such as WiFi, cellphone
communication, handy talkie communication, or any kind of
continuous communication that require transmitter to send data
as streams. RC4, A5, Chameleon are examples of widely used
Stream Ciphers [2].

Stream ciphers require bit stream generators to “mask” the
plain text. In fact, they are the key factor to every stream cipher
algorithms’ security. Hence, to improve security, stream
ciphers need to use better bit stream generators. The main job
of bit stream generators is generating random sequence.
Therefore, the more random they generate, the better we get
secured.

Chaotic Map functions are one of our golden tickets to get
good random sequences. They have a very valuable property
that can be used to enhance stream ciphers’ security. It is their
sensitivity to their initial values [3]. That means even the

slightest change would cause very big impacts. By having this
property, Chaotic Map trajectories are very hard to be
predicted. Nowadays, there are so many Chaotic Maps
available. They have two kinds of time dimension, which are
continuous and discrete, three space domains, which are real,
relational, and complex, and ranging space dimensions (from 1
to 4).

In this paper, the writer explained a new stream cipher
algorithm that exploits the valuable property of Chaotic Maps.
The cipher is called “SCAC-MAT’, which stands for Stream
Cipher Algorithm with Ikeda Map Trajectories. As being
mentioned in the name, the cipher uses Ikeda Map as its
number generator.

II. THEORIES

A. Stream Cipher
Stream cipher is one of modern cryptography methods. It is

one of symmetric key ciphers and commonly used in
telecommunication applications, where encrypting data in unit
of blocks is not feasible. Hence, stream ciphers encrypt data by
masking them bit by bit or byte by bytes rather than block of
bytes.

Figure 1 - How stream ciphers work [4]

Figure 1 shows us how stream ciphers work. As shown in
the picture, stream ciphers used key stream generator in both
sender (where the encryption process taking place) and receiver
(where the decryption process taking place). As stream ciphers
rely only to key stream generator to mask plain texts, the
security of every stream ciphers is determined by the security
of key stream generator that it uses.

If a key stream generator generated truly random
sequences, then the security of the cipher would be comparable
with One Time Pad (OTP). Hence, it would be unbreakable.
On the other hand, if a key stream generator generated
recurring sequences (especially short and predictable one), then
the security of cipher that uses it would be comparable with
simple XOR ciphers. Accordingly, it would be easy to break.
Typically, stream ciphers are designed by cryptographers in
between simple XOR and OTP [4].

B. Chaos Theory
Chaos theory describes behaviors and conditions of

dynamical systems that are extremely sensitive to initial
parameters. Edward Lorenz described chaos as “When the
present determines the future, but the approximate present does
not approximately determine the future” [5]. As Lorenz
described, long-term prediction is generally impossible.

Figure 2 - Logistic Map Bifurcation Diagram

Logistic Map is one of chaotic maps that models discrete-
time population size. Mathematically, the map is written:

𝑥𝑥𝑛𝑛+1 = 𝑟𝑟𝑥𝑥𝑛𝑛(1− 𝑥𝑥𝑛𝑛)

where:

xn is a number (0…1) that represent ratio of existing
population to maximum possible population.

 r is a number (0…4] that represent values of interest.

Figure 2 shows us period-doubling as r increases in
Logistic Map that will eventually produce chaos. From the
diagram, chaotic behaviors are seen for r > 3.57.

As it is very sensitive to initial parameters and normally
impossible to predict future by present data, chaotic systems
are excellent to be used as pseudo-random number generator
(PRNG) in cryptography world. Stream cipher is one of
cryptography systems that can utilize this chaotic PRNG.

C. Ikeda Map
Ikeda Map is one of Chaotic Maps that models light

movement around nonlinear optical resonators [5]. The original
map is usually modified so that saturation effect of nonlinear
dielectric medium is taken into account [6]. The modified form
is mathematically written:

𝑧𝑧𝑛𝑛+1 = 𝐴𝐴 + 𝐵𝐵𝑧𝑧𝑛𝑛𝑒𝑒
𝑖𝑖𝐾𝐾 (|𝑧𝑧𝑛𝑛|2+1)� +𝐶𝐶

where:

 zn is the electric field inside the resonator

 A and C are applied laser light from outside

 B is the loss of resonator

The above form can be written in 2D as:

𝑥𝑥𝑛𝑛+1 = 1 + 𝑢𝑢(𝑥𝑥𝑛𝑛 cos 𝑡𝑡𝑛𝑛 − 𝑦𝑦𝑛𝑛 sin 𝑡𝑡𝑛𝑛)

𝑦𝑦𝑛𝑛+1 = 𝑢𝑢(𝑥𝑥𝑛𝑛 sin 𝑡𝑡𝑛𝑛 − 𝑦𝑦𝑛𝑛 cos 𝑡𝑡𝑛𝑛)

where u is a parameter, and:

𝑡𝑡𝑛𝑛 = 0.4−
6

1 + 𝑥𝑥𝑛𝑛2 + 𝑦𝑦𝑛𝑛2

The system has a chaotic attractor for u ≥ 6.

Figure 3 - Point Trajectories on Different u

Figure 3 shows us different point trajectories on different u
parameters. Smaller diagrams on the left upper side of each
diagram are the attractors while the one in the right upper side
is the zoomed view of trajectories’ centers. We can’t see
chaotic attractor for u = 0.1 and 0.5, but it can be seen clearly
for u ≥ 0.65. Consequently, in order to get chaotic behavior, we
need to set u value in between 0.6 to 1.0.

III. THE PROPOSED ALGORITHM

A. Number Compression Algorithm
SCAC-MAT operates in unit of byte, which is 8-bits, while

the Ikeda Map operates in real numbers, which are
implemented in single floating point (32-bits), and double

floating point (64-bits). Therefore, a number conversion (or
simply compression because we actually compress larger bits
to smaller ones) method is required by the algorithm in order to
convert those real numbers to byte values.

The algorithm that is used by SCAC-MAT to convert real
numbers to bytes is as following:

1. Divide the bits so that there are n pieces of 8-bits
block. As SCAC-MAT implementation uses single
floating point (32-bits), there would be 4 blocks of 8-
bits.

2. XOR first block and second block. Circular shift the
resulting bits to the right twice.

3. XOR the resulting XOR from previous step to next
blocks and circular shift the bits likewise in second
step.

4. Repeat the process until all blocks of bits involved in
XOR process. The result of this algorithm is 8-bits (or
1 byte) number representation of the input number.

Figure 4 - SCAC-MAT's Number Compression Algorithm

Figure 4 shows us steps that SCAC-MAT’s number
compression algorithm has to take in order to compress a 32-bit
single floating point number. At the bottom of the picture, there
was a bits representation of IEEE 754 single-precision binary
floating-point format. The bits were divided into 4 blocks and
labeled 1st block to 4th block.

At first, the first block was XORed with second block.
Then, the resulting block was circular shifted to right twice.
After that, the resulting block was XORed with the third block.
Once again, the resulting block was circular shifted to right
twice. After that, the resulting block was XORed for the last
time with the forth block. The resulting block then was circular

shifted to right twice. The process was finished and an 8-bit
number that represents 32-bit number was generated.

B. Key and Initial Parameters
To generate chaotic sequences, Ikeda Map needs initial

parameters as in order to get either xn or yn, we need both xn-1
and yn-1. A slight change on these two initial parameters would
result a significant difference on the resulting sequences.
Therefore, these two initial parameters are excellent key
candidates for the cipher.

To make the cipher even more secure, the u parameter is
also used as a part of this cipher’s key. Hence, there are three
real values that are used in forming key for this cipher: 1) x0
value, 2) y0 value, and 3) u parameter (0.6…1). As SCAC-
MAT uses 32-bit floating point variable, the key size of this
cipher is 96-bit.

C. Encryption and Decryption
Both encryption and decryption process require key stream

generator to generate random sequences that are used to
“mask” and “un-mask” data. SCAC-MAT uses Ikeda Map
Pseudo Random Number Generator to generate those random
sequences. As 2D Ikeda Map generates both x and y values, the
resulting random numbers are the x and y values alternately.

Figure 5 - SCAC-MAT Encryption/Decryption

Figure 5 shows us SCAC-MAT encryption and decryption
process, which are similar. The only difference between
encryption and decryption process is at the stream of data. For
the encryption process, stream of data would be plain texts. On
the other hand, the stream of data would be cipher texts. The
detailed encryption/decryption algorithm is as following:

1. Key was provided to Ikeda Map PRNG.

2. Ikeda Map PRNG calculated xn+1 and yn+1, then
returned them alternately (x was retuned first, then y).

3. SCAC-MAT number compressor got the returned
number from Ikeda Map PRNG and compressed it into
1 byte number.

4. The compressed number was used to “mask” or “un-
mask” data by XORing them to the data.

5. The process was repeated from number 2 for each
arriving data stream.

IV. EXPERIMENTS AND ANALYSIS

A. Random Number Trajectories
In order to enable us to view SCAC-MAT’s Ikeda Map

PRNG’s output trajectories, we conducted experiments with
various variations of parameters. One of our experiments was
conducted with the following configuration:

1. u parameter = 0.98425f,

2. x0 = 0.12332455536f,

3. y0 = 0.678764532435f,

4. Iteration = 10,000,000 times.

The result of this experiment was 10 million pairs of x and
y values. Later, we plotted those values in a scatter plot.

Figure 6 - Ikeda Map PRNG Trajectories

Figure 6 shows us the Ikeda Map PRNG trajectories that
we plotted in our experiment. In the picture, the trajectories
were forming a diamond shaped formation with only a little
amount of deviation. We can also see that there were some
bright spots in the picture where some points concentrated.
Other experiments that we have conducted also didn’t give

good results. They would always form circular-ish shaped
formation, with some points concentrated at specific areas.

Figure 7 – Compressed Number Histogram

As there were points that concentrated at specific regions,
obviously the number distribution was not spread evenly.
Figure 7 shows us the distribution of one million of
compressed Ikeda Map PRNG’s numbers. Clearly, there was a
number which was used over 120,000 times while the average
usage of each number was only around 40,000 times.
Furthermore, some numbers were used less than 100 times.

B. Number Sequence Repetitions
We conducted numbers of experiments to find out whether

our Ikeda Map PRNG would result repeated number sequences
or not. Our setups were as following:

1. Number of samples = 10 samples

2. Sample size = 100 million bytes

3. Minimum sequence size = 1000 bytes

We didn’t found any repeated sequence in the generated
number sequences. Therefore, our Ikeda Map PRNG is
considered as a secure PRNG.

C. Initial Parameters Sensitivity
Chaotic systems are sensitive to initial parameters changes,

so does our Ikeda Map PRNG. We conducted several
experiments to test how sensitive our Ikeda Map PRNG was.

This was our reference for this test:

Initial Parameters:

u = 0.98425

x0 = 0.5644

y0 = 0.7689

First 150 Generated Number Sequence:
1E EE DC 1C 4E F7 F7 EC 0B 9F F6 F0 FD 88 9E EF
0F EF F7 F5 F2 E8 FC EE F5 EF F0 F2 5A F1 F2 09
1F EF 5E DE F3 98 F6 FF 89 9F 9E EF F7 D8 FF 1E
FF 5F F1 F4 0A EB F3 F1 8E F8 EE 4F 4E FF EB 9F
F6 EF 9F FD EF FF ED 1E DC F0 0E CF FF F5 EE ED
FD F4 F6 F5 CE 0F FE EF 1F F4 F6 1F EF 58 EE FF
FC F9 F2 1E 0E FF F5 FC 0E FC F3 09 DE 1E F5 8F

FE EC 1B EE FF 1F EF EF 9F 8F FC F5 F6 FE F7 FE
EF F5 FE EB EF 8F F7 F1 1E EF 8E F0 F7 F5 F6 5F
EF DE DF EE 1C ED

Then we did a slight u parameter modification, following
was the result:

Initial Parameters:

u = 0.9842500001

x0 = 0.5644

y0 = 0.7689

First 150 Generated Number Sequence:
5E F6 CC EC F4 EC FA F2 EC 8C F2 19 FD F0 8E 0F
1E F4 9F F4 ED EF FC EE D9 EF F8 FE 8C E9 F2 F4
FC 9E F8 FC FD F5 5E EF F0 DF 1F E8 4B EE F7 EE
EE 4F FF F5 F2 F2 F7 F1 F2 F5 DE 1C F0 FE F7 F0
8A EF CF DF FF FF F7 FD ED FF 0E DE 0E FF 1E F6
4E 4E F6 ED EE F8 DE F5 F7 0F EF 1F EF FE EE 4F
FC F1 F3 F1 FE FF DF FD 0E F3 F3 19 F6 18 F0 DF
4E 99 1D FE FB 1F 5F 88 8F 1F 1C F1 FF F5 9A FF
EF 0E CE FF F7 F0 1B F1 FE EF 8E E8 4C F1 F7 F1
F4 E9 F1 F0 F7 FE

The result shows us that a slight u parameter change
generated a totally different number sequence from the
original. We also saw a likewise behavior for a change that we
did at x0. The following was the result:

Initial Parameters:

u = 0.98425

x0 = 0.564400001

y0 = 0.7689

First 150 Generated Number Sequence:
1F F2 CC EC 1D FC 4B 9E 0B FC F2 FE FD 98 FF EF
1F F4 F6 F4 ED F1 FC EE F1 EE F8 FA EE ED DA 1E
E8 9F FF CE EC FE F2 DF EC 5E 1F E9 0B EF F3 F0
EF 4F F1 F0 EA FD 9B F5 8A 4D DE DF F1 FF F7 5E
8A FF EF CF 0F 4D F3 FF EC FF FE EF FF 89 8D 1B
5A D9 EA E9 DE 4E EE 8F 1F 09 FF 1F EF F0 DF 4F
9C F1 FD 5F 0E FF CF FD 0E DF FB 1D F6 F4 EF F1
CE 5C FF F0 EF 1F EF DF FF EF EB FD F6 CC 9C FF
EF E9 EE F7 FF 8F 0B F1 EE 4E 8E EF EF F5 CC DC
1E F4 EF F9 CA F5

The result shows us that a slight change in x0 also generated
a totally different number sequence. Lastly, we applied
likewise small change to the y0, the following was the result
that we got:

Initial Parameters:

u = 0.98425

x0 = 0.5644

y0 = 0.768900001

First 150 Generated Number Sequence:
DE EA CC EC F0 F2 F7 8E F7 FD F2 1E 5D 98 EE 8C
FD 49 F2 F9 8A EE FC FE D9 59 F0 F2 F7 F1 9E 1E
EE 8F EE EC F7 8F FC EF F0 DF 5F F5 F3 F0 F7 F0
F5 4F F5 49 F6 5D F7 FD F2 4E DE 9F EE FF F7 5E
8E EF CF DF EF E9 F6 FE FC F0 0E F5 FF 4D CD 0B
DC 58 ED EF CE 58 EE 4E F7 09 EB 1F DF F4 DF 4D
FA ED CC 5F 0E FF CF F9 0E EC F7 19 DF F1 1E 9F
4E F0 F7 EE EB F1 DF EE 9F EF EC F1 4D F0 9F FF
EF C9 5F F7 F7 E9 EC 99 4E FF 8E F0 EB F1 F7 FF
EE ED EF EF 5C F9

From all 3 number sequences that we got from very trivial
changes, no one of them produced the same sequence as the
original one. They were hardly even close to it.

V. SECURITY ANALYSIS

A. Key Security
SCA-MAT’s key size is 96-bits. However, there are some

bits that are not usable; as a consequence, brute force
complexity to break the key is less than 296. The reasons for
that are:

1. Ikeda Map works in range of [0…1]. According to
IEEE Standard 754 Single Precision Floating Point
Number, there are only 223 – 1 subnormal numbers and
126 * 223 normal numbers in that range. As Ikeda Map
only operates normal numbers, total numbers in the
range is 126 * 223 or 1,056,964,608.

2. The u parameter that Ikeda Map uses need to be larger
than 0.6 to produce chaotic behavior. Roughly, only
40% of the number mentioned in previous explanation
is required to brute force this parameter, or
422,785,844.

So, rather than 296, an exhaustive search to find the key
only requires 15876 * 246 * (40% * 126 * 223) ≈ 288.6 or
472,325,429,670,581,816,751,292,416. Although its key
complexity is only about 1.04% compared to complexity of 296
keys, it is still a lot better than DES’s key complexity, which is
256.

B. Known Plain Text Attack
One big problem that stream ciphers face is their ability to

withstand known plain text attacks. Known plain text attack is
a type of attack to ciphers that uses both plain text and cipher
text to estimate the corresponding key.

In simple Ikeda Map ciphers (without number compression
algorithm), if we had a sequence that contained at least three
plain texts and their corresponding cipher texts, we could
obtain all three parameters that are required to form a key (u,
xn, and yn). Although the key would not be same with the
original one, it still could be used to calculate the rest of
number sequence in the same way the original key would do.
The detailed explanations about how to do this attack are:

1. The first plain and cipher text pair was used to obtain
xn. To get xn, we could simply XOR the plain text and
its corresponding cipher text.

2. The second plain and cipher text pair was used to
obtain yn. The process was done likewise the process
we did in step 1.

3. As now we got xn and yn, we could calculate
(𝑥𝑥𝑛𝑛 cos 𝑡𝑡𝑛𝑛 − 𝑦𝑦𝑛𝑛 sin 𝑡𝑡𝑛𝑛). We could get u parameter by
substituting the result we got from that calculation into
this equation: 𝑥𝑥𝑛𝑛+1 = 1 + 𝑢𝑢(𝑥𝑥𝑛𝑛 cos 𝑡𝑡𝑛𝑛 − 𝑦𝑦𝑛𝑛 sin 𝑡𝑡𝑛𝑛).
The XOR of third plain and cipher text pair would be
the value of 𝑥𝑥𝑛𝑛+1.

This type of attack could be avoided by cutting direct
connection between key and cipher text. SCAC-MAT’s
number compression algorithm also does this job perfectly
besides compressing larger number format. For example, given
an 8-bits number (11010001)2, there are so many possible
corresponding 32-bits numbers. Even expanding that number to
only 16-bits number might result in (0100011100000000)2,
(0100011000000001)2, (0100010100000010)2, and many more
possibilities. Hence, it is impossible to recover the original
number from our compressed number.

C. Potential Uneven Number Distribution Problem
As being mentioned before in IV.A, the distribution of

number that was generated by SCAC-MAT was not spread
evenly. Some numbers were used frequently rather than the
others. Statistically speaking, this was not a good thing and
might allow statistical-based attack to SCAC-MAT.

Although currently we have not found any way to attack
our cipher by exploiting this potential statistical problem,
further study about this potential problem is suggested to avoid
future attacks.

D. Shannon’s Confusion and Diffusion
The main principle of Shannon’s confusion property is

preventing any connection between cipher text, plain text, and
key to make statistical analysis very frustrating. As being
explained before in V.B, our number compression algorithm
cut the connection between keys and cipher texts so that it was
impossible to derive a key, even by using known plain texts
attack. Hence, SCAC-MAT has a powerful confusion property.

As for Shannon’s diffusion property, its main principle is
even for an imperceptible change would cause immense
impacts. SCAC-MAT naturally possesses this property thanks
to the chaotic behavior that it has. As being discussed before in
IV.C, tiny changes to key parameters resulted dramatic
changes, which are characteristics of strong diffusion property.
However, due to the nature of stream ciphers, tiny changes in
cipher text would not cause dramatic changes in corresponding
plain text. Therefore, if the cipher was not used properly by a
system (for example: no data integrity checking), flip bit
attacks might be possible for the system.

VI. CONCLUTIONS
1. Ikeda Map PRNG didn’t generate any repeated number

sequence. Hence, it was classified as secure PRNG and
could be used to make secure stream ciphers.

2. Due to the nature of chaotic behavior that SCAC-MAT
possessed, a minuscule change in the key would cause
prodigious effects in the resulting cipher or plain texts.
Experiments that we had conducted showed us
accordingly.

3. Despite the fact that SCAC-MAT’s key size is 96-bits,
the complexity to break the key by doing exhaustive
search is less than 296. The reason lies with the nature
of numbers that it operates. However, in order to break
the key, humongous computations are still required. In
fact, the complexity to break SCAC-MAT’s key is way
larger than DES, which are 288.6 and 256 respectively.

4. SCAC-MAT was able to withstand known plain text
attacks due to the usage of number compression
algorithm. The algorithm cut the connection between
cipher texts and keys, thus making it impossible to
guess the corresponding key from plain and cipher text
pairs.

5. According to the result of experiments, the number
distributions were not spread evenly. Hence, further
study is suggested to explore potential problem that it
might cause.

ACKNOWLEDGMENT
Andre Susanto, as the writer of this paper, want to express

his deepest gratitude to Dr. Ir. Rinaldi Munir, M.T. as the
lecturer of IF 4020– “Kriptografi”. Special thanks to all of my
family, my friends in Informatics 2012, and other people that
give any form of support to me to finish this paper.

REFERENCES
[1] Luciano, Dennis; Gordon Prichett (January 1987). "Cryptology: From

Caesar Ciphers to Public-Key Cryptosystems". The College
Mathematics Journal 18 (1): 2–17.

[2] Matt J. B. Robshaw, Stream Ciphers Technical Report TR-701, version
2.0, RSA Laboratories, 1995.

[3] Munir, Rinaldi; Riyanto, Bambang; Sutikno, Sarwono. “Perancangan
Algoritma Kriptografi Stream Cipher dengan Chaos”, KNSI, 2006.

[4] Munir, Rinaldi. “Diktat Kuliah IF5054 Kriptografi”, Departemen Teknik
Informatika ITB, 2005.

[5] K.Ikeda, Multiple-valued Stationary State and its Instability of the
Transmitted Light by a Ring Cavity System, Opt. Commun. 30 257-261,
1979.

[6] K. Ikeda, H. Daido and O. Akimoto, Optical Turbulence: Chaotic
Behavior of Transmitted Light from a Ring Cavity, Phys. Rev. Lett. 45,
709–712, 1980.

[7] Danforth, Christopher M. (April 2013). "Chaos in an Atmosphere
Hanging on a Wall". Mathematics of Planet Earth 2013. Retrieved 4
April 2013.

	I. Introduction
	II. Theories
	A. Stream Cipher
	B. Chaos Theory
	C. Ikeda Map

	III. The Proposed Algorithm
	A. Number Compression Algorithm
	B. Key and Initial Parameters
	C. Encryption and Decryption

	IV. Experiments and Analysis
	A. Random Number Trajectories
	B. Number Sequence Repetitions
	C. Initial Parameters Sensitivity

	V. Security Analysis
	A. Key Security
	B. Known Plain Text Attack
	C. Potential Uneven Number Distribution Problem
	D. Shannon’s Confusion and Diffusion

	VI. Conclutions
	Acknowledgment
	References

