# Shannon's Idea of Confusion and Diffusion

The DES, AES and many block ciphers are designed using Shannon's idea of confusion and diffusion. The objectives of this document is to introduce

- linear and nonlinear functions; and
- Shannon's confusion and diffusion.

#### **Linear Functions**

Notation: Let  $F_2$  denote the set  $\{0, 1\}$  and let

$$\mathbf{F}_2^n = \{(x_1, x_2, \cdots, x_n) | x_i \in \mathbf{F}_2\}.$$

Here  $\mathbf{F}_2^n$  is associated with the bitwise exclusive-or operation, denoted +.

**Linear functions:** Let f be a function from  $\mathbf{F}_2^n$  to  $\mathbf{F}_2^m$ , where n and m are integers. f is called **linear** if

$$f(x+y) = f(x) + f(y)$$

for all  $x, y \in \mathbf{F}_2^n$ .

**Example:** Let  $f(x) = x_1 + x_2 + \cdots + x_n$ , where

$$x = (x_1, \cdots, x_n) \in \mathbf{F}_2^n.$$

Then f is a linear function from  $\mathbf{F}_2^n$  to  $\mathbf{F}_2$ . Note that + denotes the modulo-2 addition.

## **Examples of Linear Functions**

**Linear permutations:** Let *P* be a permutation of the set  $\{1, \dots, n\}$ . Define a function  $L_P$  from  $\mathbf{F}_2^n$  to itself by

$$L_P((x_1, x_2, \cdots, x_n)) = (x_{P(1)}, x_{P(2)}, \cdots, x_{P(n)})$$
  
for any  $x = (x_1, x_2, \cdots, x_n) \in \mathbf{F}_n$ .

**Lemma:**  $L_P$  is linear with respect to the bitwise exclusiveor.

**Conclusion:** Such a linear function is used in both DES and AES.

#### **Examples of Linear Functions**

**Linear function by circular shift:** Let *i* be any positive integer. Define a function  $LS_i$  from  $\mathbf{F}_2^n$  to  $\mathbf{F}_2^n$  by

$$LS_{i}((x_{0}, x_{1}, \dots, x_{n-1}))$$
  
=  $(x_{(0-i) \mod n}, x_{(1-i) \mod n}, \dots, x_{(n-1-i) \mod n})$   
for any  $x = (x_{0}, x_{1}, \dots, x_{n-1}) \in \mathbf{F}_{n}$ .

**Conclusion:**  $LS_i$  is linear with respect to the bitwise exclusive-or.

## **Nonlinear Functions**

**Definition** Let f be a function from  $\mathbf{F}_2^n$  to  $\mathbf{F}_2^m$ , where n and m are positive integers. f is called **nonlinear** if

$$f(x+y) \neq f(x) + f(y)$$

for at least one pair of  $x, y \in \mathbf{F}_2^n$ .

**Example:** Let  $f(x) = x_1x_2 + x_2 + \cdots + x_n$ , where

$$x = (x_1, \cdots, x_n) \in \mathbf{F}_2^n.$$

Note that + denotes the modulo-2 addition.

## Nonlinearity of S-Boxes

**The S-box in AES:** A function from  $GF(2^8)$  to  $GF(2^8)$  defined by

$$S(x) = x^{2^8 - 2}$$

The nonlinearity is measured by

 $P_{S} = \max_{\substack{0 \neq a \in GF(2^{8}), \\ b \in GF(2^{8})}} |\{x \in GF(2^{8}) : S(x+a) - S(x) = b\}|$ 

**Comment:** The smaller the  $P_S$ , the higher the nonlinearity of S.

**Remark:** *S* is highly nonlinear.

# **Diffusion Requirement**

**Diffusion:** Each plaintext block bit or key bit affects many bits of the ciphertext block.



**Remark:** Linear functions are responsible for confusion.

## **Diffusion Requirement**

**Diffusion:** Each plaintext block bit or key bit affects many bits of the ciphertext block.

**Example:** Suppose that x, y and k all have 8 bits. If

| $y_1$   | = | $x_1 + x_2 + x_3 + x_4 + k_1 + k_2 + k_3 + k_4$ |
|---------|---|-------------------------------------------------|
| $y_2$   | = | $x_2 + x_3 + x_4 + x_5 + k_2 + k_3 + k_4 + k_5$ |
| $y_{3}$ | = | $x_3 + x_4 + x_5 + x_6 + k_3 + k_4 + k_5 + k_6$ |
| $y_4$   | = | $x_4 + x_5 + x_6 + x_7 + k_4 + k_5 + k_6 + k_7$ |
| $y_5$   | = | $x_5 + x_6 + x_7 + x_8 + k_5 + k_6 + k_7 + k_8$ |
| $y_6$   | = | $x_6 + x_7 + x_8 + x_1 + k_6 + k_7 + k_8 + k_1$ |
| $y_7$   | = | $x_7 + x_8 + x_1 + x_2 + k_7 + k_8 + k_1 + k_2$ |
| $y_8$   | = | $x_8 + x_1 + x_2 + x_3 + k_8 + k_1 + k_2 + k_3$ |

then it has very **good** diffusion, because each plaintext bit or key bit affects half of the bits in the output block y.

# **Confusion Requirement**

**Confusion:** Each bit of the ciphertext block has highly nonlinear relations with the plaintext block bits and the key bits.



**Remark:** Nonlinear functions are responsible for confusion.

## **Confusion Requirement**

**Confusion:** Each bit of the ciphertext block has highly nonlinear relations with the plaintext block bits and the key bits.

**Example:** Suppose that x, y and k all have 8 bits. If

$$y_{1} = x_{1} + x_{2} + x_{3} + x_{4} + k_{1} + k_{2} + k_{3} + k_{4}$$

$$y_{2} = x_{2} + x_{3} + x_{4} + x_{5} + k_{2} + k_{3} + k_{4} + k_{5}$$

$$y_{3} = x_{3} + x_{4} + x_{5} + x_{6} + k_{3} + k_{4} + k_{5} + k_{6}$$

$$y_{4} = x_{4} + x_{5} + x_{6} + x_{7} + k_{4} + k_{5} + k_{6} + k_{7}$$

$$y_{5} = x_{5} + x_{6} + x_{7} + x_{8} + k_{5} + k_{6} + k_{7} + k_{8}$$

$$y_{6} = x_{6} + x_{7} + x_{8} + x_{1} + k_{6} + k_{7} + k_{8} + k_{1}$$

$$y_{7} = x_{7} + x_{8} + x_{1} + x_{2} + k_{7} + k_{8} + k_{1} + k_{2}$$

$$y_{8} = x_{8} + x_{1} + x_{2} + x_{3} + k_{8} + k_{1} + k_{2} + k_{3}$$

then it has **bad** confusion, as they are linear relations.

## Shannon's Suggestion

The encryption and decryption functions of a cipher should have both good confusion and diffusion of the message block bits and secret key bits.