
1

Kristik
A Sewing Block Cipher Algorithm

Hayyu’ Luthfi Hanifah (Author)

Informatics/Computer Science Departement

Institut Teknologi Bandung

Bandung, Indonesia

hayyuhanifah52@gmail.com

Choirunnisa Fatima (Author)

Informatics/Computer Science Departement

Institut Teknologi Bandung

Bandung, Indonesia

choirunnisa.fatima@gmail.com

Abstract—The variation of information form (text, audio,

image, or audiovisual) evokes the need of new cryptography

algorithms which can encrypt/decrypt any form of information.

These new algorithms (modern cryptography algorithms) do

encryption or decryption per bit (stream cipher) or per block of

bits (block cipher). In this paper, we propose a block cipher

algorithm use Feistel Network. Plain text is transformed to and

proceeded in hexadecimal (but in the implementation we use

integer 0-15 to simplify the computation). (Abstract)

Keywords—modern cryptography, block cipher, Feistel

network, hexadecimal

I. INTRODUCTION

The main purpose of cryptography is to ensure the security
of any transmitted information. So far there are several
cryptography algorithms.

Early in cryptography history, people substituted each
character in the plain text with another character based on a
key. The result is an unreadable string known as cipher text.
The receiver has to decrypt this cipher text based on the same
key to get the information from the sender.

Nowadays, the kind of information is varied. Not only text,
information may has a form of audio, image, or audiovisual.
These kinds of information can't be encrypted/decrypted by
classic cryptography algorithms. Here we need an algorithm to
perform encryption/decryption in the order of bits because any
kind of information can be represented in bits. Besides, by
performing encryption in the order of bits, the difficulty to do
cryptanalysis on cipher text can be increased.

II. THEORY OF MODERN CRYPTOGRAPHY

A. Block Cipher

In classic cryptography, plain text is proceeded per
character or two character. In block cipher algorithm, plain text
is proceeded block per block data. The size of block data is
equal to the size of key used in the algorithm. Block cipher
algorithm maps the block data in plain text into the same size
of cipher text.

There are 4 operation modes for block cipher:
1. Electronic Code Book (ECB), a block of plain text

always be encrypted to a block of cipher text. For

example, given a block of plain text 1101, we will
always get 1001 as the cipher text.

2. Cipher Block Chaining (CBC), a block of plain text is
encrypted based on the given key and the result (cipher
text) from a block before it. The first block of plain
text is encrypted based on the given key and an
initialization vector (given by user or generated by
program).

3. Cipher Feedback (CFB), encrypt data in the smaller
unit to handle incomplete blocks. For example, given
the size of a block is 64 bits, block cipher using CFB
mode can still proceed a block with only 56 bits.

4. Output Feedback (OFB), similar with CFB mode. The
difference is in this method, the bits resulted from
encryption are appended to the block plain text (to
complete the block) while in CFB method the bits
resulted from encryption need to be proceeded in a
function before they are appended to the block plain
text.

B. Feistel Network

Feistel network is a reversible algorithm which is used to

construct a block cipher algorithm. The algorithm works by

splitting the input into two blocks, left (L) and right (R), then

perform a function and XOR to the blocks. It is said to be

reversible because the encryption and decryption operations

are similar.

III. THE PROPOSED METHOD

The proposed method is based on feistel network

algorithm in which it is operated for a certain number of

rounds. The difference between this method and other

methods is in generating inner-key feistel network. And that it

uses 8-bit plain text per operation, the inner function in feistel

network will use 4-bit text. The detailed encryption steps of

the proposed method are as follows.

1) Transformation

Take 8-bit of plaintext and divide into two binary blocks

of 4-bit. Let the first 4-bit be referred as L, and the last 4-bit be

referred as R. Then convert, both of them into decimal

representation or 10-base integer. The two integers will then

be inputs of feistel network.

2

2) Feistel network

Figure 1 Feistel Network

As we see in above picture, L and R are placed in the top

of the network. R will be processed in a function with key K,

then XOR’ed with L. The result is an integer and referred as

R2. We then assign the value of old R into L2. Again, we’ve

got two integers R2 and L2.

3) Inner function

This is the function inside the feistel network. The idea

is to perform addition between function parameters, these are

R and K. The result of addition, however, could be more or

equal than 16. So after addition, the function will perform

modulo 16 so that it keeps 4-bit operation. We already know

that R is an integer which we’ve got from transformation, but

we don’t know about K yet. K, we say in this proposed

method, as inner key. The inner function can be represented

by the following equation.

𝑓(𝑅, 𝐾) = 𝑅 + 𝐾 (𝑚𝑜𝑑 16) (1)

4) Inner keys

 We will need an array of integers which keeps the inner

keys. The number of inner keys is equal to the number of 4-bit

texts in key, we would rather say it is equal to two times of

number of characters in key.

In the feistel network, we’ve got L2 and R2. We then keep

L2 in the array of integer such that it will be the inner key for

the next feistel network of the next 8-bit plain text. So on, the

inner key of current feistel network will be get from left result

of feistel network before. For the inner key of feistel network

of first 8-bit plain text, we get it from converting 4-bit key to

integer. We use this technique to improve the diffusion of

proposed method. You could look at the picture below to see

the flow of the inner keys.

Figure 2 Inner Keys Flow

5) Round

In order to increase the complexity of proposed method,

the feistel network is performed in a certain number of rounds.

The number of rounds is equal to the number of 4-bit text in

the key. So, if the key is 64 bits then the number of rounds

will be 16. Then the feistel network is performed 16 times.

The two integers result from the first round of feistel network

then will be used in second round of feistel network, the next

result will be used in third round, and so on.

After 16 rounds, the last result will be the 8-bit ciphertext.

As the result is in the form of two integers, we convert it into

binary representation, concatenate it such that L is in the left-

hand-side and R is in the right-hand-side. We know that the

integer result will always be maximum 16, that is a 4-bit

integer. At last, we’ve got a 8-bit binary representation of

cipher text.

The number of rounds, however, will affect inner keys.

We said that we need array with size of a certain number. That

certain number is actually also the number of rounds. So the

initial inner keys are all 4-bit text of the key, after converting

it into integer. And the inner keys of others are determined

from corresponding order of rounds of feistel network. You

can see the illustration of overall proposed method in the

picture below.

Figure 3 Overall Illustration of Proposed Method

3

The decryption steps of the proposed method is done in
similar way of encryption steps. Inner keys are generated in the
reverse order.

IV. EXPERIMENTAL RESULT AND ANALYSES

We’re doing several experiment on every mode of
operations. The experimental results are as follows.

A. ECB Mode

Plaintext Game from scratch

Key experiment

Cipher text
Size of Key/Blocks 80 bits

Size of Plaintext 160 bits

Encryption Time 569 us

Decryption Time 614 us
Table 1 Experiment 1

Plaintext You may prefer to use

System.nanoTime() if you are looking

for extremely precise measurements of

elapsed time.

Key Another option would be

Cipher text

Size of Key/Blocks 184 bits

Size of Plaintext 920 bits

Encryption Time 2755 us

Decryption Time 2589 us
Table 2 Experiment 2

B. CBC Mode

Plaintext Game from scratch

Key experiment

Cipher text

Size of Key/Blocks 80 bits

Size of Plaintext 160 bits

Encryption Time 664 us

Decryption Time 735 us
Table 3 Experiment 3

Plaintext You may prefer to use

System.nanoTime() if you are looking

for extremely precise measurements of

elapsed time.

Key Another option would be

Cipher text

Size of Key/Blocks 2987 bits

Size of Plaintext 2755 bits

Encryption Time 2755 us

Decryption Time 2589 us
Table 4 Experiment 4

C. CFB Mode

Plaintext Game from scratch

Key Experiment

Cipher text
Size of Key/Blocks 80 bits

Size of Plaintext 136 bits

Encryption Time 3740 us

Decryption Time 4421 us
Table 5 Experiment 5

Plaintext You may prefer to use

System.nanoTime() if you are looking

for extremely precise measurements of

elapsed time.

Key Another option would be

Cipher text

Size of Key/Blocks 184 bits

Size of Plaintext 880 bits

Encryption Time 44813 us

Decryption Time 12303 us
Table 6 Experiment 6

From the tables above, you can see that the size of

plaintext are different although using the same plaintext. It

happened because when we are using ECB and CBC mode,

we have to add some bits in the end of plaintext to make the

block size equal to key size. The execution time is likely to be

the same between encryption time and decryption time in each

mode of operation. It is because the proposed algorithm uses

feistel network as main operation which is reversible. So the

proposed algorithm works in similar operations between

encryption and decryption. The execution time in ECB mode

is likely to be shorter than CBC mode, and execution time in

CBC mode is shorter than CFB mode. It is because the CBC

mode is more complex than ECB mode and CFB mode is

more complex than CBC mode.

V. SECURITY ANALYSIS

One of attack against cryptography is ciphertext-only

attack. This attack try to decrypt the cipher text without

knowing the key.

A popular method to do this attack is frequency analysis.

Every emersion of character in cipher text is counted. Then,

the character which has the highest number of emersion is

translated to the character with the highest number of

emersion in a language (the language that is used in plain text,

for example in English “E” is the character with the highest

number of emersion).

By using Kristik, a character in plain text may be

encrypted to many characters depends on the key. So, cipher

4

text resulted by Kristik algorithm can’t be easily decrypted by

doing frequency analysis.

Another attack is exhaustive key search. This is a brute

force way to find the key. Here is a table of time needed to

decrypt a cipher text using exhaustive key search:

Key size Number of

probable key

Time (106

attempts per

second)

16 bits 216 = 65536 32.7 milliseconds

32 bits 232 = 4.3 x 109 35.8 minutes

56 bits 256 = 7.2 x 1016 1142 years

128 bits 2128 = 4.3 x 1038 5.4 x 1024 years
Table 7 Table of estimated time for exhaustive key search

VI. CONCLUSION

In this paper, we have proposed a modern cryptography

algorithm named Kristik. This algorithm does

encryption/decryption in order of hexadecimal (but in the

implementation we use integer 0-15). From the security

analysis, we conclude that this algorithm is secure enough.

REFERENCES

[1] A. Menezes, P. van Oorschot, and S. Vanston, “Handbook of Applied

Cryptography” CRC Press. 1996.

[2] William Stalings, “Data and Computer Communication Fourth Edition”
Prentice Halll. 2004.

