
Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

Chemical Fingerprints Analysis Using Several Hash Functions

and SIMD Fast Mersenne Twister Random Algorithm

Vincentius Martin 13510017

Informatics Engineering

School of Electrical Engineering an Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia
1
vincentiusmartin@students.itb.ac.id

Abstract—Molecule consists of some complex structures.

In particular, if we want to determine which molecules

consist similar structure we have to search atom by atom

which is very slow. Chemical fingerprint can be a solution to

deal with this problem. It can be used to find molecule that

has similar structure using bit string. To map structure and

bit string, there are some ways that should be done like

using hash function to determine which position that the

specified structure should occupy. Of course every hash

function has its own characteristic as well as its efficiency to

be used in fingerprint area. It is important because

fingerprint has to compute its process fast to determine

similarity, so effective hash function is needed and can it be

obtained through experiment. This paper is focused in

determining the most suitable hash function to be used in

fingerprint applications. SIMD Fast Mersenne Twister

algorithm which is a very fast random algorithm will be

used to map the structures’ hash result to the specified

position of bit in the bit string.

Index Terms—Chemical Fingerprints, Hash Function,

Molecule, SIMD Fast Mersenne Twister.

I. INTRODUCTION

Find molecule that has similar pattern with another

molecul needs carefulness, so every same pattern can be

detected. This process is called structural search and it

needs quite a lot efforts to be able to do that. It is because

search in atom by atom can result on too many false

verification. By using fingerprints, this problem can be

made easier. This fingerprints application take quite a lot

parts in chemoinformatics study. Many chemoinformatics

system for molecules represented by fingerprints. It yields

in the result of less storage space, also faster time in

searching and matching process. But, the disadvantage is :

it will be lossy,because some information may be lost

during compression.

Picture 1.1. Molecule example : benzoic acid

Chemical fingerprints or called chemical hashed

fingerprints (because it uses hash function) is bit string

that contains information of the structure. The presence

and absence of a pattern in the molecule is marked with

‘1’ and ‘0’ respectively. This pattern can also represent

the number of occurences of some features like functional

groups, chains, substructures, etc. Also, this fingerprints

method can be used with another method to determine the

similarity of a molecule with another. Other techniques

examples are like data mining or pattern matching.

To be able to map every structure into a bit position,

hash function is needed. Hash function is a function that

accept input in form of string or bytes in any length and

transform it into a fixed string which is much smaller than

the original input. In chemical fingerprints, hash function

is an important existence because it is the main function

that will be used to map every structure into the position

in the pattern.

One other thing that is important is the way every

pattern mapped. In this paper, SIMD Fast Mersenne

Twister random algorithm will be used. It is a random

algorithm introduced in 2006 by Mutsuo Saito and

Makoto Matsumoto as the transformation of Mersenne

Twister Algorithm that is proposed by Makoto

Matsumoto and Takuji Nishimura. The reason why this

algorithm is used is because it is really fast and has good

equidistribution property although it is not as good as

WELL ("Well Equidistributed Long-period Linear").

II. SOME THEORIES

2.1. SIMD Fast Mersenne Twister

Before explaining how to generate fingerprints, first,

the brief introduction about how the random algorithm

works should be done. SIMD-oriented Fast Mersenne

Twister (SFMT) uses Linear Feedback Shift Register to

generate 128-bit pseudorandom integer. This algorithm is

first implemented in C language. As what is contained in

its name, this algorithm is designed using Single

Instruction Multiple Data (SIMD) technique to achieve

parallelism in its process.

Linear Feedback Shift Register (LFSR) is a method of

generating a sequence of elements x0, x1, x2, ... etc. The

recursion method is used in this algorithm to generate

LFSR. In the implementation, the computation itself is

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

using an array of integers with specified size. At first, the

array will be initialized with some values. Also, some

bitwise processes will be used to fill the initializtion value

for the array. After that, in order to produce the array’s

elements, a linear function will be used. It is a high-speed

linear function because it does not use any multiplication

process.

SFMT is MT-like pseudo-random number generator

that makes full use of SIMD. The period of this algorithm

is 2
19937

-1 that’s why sometimes this algorithm is called

SFTM19937. Compared to MT algorithm, if we look into

its performance, SFMT has better equi-distribution

property and faster than MT, even without using SIMD

instructions. SFMT itself is a LFSR generator that based

on a recursion from its linear function.

Recursion in SFMT consists of some process.

Parameter g which is the result of the recursion is

computed using formula :

g(w0, . . . ,wN−1) = w0A + wMB + wN−2C + wN−1D

Where w0,wM,... are 128 bit integers and wA, wB, wC,

wD are computed using SIMD bit operations. After the

operation, the copy of w[N-2] and w[N-1] will be stored

in two 128-bit regiters(r1 and r2) which are available in

CPU. The benefit from using these two registers is to use

pipelining method effectively. While fetching the value of

w[0] and w[M] from memory, w[N-2] and w[N-1] can be

computed because their values are kept in the registers.

The period of SFMT is a multiple of 2
19937

-1, with good

equidistribution properties. The recursion degree can be

computed using N/128 because each period is using 128

bit. So, because N is 19937, the recursion degree is

19937/128 = 156 combined with linear transformation

A,B,C,D that are computed as follows :

 wA := (w << (128) 8) + w.

 wB := (w >> (32) 11)&(BFFFFFF6 BFFAFFFF

DDFECB7F DFFFFFEF).

 wC := (w >>(128) 8).

 wD := (w <<(32) 18).

Operations above consist of some shifting operations, the

numbers in brackets are the n bit integers. They are

shifting operations of n-bit integer by m times. Below is

the description if SFMT19937 generator with a period of

2
19937

-1. The ‘+’ operator which is used in wA

computation is XOR operator in this paper. In wB, ‘&’

operator is AND operation with 128-bit integer in

hexadecimal form.

Picture 2.1. Circuit-like description of SFMT19937

12

SFMT which is implemented in this paper is written in

Java, so it can be said as SFMT-like random generator.

The main difference is it does not use real SIMD like

what is written in C. Parameters r1 and r2 are

implemented using variables. But like what is said before,

this algorithm is still fast even without using real SIMD.

2.2. Chemical Fingerprints

Molecule is represented by fingerprints in this model.

The main part of the algorithm is to compress molecule

including each feature into fingerprints which is modeled

as byte array. There are some advantages of this method,

which are :

 Every similar pattern will have similar bits set to

‘1’ and similar bits are given chance to clash

with certain probability.

 Fingerprints’ size can be defined by user without

knowing the pre-defined of the pattern.

But, even with the advantages that have been specified

before, there are still some cons with this method. These

cons are about effective hash and random algorithms, also

the perfect size of fingerprints that will minimize the bit

clashes and waste of the bit spaces. This problem mostly

about finding the effective way of generating fingerprints

and about choosing the effective algorithms.

There are some terms that are used in fingerprints field.

They are :

-Fingerprint length

It defines the number of bit (‘1’ and ‘0’) in the bit string

that is generated.

-Maximum pattern length (depth)

Maximum length of atoms, computed in the molecule’s

linear path. It is important because the length of the

cyclic molecules is limited to a fixed ring size.

-The position of bits that must be set to the pattern

Some bits in the pattern will be set to ‘1’ which denotes

the bit position.

-Darkness of the fingerprint

The comparison of ‘1’ and ‘0’ in the percentage of ‘1’

appearance. Darker pattern is more choosen.

Also, there are unqiue pattern count (UPC) that counts

the number of unique pattern for every depth. The list of

unique pattern from every depth will be inserted into one

list and used in the process. So the process will use all

unique patterns from every depth (0..*).

Some steps are needed to be done to generate

fingerprint from molecule. We have to keep track of

generated pattern type to keep the qualitiy of the

fingerprint that is about to be generated. It must be

noticed that the important thing in generate a fingerprint

is to determine the depth that will be used. Depth

parameter is used to determine the maximum pattern

length from the molecule that is inputted. It also indicate

how accurate the fingerprint represents the molecule. By

increasing the depth, we can get more precise fingerprint

or it can be said that the fingerprint is darker. But, it also

increase the chance of bit clashes, maybe a little or some

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

bit clashes are okay, but if too many bit clashes, it will be

a problem because it will reduce the fingerprint’s

accuracy.

The algorithm to generate fingerprint is to split over

molecule into structures in specified depth. In this

method, the molecule is represented with a String of

molecule. After that, by using hash and random function,

we can generate its fingerprint. The detail algorithm and

the ilustration for the process is shown below :

function generateFingerprint (input String : molecule,

integer : size) String

{function to generate fingerprint bit from string of

molecule}

DECLARATION

depth,i,seed,position_idx : integer

molecule, fingerprint  String

molecule_pattern: array [0..*] of String

ALGORITHM

molecule_pattern  generatePattern(molecule,depth)

i  0

fingerprint  “”

{fingerprint initialization with ‘0’ for all elements}

while (i<1000) do

fingerprint  fingerprint + “0”

endwhile

foreach element in molecule_pattern do

seed  hashFunction(element)

position_idx  |SFMT19937(seed)| mod size

fingerprint[position_idx]  “1”

endfor

fingerprint

Picture 2.2. Process example

1

First, the algorithm generates every pattern from depth

0 to n. The pattern is in the form of the element (C, N, O,

H, etc) and the number of edges (1,2,3,...) incident to that

vertex or it can be said as the number of atoms bonded to

the corresponding atom. Also, the type of bond (single as

s, double as d, etc) is also written. For example, propane

will be written as C1sC2sC1 (depth 3) and ethene as

C1dC1 (depth 2). With this pattern, every molecule

pattern can be written for depth 0 to depth n, with n is the

maximum depth.

Also, the pattern can be represented as depth-first graph

representation. The labels on the vertrices are the atom

symbols and the edges are labeled with the type of

covalent bond between atoms with the naming rule like

before. This pattern is good to represent the bond types

that a molecule has.

Picture 2.3. Molecule patterns representation example

10

2.3. Modulo Compression of Chemical Fingerprints

The fingerprints itself can be folded into a shorter bit

length. To shorten fingerprint, the modulo algorithm is

used to make the fingerprint with length N to be a new

fingerprint with fixed length M where M must be shorter

than N. The other thing that must be noticed is the value

of M must fulfill : N = M * C, where C is a constant.

For a given molecule, in the new compressed

fingerprint that has been generated, the bit in position j of

the new fingerprint is set to ‘1’ if and only if there is at

least one bit that has value of ‘1’ in the position of

 . In current systems, usually the compressed

fingerprint size is set to 2
9
 = 512 or 2

10
 = 1024. It must be

considered that the compression will be effective only

when all bits in the pattern are treated equally, it comes

from the specific ordering of bits in the pattern. In

practice, a random function or a hashing function (or

both) can be used to generate the new compressed

fingerprint’s pattern. Of course, the good hashing or

random function is preferred. The diagram below show a

very basic simple compression of a pattern with 16 bit

length to its compression with 4 bit length.

Picture 2.4. Illustration of pattern folding process

10

In the illustration above, a pattern with length 16

(1001000010001000) is folded into compressed pattern

with length 4 (1001). It can be seen that every position in

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

k position is checked. When at least one bit pattern in that

position contain the bit ‘1’ or black square in the

illustration above. The position zero and three in modulo

four of the pattern contain at least one bit ‘1’ so in the

new pattern, the position zero and three is filled with bit

‘1’.

Compression for the chemical fingerprint is really easy

to implement. The algorithm itself is really simple with

the basic way and it still simple when hash or random

function is used. But, it has some drawbacks for the

implementation. First, compression is a one way

technique just like hash function. Once it converted into

its compression, there is no may to return it into its

original pattern because the position of the ‘1’ bit in the

original pattern is unknown if we just have the

compressed pattern. Second, the possible optimal

compression rate for the pattern is unknown so we don’t

know whether the compressed pattern may be close to

optimal or not. The smaller the size of compression

pattern, most likely the pattern will be more inaccurate.

To prevent this, we have to find better compression rate.

It is important because when the compression result is far

away from optimal, many informations are lost because

the nature of compression itself is to abolish some

informations. But it can be minimized when the

compression rate is high.

III. EXPERIMENTS

To be able to get accurate experiment results, this

chemical fingerprint method is implemented using a Java

program. For the SFMT algorithm, as what has been

stated before, it doesn’t use SIMD like the real SFMT

which is implemented in C language but it still SFMT

algorithm and it still fast. Also, java can do fast

computation so it wil not be a problem for using the

combination of hash function and SFMT.

The implementation is done using three hash functions

which are MD5, SHA-1, and SHA-512. The main goal of

this experiment is to decide which hash function is faster

and has less bit collision. Also, some analysis for the

algorithm performance will be done for some depths. The

analysis will be about the darkness for some depths which

are used in this experiment. Other goal from this

experiment is to choose the best attribute for molecule

fingerprints.

3.1. Benzoic acid

Benzene is the most common aromatic compounds that

contain the benzene ring. There are six vertex of carbon

atoms and each one is bonded to one H or one other atom

or group, also adjacent with two carbon atoms. It is

represented with a hexagon form. One example of

benzene is benzoic acid. Benzoic acid (C6H5COOH) also

known as carboxybenzene is a weak acid compound that

is widely used as food preservative. The molecule

ilustration can be seen in the first page.

The experiment is used benzoic acid with the

parameters:

- Fingerprint length : 32

- Maximum depth : 3

Because benzoic acid is a simple molecule, so small

fingerprint length 2
5
 = 32 is enough. Long fingerprint

length will result in small darkness result (wasting more

spaces). Also, there will be some unique patterns for

every depth. The data for every depth is shown below :

Table 3.1. List of data for every depth (Benzoic acid)

Depth 0 :

 UPC 3

Pattern List "O","C","H"

Total UPC 3

Depth 1 :

 UPC 6

Pattern List "C-d-C","C-s-C","C-s-H","C-d-O","C-s-

O","O-s-H"

Total UPC 9

Depth 2 :

 UPC 7

Pattern List "C-d-C-s-C","C-s-C-d-C","C-s-C-s-

C","C-d-C-s-C","C-s-C-d-O","C-s-C-s-

O","C-s-O-s-H"

Total UPC 17

Depth 3 :

 UPC 7

Pattern List "C-s-C-d-C-s-C","C-d-C-s-C-d-C","C-d-

C-s-C-d-O","C-d-C-s-C-s-O","C-s-C-s-

C-d-O","C-s-C-s-C-s-O","C-s-C-s-O-s-

H"

Total UPC 23

The experiment is using two kind of ways of generating

fingerprint. First is allow bit clashes to analyse how many

bit clash with used hash function. Second is do not allow

bit clash to maximize the darkness value. Results from the

experiment are shown below :

Table 3.2. First experiment result with length 32 (Benzoic

acid)

MD5

Generated

Pattern

00000110000001010000001001000101000

01110001100000110100000010000

Bitclashes 6

Darkness 26.56%

SHA-1

Generated

Pattern

11011000010000100010000100000000000

01110000010000001101000000100

Bitclashes 7

Darkness 25.0 %

SHA-512

Generated

Pattern

00000011001100001011001100010010000

00010010010001000000100001000

Bitclashes 6

Darkness 26.56%

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

Table 3.3. Time result for first experiment(Benzoic acid)

No. MD-5 SHA-1 SHA-512

1 45 ms 18 ms 33 ms

2 41 ms 17 ms 46 ms

3 47 ms 17 ms 32 ms

From the first experiment’s result above, MD5 and

SHA-512 give better result for the darkness point. The bit

clashes are fewer than SHA-1. But it just a little fewer, in

the time experiment, SHA-1 performs much better that

the other functions. The SHA-1 hash function generate

fingerprint very fast (much faster than the other functions)

and more stable in the time factor.

Table 3.4. Second experiment result with length 32

(Benzoic acid)

Darkness 35.93%

MD5

Generated

Pattern

00001111000001010000001001001101100

01110001100000110100010010001

Bitclashes 19

SHA-1

Generated

Pattern

11111000011001100010000100001000000

01110000010001101101000000101

Bitclashes 10

SHA-512

Generated

Pattern

01010011001101001011001101010010000

00010010010001010000100001010

Bitclashes 6

Table 3.5. Time result for second experiment(Benzoic

acid)

No. MD-5 SHA-1 SHA-512

1 43 ms 19 ms 52 ms

2 47 ms 18 ms 32 ms

3 56 ms 19 ms 37 ms

From the second experiment, the darkness result is

better than the first experiment. This result is same for all

hash function because it will occupy same number of

positions in the fingerprint with the number of molecule

patterns that a molecule contained. When the bit clash

happened, the SFMT algorithm will generate next random

number from the given seed. This process will be

repeated until the position given is not clash with any bit

positions. If the seed given is not good enough, more

iteration will be done to find the right value. SHA-512 is

good to be used in this experiment, there are only six bit

clashes, this value is same with first experiment. It means

the next value from the SFMT function is always generate

unique position number.

3.2. More Complex Molecule

After using simple molecule like benzoic acid, how

about if another more complex molecule is used? The

result is necessary to determine the accuracy of the

experiment because it may be end in different result from

first experiment. More used molecules is needed so the

real result can be obtained (increase the accuracy). Also,

chemical fingerprint that is about to be generated might

use longer time. The molecule that is used in this

experiment is shown below :

Picture 3.1. Uric acid

This molecule is an uric acid, a heterocylic compound

that consists of carbon, nitrogen, oxygen, and hydrogen. It

comes from the degradation of certain elements in the

body. The cause elements can be occured because of

foods.

Although the molecule used is more complex than the

first one, it still simple enough and the fingerprint length

2
5
 = 32 still can be used. The used parameters are like the

experiment using benzoic acid. Data for every depth in

second experiment is shown below :

Table 3.6. List of data for every depth (Uric acid)

Depth 0 :

 UPC 4

Pattern List "O","C","H","N"

Total UPC 4

Depth 1 :

 UPC 8

Pattern List "O-s-H","O-s-C","C-s-N","C-d-N","C-s-

C","C-d-C","N-s-H","C-d-O",

Total UPC 12

Depth 2 :

 UPC 14

Pattern List "H-s-O-s-C","O-s-C-s-N","O-s-C-d-

N","C-d-N-s-C","C-s-N-d-C","O-s-C-d-

C","C-d-C-s-C","C-d-C-s-N","N-d-C-s-

N","N-d-C-s-C","C-s-C-s-N","N-s-C-s-

N","H-s-N-s-C","N-s-C-d-O"

Total UPC 26

Depth 3 :

 UPC 18

Pattern List "H-s-O-s-C-d-N","H-s-O-s-C-s-N","O-s-

C-d-N-s-C","O-s-C-s-N-d-C","C-d-N-s-

C-s-O","N-s-C-s-O-s-H","N-s-C-d-C-s-

C","C-s-N-d-C-s-C","C-d-C-s-C-d-

N","C-d-C-s-N-s-H","N-d-C-s-N-s-

H","N-s-C-s-C-s-N","N-d-C-s-C-s-

N","C-d-C-s-C-s-N","C-d-C-s-N-s-

C","C-s-C-s-N-s-C","N-d-C-s-N-s-

C","C-s-N-s-C-d-O"

Total UPC 44

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

Just like the first experiment, the same way will be

done. By using two ways in the experiment, there will be

two kind of results with bit clashes or not. The results

from the experiment are shown below :

Table 3.7. First experiment result with length 32 (Uric

acid)

MD5

Generated

Pattern

10110110101001110100000110000111001

01111001011010011100001010011

Bitclashes 12

Darkness 50%

SHA-1

Generated

Pattern

11010110011000111010100100000110101

01011100010000101011000010110

Bitclashes 15

Darkness 43.31 %

SHA-512

Generated

Pattern

10110110001100010010100010010010100

10110010110100101101111111110

Bitclashes 11

Darkness 51.56%

Table 3.8. Time result for first experiment(Uric acid)

No. MD-5 SHA-1 SHA-512

1 54 ms 31 ms 26 ms

2 67 ms 33 ms 29 ms

3 51 ms 25 ms 25 ms

The given results are different from the benzoic acid

experiment. In this process, SHA-1 shows lesser bit

clashes than other two algorithms. For the speed, SHA-

512 is the best for this experiment, but only a little better

than the time that is needed by SHA-1.

Table 3.9. Second experiment result with length 32

(Uric acid)

Darkness 68.75 %

MD5

Generated

Pattern

10111111101101111110001110100111011

01111011011010011111001110011

Bitclashes 27

SHA-1

Generated

Pattern

11111111111101111110101101101110101

01011101010001111011000110110

Bitclashes 42

SHA-512

Generated

Pattern

10110111001101011110101011010110100

11110010111110111101111111110

Bitclashes 31

Table 3.10. Time result for second experiment(Uric acid)

No. MD-5 SHA-1 SHA-512

1 54 ms 23 ms 25 ms

2 55 ms 27 ms 23 ms

3 52 ms 25 ms 26 ms

In this experiment, MD5 shows less bit clashes. The

result is really different from benzoic acid experiment so

the number of bit clashes cannot be used as a parameter to

determine effective algorithm. From given time result, it

seems that SHA-512 shows a little better time result.

Also, to understand the relation between fingerprint

length and the bit clashes of the pattern, the anaysis is

done for it. The analysis is done using fingeprints in

various size. Also, based on the experiments before, the

used hash function is SHA-512 because it fast and show

less bit clashes. The diagram below is the anaylsis the

relation result between pattern size and bit clashes

probability :

Diagram 3.1. Pattern size vs bit clashes

From the diagram above, the bit clashes is getting less

by the increasing of pattern size. Although the reduction

of the number of bit clashes is not really large for every

size, but it can be concluded that by the increase of the

pattern size the bit clashes will be less likely to happened.

Also, the reduction is different for every depth, but it

significant enough for pattern size 64 to 128. It is about

delta = 5 from pattern size 64 to pattern size 128.

Also, this molecule will be used to generate a pattern

with size of 1024 to generate its modullo compression of

chemical fingerprints with 64 bit length. First, the

fingerprint pattern with length 1024 is obtained using

SHA-1 hash function. The length of the pattern must be

large enough to increase the accuracy of its compression.

Because if it is not large enough, the compression can

return all ‘1’s in its value for many molecules. The test is

using every hash function to generate compression

pattern. Below is shown the compression and time result

for each hash function :

0

5

10

15

20

64 128 256 512 1024

Pattern Size vs Bit Clashes

Bit clashes

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

Table 3.11. Compression result(Uric acid)

MD5

Compressi

on Pattern

11101001010001101000111110000110010

00000001101100001111000110010

Time 53 ms 53 ms 57 ms

SHA-1

Compressi

on Pattern

00100011111000110001000100000001111

01010110010001001001011010010

Time 21 ms 28 ms 22 ms

SHA-512

Compressi

on Pattern

01010000100100000001100001010100100

00110000010011010010011111110

Time 27 ms 29 ms 28 ms

From the compression result above, the accurate

compression might be gotten from 64-bit compression

that is used. It is because the distribution of ‘0’ and ‘1’ is

more likely to spread equally. Fastest function is SHA-1,

it can be seen from table above. The difference between

SHA-1 and SHA-512 time is not much and the two of the

functions can compute the result effectively.

IV. ANALYSIS

From the experiment above, some results can be

analysed. In the experiment using benzoic acid molecule

patterns, the number of bit clashes between function is

similar. SHA-1 get the most clashes but it just only in

delta one with other functions. But, the advantage of

SHA-1 is it faster in this experiment compared to other

two functions. For the second experiment with benzoic

acid, SHA-512 is less likely to have bit clashes in its

result. But it may be just a coincidence because of the

seeds quality that enter the SFMT19937 function. So to

determine this, another experiment using different

molecule is needed. In the second experiment for benzoic

acid, SHA-1 has the least time and most stable process

time. SHA-1 is good to be used based on this first

experiemnt because it has fast process time and the

process time is also stable for given molecule.

For the experiment with uric acid, SHA-1 has the least

clashes compared to other two functions. The best time

result is SHA-512. But, compared to SHA-1, the

difference is not much and these two functions are stable

in their value. In the second experiment, the bit clashes is

more for SHA-1.

Based on these two experiments using two different

molecules, the bit clashes factor is not too important. It is

because the bit clashes factor is really depend on the seed.

When the seed quality is good, there will be less bit

clashes and when the quality is bad, there will be more bit

clashes. Sometimes, a hash function can produce good

seed and sometimes, it can produce bad seed too and it

cannot be determined. So, the most important factor here

is process time. From the time result, the most stable and

fast function is SHA-1 although the difference with SHA-

512 is not much. SHA-1 can make the computation

process fast for this process.

The result for pattern size vs bit clashes is really clear.

It is because the result is really clear to be seen. As the

pattern size increased, the chance for the bit clashes is less

likely to happened. Also, the difference in delta value is

big for an early value, in this experiment, it is from size

64 to 128 that has big delta value of bit clashes. The

reduction is not many for the next value, only about one

reduction for every value.

In the bit compression experiment, the fastest function

is SHA-1 although still the difference between SHA-1

and SHA-512 is not much. The most important thing in

the modulo compression is the bits in the pattern is spread

equally. As the size of the original pattern gets larger, the

resulted compression pattern will be more accurate. It

indicates that compression function is indeed to be used

for large size of the pattern. The distribution itself is good

for the pattern with 64 bit size from 1024 bit size, but the

good parameters to generate pattern is also has to be

studied.

Also, SFMT19937 is a fast random function and it is

good to be used in generating chemical fingerprints. It

does not take much time, the time factor is more likely to

be caused by the hash functions and other processes in

generating chemical fingerprints. This random function is

suitable to do something that needs random function and

has to be fast.

V. CONCLUSION

 Chemical fingerprints can be generated using the

combination of hash function and random function. The

good parameters also determine the optimal result for the

fingerprint. Good hash function will have fast

computation time process. From the experiment, it is

gotten that the suitable hash function from any other hash

functions that are tested is SHA-1 because of the stable

and fast characteristic that it has. SFMT19937 is also

good to be used in this process because of the fast

computation that is done by SFMT19937. The random

function is used in the last process of determining the

right position for the bit pattern.

Paper for IF3058 Cryptography – 2
nd

 Term. - 2012/2013

REFERENCES

[1] Asad. Revisiting Molecular Hashed Fingerprints. May, 19, 2013
(11.55PM)

<http://chembioinfo.com/2011/10/30/revisiting-molecular-hashed-

fingerprints/>
[2] Brady, James E; Frederick A.Senese, & Neil D.Jespersen.2009.

CHEMISTRY 5th ed. Asia : John Wiley & Sons.
[3] Cahyana, Ucu; Dede Sukandar; Rahmat. 2007. KIMIA 3rd ed.

Jakarta : Piranti Darma Kalokatama.

[4] ChemAxon. Chemical Hashed Fingerprints. May, 19, 2013
(11.50PM)

< http://www.chemaxon.com/jchem/doc/user/fingerprint.html>

[5] ChemAxon. Parameters for Generating Chemical Hashed
Fingerprints. May, 19, 2013 (11.00PM)

<http://agave.health.unm.edu/iphace/iPHACEdir/jchem/doc/user/fi

ngerprint.html>
[6] Dalke Scientific. Molecular Fingerprints, Background. May, 20,

2013 (7.00AM)

<http://www.dalkescientific.com/writings/diary/archive/2008/06/2

6/fingerprint_background.html>

[7] Fieser, Louis F; Mary Fieser. 1963. Pengantar Kimia Organik.

Bandung : DHIWANTARA.
[8] Matsumoto, Makoto. Mersenne Twister Homepage. May 17, 2013

(10.20PM)

 <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html>
[9] PubChem. Benzoic Acid- Compound Summary. May 19, 2013

(11.55PM)

<http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=243
/>

[10] PubMed Central. Lossless Compression of Chemical Fingerprints

Using Integer Entropy Codes Improves Storage and Retrieval.
May 19, 2013 (11.55PM)

<http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536658/>

[11] Saito, Mutsuo; Makoto Matsumoto. SFMT Homepage. May,19,
2013 (11.45PM)

< http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/ >

[12] Saito, Mutsuo; Makoto Matsumoto.2007; . An Application of
Finite Field : Design and Implementation of 128-bit Instruction-

Based Fast Pseudorandom Number Generator. Japan : Dept. of

Math. Graduate School of Science Hiroshima University.
[13] UricAcid. Uric Acid information-descriptions. May 19, 2013

(11.45PM)

<http://uricacid.eu/>

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

Vincentius Martin 13510017

http://chembioinfo.com/2011/10/30/revisiting-molecular-hashed-fingerprints/
http://chembioinfo.com/2011/10/30/revisiting-molecular-hashed-fingerprints/
http://www.chemaxon.com/jchem/doc/user/fingerprint.html
http://agave.health.unm.edu/iphace/iPHACEdir/jchem/doc/user/fingerprint.html
http://agave.health.unm.edu/iphace/iPHACEdir/jchem/doc/user/fingerprint.html
http://www.dalkescientific.com/writings/diary/archive/2008/06/26/fingerprint_background.html
http://www.dalkescientific.com/writings/diary/archive/2008/06/26/fingerprint_background.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=243
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=243
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536658/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536658/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536658/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536658/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
http://uricacid.eu/

