
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Performance Analysis of Bloom Filter with Various Hash

Functions on Spell Checker

Fauzan Hilmi Ramadhian 13512003

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

fauzan_hilmi@hotmail.com

Abstract— One of not-too-widely-known data structure is

bloom filter. Bloom filter is a data structure that utilises hash

functions to support its two core operations; element addition

and element existence checking. Even though it doesn’t earn

enough fame, bloom filter still widely used in computer

industry. The example of application that uses bloom filter is

spell checker. An interesting point about bloom filter worth

talking about is its dependency to hash functions. In this

paper, there will be discussion about the peformance

comparison of 8 hash functions on its duty as bloom filter’s

hash. The bloom filter will be tested on a simple spell checker.

In the end, the recommended hash functions will be

concluded.

Index Terms—bloom filter, data structure, hash function,

spell checker

I. INTRODUCTION

Nowadays, computer technlogy has become a central

support of modern life. Hundreds and thousands human

activities will not possible if computer didn’t exist.

Computer is such well logic and complex designed that

makes it possible. One of the key element behind the

working computers is data structure.

Data structure is a particular way to store and organize a

large amount of datas in computer. Why they becomes the

key element of computers? Because each computer needs

a way to store its gigabytes of data effectively and

efficiently, and data structure provides that.

There are so many types of data structure out there. Data

structures may exist as simple or complex structure, and

they may be available in programming language libraries

or not. One of not too-widely-known example of data

structure is bloom filter.

Bloom filter is a data structure that supports two basic

operations; element addition and element existence

checking. In order to perform those operations, bloom filter

utilises hash functions. Hash function is a type of function

that takes a data input, usually in arbitrary size, and turns it

into a completely different value, usually in different

length from the input. Hashes are commonly used in

computer technology. They serve as hash tables, caches,

similarity checking, encryption, and in this case, a support

technlogy for bloom filters.

Bloom filter uses hash functions to map the data input

into its array upon both the element addition and element

existence checking. It can uses any hash functions. Even

then, bloom filter may use 1 or more hashes. So, different

combinations of hash functions used are possible. Now, an

interesting question came to mind; what is the most

suitable hash function to be used by the bloom filters? This

is the central discussion point of this paper. In this paper,

there will be discussion about 8 hash functions that are

going to be reviewed in bloom filter. Then, their

performance will be tested. The performance here refers to

the hashes’ average running time and false positive rate.

Each one of the hashes functions will be tested on a bloom

filter implemented as a simple spell checker. The

experiment result will be discussed to conclude hash

functions that are recommended and that are not to be used

in bloom filters.

II. THEORY

A. Hash Function

 Hash function is a type of function that takes a group of

characters (called key) and maps it to a value of certain

length (called hash value, hash codes, hash sums, or

simply hash). Hashes are used in various sections of

computer world. Primary use of hashes are hash tables

which are used to quickly locate a data record by its query

key. The hash is also useful for mapping the key to an

index; the index locates the place in the hash table where

the corresponding record should be stored. Besides that,

hashes are benefical in caches, data security, data

comparison, and cryptography. There is even a type of

hash called cryptographic hash function that is used

primarily to convert data keys into irreversible hash

values. Last but not least, bloom filters use hash functions

too.

 There are so many hash functions out there. Some of

them will be discussed here. Examples of hash function

that are involved in this paper are as follows.

 1. MD5

 MD5 is famous cryptographic hash function that

maps arbitrary sized data input into 128-bit hash

value. It was established by Ronald Rivest in 1991.

MD5 has been widely used by people around the

world until its security flaw was found not far too long

ago.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

 2. SHA-1

 Like MD5, SHA-1 is common used cryptographic

hash function that produces 160-byte hash value from

arbitrary sized key value. It was designed by United

States National Security Agency (NSA) and is a U.S.

Federal Information Processing Standard as stated by

the United States NIST. This function is mostyly used

on security applications like TLS and SSL.

 3. CRC-32

 CRC (Cyclic Redundancy Check) is hash function

that is mainly used to detecting errors caused by

accidental raw data changes in digital networks and

storage devices. It was invented by W. Wesley

Peterson in 1961. Unlike the cryptographic hashes,

CRC is reversible. An implementation of CRC is

CRC-32 which is widely implemented on ethernet and

other standards.

 4. Java hashCode

 Java hashCode() is a hash function developed and

implemented exclusively by and on Java. The

hashCode() method is only available for String object.

This function takes the product sum algorithm over

the entire text of the string to produce the output

value.

 5. FNV

 Fowler-Noll-Vo (FNV) is a non-cryptographic hash

function developed by Glenn Fowler, Landon Curt

Noll, and Phong Vo. FNV is famous because of its

easiness design and thus easy implementation. This

function was designed for fast hash table and

checksum table.

 6. MurmurHash

 Not too differenr from FNV, MurmurHash is a non-

cryptographic hash function created by Austin

Aplleby in 2008. The current version of MurmurHash

supports 32-bit and 128-bit hash values. This hash is

built primarily for efficent hash-based lookup.

 7. Jenkins Hash

 Jenkins Hash functions are a collection of non-

cryptographic hash functions for multi-byte keys

invented by Bob Jenkins. The functions are widely

used in checksums to detect accidental data corruption

and in database in which the functions determine

whether two data records are similar or not. The first

Jenkins hash functions, one-at-atime, was published in

1997. Then, Jenkins released new improved functions

such as lookup2, lookup3, and the newest one,

SpookyHash. The function that is refered as Jenkins

hash on this page is lookup3.

 8. XXHash

 XXHash is a not-yet-widely-known non-

cryptographic hash function developed by Pike and

Alakuijala. It is commonly used to detecting error in

LZ4 Decoder. Besides that, XXHash can be useful in

databases, games, and security world.

B. Bloom Filter

 Bloom filter is a space-efficient probabilistic data

structure that is used to test whether an element is a

member of a set or not. The term “probabilistic data

structure” means that it can tells that an element is

definitely not in the set. However, it cannot tells whether

an element is definitely in the set; It can only tells that an

element is probably in the set. Thus, false positives are

possible but false negatives are not. Bloom filter was

invented by Burton Howard Bloom in 1970. The data

structure supports two basic operations; add element to

the set and check whether the element is in the set or not.

Some operations like element deletion, false positive

handling, etc can be implemented along with modification

of the data structure.

 Bloom filter uses bit array or bit vector of m bits as its

main base data structure. Also, k different hash functions

are used to map some set elements to one of the m array

positions with uniform random distribution. First, the bit

array is initialized with value 0 on all of its elements.

Then, addition operation is conducted by feeding the

element to each of k hash functions to get k array

positions. These k bits are all set to 1. Meanwhile

checking operation is done by feeding the element to each

of k hash functions to get k array positions. Then, check

whether these k bits are all set to 1 or not. If they are all

set, then the element is probably in the set. But if not, then

the element is definitely not in the set.

 Here are some pictures to describe the operations

better. An example of element addition is as follows.

Fig 2.1 Two elements (1 and 2) are added to the empty bloom

filter

 Now the checking operation example will be

presented. First, the positive. There are two possibilities

when this happened. Either the element is really exists in

the filter, or it isn’t. In that case, it is a case of false

positive. An example of true positive result is as follows.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

Fig 2.2 The element 3 is really exists and thus reported as true

positive

 Meanwhile, a case of false positive is given below.

Fig 2.3 The element 7 is actually not exists but reported as

positive

 Now the negative result will be discussed. There is

only one possibility for this result, true negative. Thus, a

false negative will never happened.

Fig 2.4 Element 6 is checked and it is definitely not in filter.

 Compared to its data structure competitors for

representing sets such as binary search tree, trie, hash

table, etc, Bloom filter have strong advantage. Unlike

most of the competitors, bloom filter doesn’t store the

data on its array. It only stores the hashed bits of

elements. Thus, bloom filter is generally faster and needs

less storage space. The time needed either to add elements

or checking elements is a fixed constant O(k).

 The biggest talking point of bloom filter is the false

positive. False positives are the major drawback of this

data structure. However, the false positives rate can be

adjusted as required. The rate can be calculated by the

formula below.

Fig 2.5 The formula for finding p

 k represented the number of hash functions, m is the size

of bit array, and n is the expected number of elements.

Besides this, there are formulas to determine the value of

m and k too. Here are them.

Fig 2.6 The formula to determine m value

Fig 2.7 The formula to determine k value

 Because of its frequently used operations in real world

(additon and checking) and its fast, efficient performance,

bloom filter is used in many applications. Apart from

spell checker, bloom filter is also used in Squid Web

Proxy Cache for cache digests, Google Chrome for

filtering malicious URLs, Google BigTable and Apache

Cassandra for reducing disk lookups, Bitcoin for speeding

up wallet synchronization, and many other applications.

C. Spell Checker

 Spell checker is an application program that checks the

correct spelling of words. Spell checker may be found on

its own application or embedded on another applications.

Some examples of application that uses spell checker are

word processor, email client, digital dictionary, and

search engine.

 Basically, spell checker do its job as follows. First, the

spell cheker scans the text and extracts the words from it.

Then, for each word, the checker will performing the

lookup operation to its dictionary to check whether the

word is there or not. If the word is found, the spell

checker will do nothing. But if it isn’t found, the checker

will show the mistaken word message to the user.

Additionally, the checker may find the closest right word

and suggest it to the user.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

III. IMPLEMENTATION

A. Experiment Setup

 All implementation is done on Java. The spell checker

implemented here is a simple type one. It basically loads

the dictionary from external text file to internal memory.

The dictionary is downloaded from http://www-

01.sil.org/linguistics/wordlists/english/. Then, the

checking operations from the bloom filter are performed.

 The bloom filter itself is constructed of an array of

byte. The bytes act as bit and thus can only be valued 0 or

1. Then, the bloom filter parameters are as follows. The

number of items in the filter (n) is the number of words in

dictionary, that is 109.583. Each hash function is

reviewed once at a time and thus the number of hash

function (k) is 1. It also concludes that there are going to

be 8 bloom filters to be reviewed. Then, using the bloom

filter formulas discussed before, the number of bits in

filter (n) is 208.991. The final value, the false positive rate

(p) is computed as around 0,4.

 The experiment plot is as follows. There are two

hashes’ performance that will be measured; average

running time and false positives rate. The average running

time is going to be extracted by adding each word to the

bloom filter. Each addition time is measured. Then, all the

times are summed and then divided by the number of

words to get the average additon time.

 Next the false positive rate of each bloom filter is

measured. This is performed by checking whether a non-

exist word will gives positive result or not. Each “wrong

word” are set to be as similar as possible to each word in

the dictionary (by adding a charater or removing a

character). Each bloom filter is tested by 1.154.336 false

words.

B. Source Code

 Here wil be written the source code of the bloom filter

which is implemented in Java. The source code of the

spell checker will not be written as its logic has been

discussed on previous section.

 The overall code of the bloom filter is as follows.

public class BloomFilter {

 private byte[] set;

 private int setsize = 208991; //from Bloom Filter formula

 private String hash;

 public BloomFilter() {

 }

 public BloomFilter(String _hash) {

 set = new byte[1+setsize];

 for(int i=0; i<set.length; i++) {

 set[i] = 0;

 }

 hash = _hash;

 }

public void Add(String s) throws UnsupportedEncodingException,

NoSuchAlgorithmException, IOException {

 int pos = 0;

 switch(hash) {

 case "MD5" : {

 pos = MD5(s);

 break;

 }

 case "SHA1" : {

 pos = SHA1(s);

 break;

 }

 case "CRC" : {

 pos = CRC(s);

 break;

 }

 case "hashCode" : {

 pos = hashCode(s);

 break;

 }

 case "FNV" : {

 pos = FNV(s);

 break;

 }

 case "Murmur" : {

 pos = Murmur(s);

 break;

 }

 case "Jenkins" : {

 pos = Jenkins(s);

 break;

 }

 case "XXHash" : {

 pos = XXHash(s);

 break;

 }

 }

 set[pos] = 1;

 }

 public boolean check(String s) throws IOException,

UnsupportedEncodingException, NoSuchAlgorithmException {

 int pos = 0;

 switch(hash) {

 case "MD5" : {

 pos = MD5(s);

 break;

 }

 case "SHA1" : {

 pos = SHA1(s);

 break;

 }

 case "CRC" : {

 pos = CRC(s);

 break;

 }

 case "hashCode" : {

 pos = hashCode(s);

 break;

 }

 case "FNV" : {

 pos = FNV(s);

 break;

 }

 case "Murmur" : {

 pos = Murmur(s);

 break;

 }

 case "Jenkins" : {

 pos = Jenkins(s);

 break;

 }

 case "XXHash" : {

 pos = XXHash(s);

 break;

 }

 }

 return (set[pos]==1);

 }

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

IV. RESULT AND ANALYSIS

The result table for average running time experiment is

as follows.

Hash Average Running Time (ns)

MD5 3604

SHA-1 2669

CRC-32 841

Java hashCode 790

FNV 599

MurmurHash 775

Jenkin Hash 832

XXHash 4665

Table 4.1 Average running time experiment results

It can be seen that MD5 and SHA-1 are quite slow

compared to other functions. It is because they are

crytptographic hash functions; they are not optimized to

works fastly as their primary job is to ensure no collissions

happened and the key values are not trackable. However, it

is a bit surprising to find that XXHash is categorized as

slow too. Even it is the slowest one! The possible cause lies

on the implementation of the function; the bottleneck is on

the XXHash’s library chosen as it is execution required

several additional steps. The other 4 functions, hashCode,

FNV, MurmurHash, and Jenkins Hash performs

reasonably. They executes fastest with not much time

difference between them. It is very understandable as their

function is to computes hash values as fast as possible.

Now, the false positive rate analysis will be discussed.

Here is the result of the false positive rate experiment.

Hash False Positive Rate (%)

MD5 0.3850638

SHA-1 0.3864256

CRC-32 0.3854293

Java hashCode 0.3858365

FNV 0.3836803

MurmurHash 0.3860427

Jenkin Hash 0.3853652

XXHash 0.3864536

Table 4.2 False positive rate experiment results

It is a bit surprising that the performance of

cryptographic hash functions (MD5 and SHA-1) is not far

off behind the others. Even MD5 was managed to be the

second least for the number of false positives! In theory, it

should not happened as cryptographic hash functions do

not well distributed the hash values. They only concerned

on how the hash values are not reversible. There are several

possibilites on why this could happen. Maybe it’s just a

plain of luck that the hash values are distributed uniformly,

though it is unlikely. Another possibility lies on maybe

broken implementation of the bloom filter. It is not easy to

track the causes. Afterall, this experiment shows that

cryptographic hash functions can be good bloom filter hash

functions too.

 Besides the tale of the first two function, it can be seen

that FNV is the king of the least false positives. It is quite

leaving its competitors quite far off in the front. Then, the

CRC, hashCode, and Jenkins Hash performs reasonably.

However, MurmurHash and XXHash’ bad performance

again raises red flag that they should be avoided to be used

in bloom filters.

V. CONCLUSION

Bloom filter is a very useful though not very well known

data structure. Basically, it supports two basic operations.

The operations are element addition and element existence

checking. Bloom filter is used in Squid Web Proxy Cache

for cache digests, Google Chrome for filtering malicious

URLs, Google BigTable and Apache Cassandra for

reducing disk lookups, Bitcoin for speeding up wallet

synchronization, and many other applications. In this case,

bloom filter can be used in spell checker too. The words

addition and correct words checking can be done by the

filter.

Bloom filter uses hash functions on its implementation.

The hashes are used to maps elements to the array. An

interesting problem to be discussed is which hash function

best suited to bloom filter? Then, an experiment is

conducted with 8 hash functions to determine which has

the best and worst performance. The performance here

refers to the average running time and false positive rate.

The result is as follows. In terms of average running

time, MD5 and SHA-1 is the least performing hashes. It is

an understandable result as their job as cryptographic hash

function makes them not as fast as others. The XXHash

result is an anomaly as its implementation is broken in

execution time. Meanwhile, the false positive rate results

are more surprising. Cryptographic hash functions manage

to get a good result relatively to the non-cryptographic.

This may be occured because of broken implementation or

they just a bit “lucky” the results are distributed uniformly.

However, the winner here is FNV as it gets the least false

positive rate among the others.

In conclusion, cryptographic hash functions like MD5

and SHA-1 is not good choice for bloom filters. Although

they can get good false positive rate in the experiment, their

running time is far too long. Looking to the two tables

above, the most recommended hash function is FNV. It has

the least false positive rate, and its average running time is

among the fastest ones.

VII. ACKNOWLEDGMENT

First of all, Author would say thank you to Almighty

God because of His mercy and grace Author can finish

this paper. Then, Authors also wants to express his thanks

to Dr. Ir. Rinaldi Munir, M.T. whose give helpful advices

and assistances. Finally, Author want to say thank you to

his parents and beloved friends who are always give

Author strengths and spirits to pass the struggles during

the writing of this paper.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2012/2013

REFERENCES

[1] Burstein, Max. Creating a Simple Bloom Filter.
http://www.maxburstein.com/blog/creating-a-simple-bloom-

filter/. Accessed on 10 May 2015, 19.58

[2] Hurst, Thomas. Bloom Filter Calculator.
http://hur.st/bloomfilter?n=4&p=1.0E-20. Accessed on 10 May

2015, 13.23
[3] Mill, Bill. Bloom Filters by Example. billmill.org/bloomfilter-

tutorial/. Accessed on 10 May 2015, 13.09

[4] Technopedia, Hash Function.
http://www.techopedia.com/definition/19744/hash-function.

Accessed on 10 May 2015, 12.30

[5] Zhen, Jian. Benchmarking Bloom Filters and Hash Functions and
Go. http://zhen.org/blog/benchmarking-bloom-filters-and-hash-

functions-in-go/. Accessed on 10 May 2015, 14.27

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 11 Mei 2015

Fauzan Hilmi Ramadhian 13512003

http://www.maxburstein.com/blog/creating-a-simple-bloom-filter/
http://www.maxburstein.com/blog/creating-a-simple-bloom-filter/
http://hur.st/bloomfilter?n=4&p=1.0E-20
http://www.techopedia.com/definition/19744/hash-function
http://zhen.org/blog/benchmarking-bloom-filters-and-hash-functions-in-go/
http://zhen.org/blog/benchmarking-bloom-filters-and-hash-functions-in-go/

