
IF3058 Cryptography – Sem. II Year 2012/2013 Paper

Java Hash Code and Hash Map

Raydhitya Yoseph 13509092

Informatics Engineering

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

raydhitya.yoseph@gmail.com

Abstract—This paper contains explanation about how Java

Object hashCode() and equals() work, and how both methods

implemented in few Java classes, lastly how hash code used in

HashMap. HashMap need good hashCode() implementation

with evenly distributed integers, further work needs to be done

on HashMap performance test, and hash function in Java and

cryptography terms are different in computational complexity to

produce its result, but retain the same concept of representing

arbitrary data into fixed length data.

Index Terms—hash function, hash code, Java, hash map.

I. INTRODUCTION

Hash function in cryptography is a function which map

arbitrary string into fixed length string. Hash value

produced by hash function is very sensitive. One

character modification to the string produces totally

different hash value.

The main function of hash function is to represent

arbitrary data into fixed length data. In Java programming

every objects has a hash function which produce the

objects hash value. The hash function in Java different in

term of complexity with hash function in cryptography.

The hash function only do simple calculation to produce

its value.

This paper explains how hash function implemented for

few popular Java classes and the function impact on hash

map.

II. JAVA OBJECT

All printed material, including text, illustrations, and

charts, must be kept within a print area of 17 cm wide by

25 cm high. Do not write or print anything outside the

print area. All text must be in a two-column format.

Columns are to be 8.25 cm wide, with a 0.5 cm space

between them. Text must be fully justified.

Java is object oriented programming language. It has

root object in which every other objects inherits from.

The root object class name is Object. The Object class

provides two methods which are hashCode() and equals()

respectively.

The hashCode() function returns an integer which

represents the object's hash value. The function is marked

with native keyword which means its implementation is

written in native language. The function implementation

is dependents on Java Virtual Machine implementation.

The equals() function accept an Object and returns true

if given object equals with the caller object and return

false otherwise. How to determine two objects equality?

The answer is depends on the programmer. For example

one class has two integer attributes. Programmer can

implements equals() return true if other object's two

attributes have the same value. Programmer also can

implements equals() return true if only other object's one

attribute has the same value.

There are for rules which need to be followed regarding

equals for non-null object references.

1. Reflexive: x.equals(x) should return true;

2. Symmetric: x.equals(y) should return true if and only if

y.equals(x) returns true;

3. Transitive: if x.equals(y) true and y.equals(z) true then

x.equals(z) should return true;

4. Consistent: multiple invocations of x.equals(y)

consistently return true or consistently return false;

5. x.equals(null) should return true.

Next there are two rules related to equals() and

hashCode().

1. If two objects equal according to equals(), then

calling hashCode() on both objects must produce the

same result;

2. If two objects not equals according to equals(), it is

not required calling hashCode() on both objects produce

different result. However, producing different result for

unequal objects may improve the performance of hash

tables.

III. NUMBER AND STRING

This part discuss about hashCode() and equals()

implementation on Java primitive wrapper classes and

String.

A. Number

Each Java primitives has wrapper class for them. For

example integer has Integer class, float has Float class,

and double has Double class. Wrapper classes provide

utility functions such as transforming one type into

another type.

Instance of the wrapper class contains the given value.

For example instantiating new Integer class with 0 will

make the object has 0 as its value. As seen on figure 1, all

the classes inherit from Number class which provide

methods to retrieve the object value to all number

primitives.

mailto:raydhitya.yoseph@gmail.com

IF3058 Cryptography – Sem. II Year 2012/2013 Paper

Figure 1 Number Class Diagram

The hashCode() and equals() implementation for all the

wrapper classes are very simple. All hashCode()

implementations transform the object value into integer

representation. That means Integer class hashCode()

implementation simply return its value. Float hashCode()

implementation transform its float value into integer.

All equals() implementation also very simple. All the

implementations go as follows first check whether given

object is an instance of corresponding class or not. If it is,

cast the object to the corresponding class and get its

value. Two objects equal if both have the same value for

its value attribute.

B. String

String is widely used data type in many programming

languages. Java String class provide utility methods and

store string value in character array.

String has an attribute called hash initialized with 0.

String hashCode() implementation iterate its character

array and compute h = 32 * h + array element, where h

initialized with hash attribute. String equals()

implementations check given String character array are

the same in length and the same in characters.

Figure 2 String Class Diagram

IV. COLLECTIONS

Java provides collection classes which contains more

than one other objects and have methods manipulating its

elements. The collection classes is widely known as Java

Collection Framework.

Figure 3 Collection Class Diagram

A. Collection Interfaces

Collection Framework designed hierarchically with

Collection as root interface as seen in figure 3. Collection

interface is simply collection of objects which is not

widely used interface. List and Set which inherits from

Collection are more often used.

List is an ordered collection. The user of List interface

has precise control over where in the list each element is

inserted. The user can access elements by their integer

index and search for elements in the list. Set is a

collection that contains no duplicate elements. As implied

by its name, Set interface models the mathematical set

abstraction.

B. Collection Implementation

AbstractCollection class provides a skeletal

implementation of the Collection interface, to minimize

the effort required to implement this interface.

AbstractCollection inherits from Object and does not

override hashCode() and equals().

AbstractList inherits from AbstractCollection to

provide skeletal List implementation. AbstractSet inherits

from AbstractCollection to provide skeletal Set

implementation. Both classes override hashCode() and

equals().

IF3058 Cryptography – Sem. II Year 2012/2013 Paper

Both classes implements hashCode() in a simple

manner. The implementation iterate all the collection

elements and sum their respective hashCode(). The sum

result is the collection hashCode().

For equals() implementation the two classes implement

it differently. The main idea is to check if two objects of

same collection have same elements. AbstractList iterate

all its elements using iterator and check whether current

element of both AbstractLists equal or not. If all elements

equals, two objects of AbstractList are equal.

AbstractSet cannot iterate its elements in the same

manner as AbstractList because its elements are

unordered. AbstractSet iterate all elements of one object

and for each element it search that element in the second

AbstractSet object. So, that means AbstractSet equals()

method complexity is O(n
2
) and AbstracList equals()

method complexity is O(n).

V. HASHMAP

Hash map or hash table is a data structure that map

keys to values. Hash table uses hash function to compute

an index an array of buckets. In many situations, hash

table turn out to be more efficient that search trees or any

table lookup structure. Java implements hash table in a

class called HashMap.

A. Map Interfaces

Java provides Map as root interface, as seen in figure 4,

for classes that map keys to values. Map interface has

Entry interface that represent key value mapping stored in

the Map.

Figure 4 Map Class Diagram

B. Map Implementation

AbstractMap class provides a skeletal implementation

of the Map interface. Like AbstractList and AbstractSet,

AbstractMap overrides hashCode() and equals() method.

Also like both previous collections, AbstractMap iterate

all its elements for equals() and hashCode()

implementations.

AbstractMap use Set view of its elements to iterate its

elements. AbstractMap has entrySet() method which

returns its elements viewed as Set. The Set view then used

for iterating Map's elements and used for equals() and

hashCode() implementation. The hashCode()

implementation simply sum all the Map's elements' hash

code. The equals() implementation same as AbstractSet

implementation which uses one AbstractMap object as

iteration base and search for current element in the other

AbstractMap object thus make its complexity O(n
2
).

C. Hash Code and Hash Map

What interesting is how HashMap used hashCode() to

store its elements. HashMap stores its elements in array of

buckets. The buckets use key hash codes as its index and

is a linked list of Entry.

Figure 5 HashMap Implementation

HashMap has array of Entry attribute as the bucket

representation. When HashMap put() method called, it

hashes the key with its internal hash function to defend

against poor quality hash function. Next, it calls

indexFor() function to find the bucket index. The

indexFor() method performs logical and with current

buckets length minus one.

Using bucket index from indexFor() function HashMap

check the bucket. There are two condition that will

happen. First is if the bucket first element is not null and

second is if the bucket first element is null. If the element

is not null, HashMap iterate the bucket linked list. If it

founds Entry element with same hash code and that Entry

key equal per equals() method with provided key by the

IF3058 Cryptography – Sem. II Year 2012/2013 Paper

put() caller, it will replace old value with same value.

Remember that unequal objects per equals() method is not

required to have different hash code. So, it is possible two

not equal object have same hash code. That is what called

as collision.

The second condition is the bucket first element is null

or HashMap does not find satisfying key condition per the

first condition. It will call addEntry() to check current

HashMap size is equal or more to threshold. Threshold is

defined by default load factor which is 0.75. If the

HashMap need bigger size, it will resize twice as big as

current bucket size. After resizing it will call

createEntry() to really add the Entry to the linked list. The

method will retrieve current first element of the bucket,

create new Entry with given key and value, points the

new Entry next element to the retrieved Entry, assign it as

the bucket first element, and finally increment the

HashMap's size.

Retrieving elements is easier. When get() method

called, HashMap will hash the given key with its own

hash function which is the same one used in put(), to find

the bucket index. The getEntry() method will use the

index it will search the bucket to find key with same hash

code and equals. If it find key with satisfying condition, it

will return the Entry and the get() method will return the

value.

VI. EXPERIMENT AND RESULT

As knowing HashMap operates using hashCode() it is

interesting to find out what the hashCode() impact on the

Map. By simple observation if all the keys being put into

the HashMap have same hash code, the HashMap will

degenerate to linked list. So, a good hash code is needed

for good HashMap performance.

The experiment use Java Integer and String classes as

keys for the HashMap. Two method used to provide the

Integer object. First is using Java Random class and

second is using Java SecureRandom class. Only one

method to provide String object which is using UUID

class.

The experiment will generate 1000000 random keys

and put it into the map with the same value. To determine

each random method effectiveness in providing distinct

hash code this paper counts how many bucket really used.

Number of entries divided by number of used bucket

produces average entries per bucket. The closer the

average to 1 means the less keys with same hash code

produced.

Each method is tried 5 times and the result is shown in

table 1.

 Random SecureRandom UUID

Average 1.256665 1.256693 1.257033

Table 1 Experiment Result

The result for all three methods are very similar. Using

random integer from Random and SecureRandom will

yields average 1.256 Entry per bucket. Using random

string from UUID will yield average 1.257 Entry per

bucket.

VII. CONCLUSION

Seven things can be concluded. First, Java Object

provide hashCode() and equals() method which designed

to be overridden by other classes. Second, Java Integer,

Float, and Double classes provide simple hashCode()

implementation which return their values in integer.

Third, Java AbstractList and AbstractSet use their

elements hash codes for their hashCode ()implementation.

They also check all their elements equality for their

equals() implementation.

Fourth, Java HashMap is a data structure which use

hashCode() heavily. Java HashMap implementation use

Entry class for key value pair. Hash Map store its element

using bucket. HashMap use indexFor() to determine

where to store each entry in the bucket using their

hashCode() function.

Fifth, HashMap needs good hashCode()

implementation that produce evenly distributed integers

for good performance. Sixth, further work needs to be

done on performance test using heavy object for

HashMap value.

Seventh, hash function in Java and cryptography terms

are different in computational complexity to provide its

result, but retain the same concept of representing

arbitrary data with fixed length data.

REFERENCES

[1] http://en.wikipedia.org/wiki/Hash_table retrieved at 18 May 2013.

[2] http://stackoverflow.com/questions/11810394/regarding-hashmap-

implementation-in-java retrieved at 18 May 2013.
[3] http://stackoverflow.com/questions/1757363/java-hashmap-

performance-optimization-alternative retrieved at 19 May 2013.
[4] http://stackoverflow.com/questions/41107/how-to-generate-a-

random-alpha-numeric-string retrieved at 19 May 2013.

[5] Java Development Kit Source Code.

DECLARATION

I hereby declare the paper is my own writing, not an

adaptation, nor translation from another person paper, and

nor a form of plagiarism.

Bandung, 19
th

 May 2013

Raydhtiya Yoseph 13509092

http://en.wikipedia.org/wiki/Hash_table
http://stackoverflow.com/questions/11810394/regarding-hashmap-implementation-in-java
http://stackoverflow.com/questions/11810394/regarding-hashmap-implementation-in-java
http://stackoverflow.com/questions/1757363/java-hashmap-performance-optimization-alternative
http://stackoverflow.com/questions/1757363/java-hashmap-performance-optimization-alternative
http://stackoverflow.com/questions/41107/how-to-generate-a-random-alpha-numeric-string
http://stackoverflow.com/questions/41107/how-to-generate-a-random-alpha-numeric-string

