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Abstract—Cryptanalysis methods for playfair cipher rely 

on guessing and manual labors. These usually include 

counting word frequencies (n-gram), matching possible pairs 

of ciphertext and plaintext, etc. In short, this is a trial and 

error method and doesn’t guarantee the decipherment will 

be successful. However, if we can give some limitation on the 

problem context, like short ciphertext, there are actually 

several algorithms that have been used to decipher playfair 

cipher. These algorithms mainly used in artificial intelligence 

problems, specifically local search and optimization 

problems. Some of the algorithms used in local search and 

optimization problems are hill climbing, simulated annealing 

and genetic algorithms. In this paper, we will try to use these 

algorithms to decipher ciphertext encrypted using playfair 

cipher. 

 

Index Terms—playfair cipher, local search, hill climbing, 

simulated annealing, genetic algorithms.  

 

 

I.   INTRODUCTION 

Classical cryptography methods often consist of letter 

substitutions. Playfair cipher is one of them. To make the 

matter of cryptanalysis harder, playfair cipher uses bigram 

(two-letters) substitution. This technique make it harder to 

crack the encryption since the single-letter frequency of 

the plaintext is well hidden now. The bigram frequency 

still can be helpful for cryptanalysis, though. 

Since the invention of playfair cipher, methods for its 

cryptanalysis began to spread. Because cryptography era 

came quite long before computer era, methods that have 

been developed are methods that involved trial and error 

by hand. Cryptanalyst are forced to count the bigram 

frequency, make some guesses about the bigram 

substitution, the key that used to encrypt, etc. A handy 

guide on how to decrypt the playfair cipher this way has 

been published on [1]. 

Instead of doing trial and error by hand, in this paper 

we will explore smarter ways of doing the trial and error, 

i.e. by using local search algorithms. This paper is 

motivated by the work in [2], where simulated annealing 

algorithm was used to decrypt a short playfair ciphers (80-

120 letters) without using a probable word. In addition of 

this technique, we will also implement genetic algorithm 

to decrypt playfair ciphers and compare their 

performance, i.e. the time required to correctly decrypt 

playfair ciphers. 

 

 

II.  BACKGROUND THEORY 

A. The Playfair Cipher 

The playfair cipher was named after Lord Playfair who 

promoted its use, albeit the original inventor was 

Wheatstone. 

Playfair cipher uses a 5 x 5 square as a place to write the 

key and later to do the actual encryption process. The way 

key is used to encrypt in playfair cipher is unique. Say we 

want the word “UNIQUE” as the key. The 5 x 5 square 

will be like this: 

 

U N I Q E 

A B C D F 

G H K L M 

O P R S T 

V W X Y Z 

 

Figure 1 – 5 x 5 square for key UNIQUE 

 

From Figure 1 above, we can understand the method for 

filling the 5 x 5 square. That is, first to write the key 

without repetition of letters already present in the square. 

Next, we just continue filling alphabets from A-Z again 

not already present in the table and is not J (we assumed 

I=J to fit the alphabets in the 5 x 5 square). 

Next, the plaintext will be encrypted bigramly (two by 

two) using the following algorithm described in [2]: 

1. When both letters appear in the same row, replace 

them with letters directly right of them (wrap 

around for corners). For the example square above, 

“NQ” will be enciphered as “IE”. 

2. When both letters appear in the same column, 

replace them with letter directly below them (wrap 

around for corners). For the example square above, 

“IK” will be enciphered as “CR”. 

3. When both letters are in different row and column, 

replace them with letters that will form  a rectangle 

edges. 
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For more practical explanation, refer to [2]. 

 

B. Local Search Algorithms 

Local search algorithms are different from ordinary
1
 

search algorithms in the way they find the solution in the 

state space. In ordinary search, we are interested not only 

on the final solution or destination, but also on the path 

required to travel to the solution. In local search, we are 

interested only on the final solution. The way this is done 

is by evaluating and modifying current state(s) (local 

search) rather than systemically exploring paths from an 

initial state (ordinary search). This is explained in [3]. 

Some algorithms that frequently used to solve local 

search problems are hill climbing, simulated annealing, 

and genetic algorithms. 

Hill climbing is easier to explain using the following 

figure: 

 

 
 

Figure 2 – Hill climbing illustration. Figure taken 

from [3] 

 

In Figure 2, what a hill climbing algorithm will do is to 

go increasing the value of objective function until it hit the 

local maximum. In other words, hill climbing algorithm 

will stop just after it find a downhill. Of course this will 

not guarantee the best solution, but often times it is good 

enough. 

It is known that the hill climbing often failed to get the 

best solution. The reason that it failed that it often stuck at 

the local maximum, where the real key is on the global 

maximum. 

The pseudocode for hill climbing algorithm can be seen 

below: 

 

function hill-climbing(problem) returns a state that is a 

local maximum 

  current ←make-node(problem.INITIAL-STATE) 

  loop do 

    neighbor ← a highest-valued successor of current 

    if neighbor.VALUE <= current.VALUE then return 

current.STATE 

    current ← neighbor 

 

                                                           
1 Ordinary here means that the search problem exhibits the following 

characteristics: observable, deterministic, and known environments. For 

more information check [3]. 

Figure 3 – Hill climbing pseudocode. Source: [3] 

 

To overcome the limitation of hill climbing algorithm, 

simulated annealing algorithm is used. Simulated 

annealing is similar to hill climbing algorithm. A hill 

climbing algorithm never makes downhill moves, whereas 

simulated annealing can do this move occasionally, with 

the intention of reaching the global maximum. A more 

thorough explanation of the logic behind simulated 

annealing can be found on [3]. 

 The simulated annealing algorithm pseudocode can be 

seen below: 

 

function simulated-annealing(problem,schedule) returns 

a solution state 

  inputs: problem, a problem 

  schedule, a mapping from time to "temperature" 

 

  current ← make-node(problem.INITIAL-STATE) 

  for t = 1 to INF do 

    T ← schedule(t) 

    if T = 0 then return current 

    next ← a randomly selected successor of current 

    ∆E ← next.VALUE - current.VALUE 

    if ∆E > 0 then current ← next 

    else current ← next only with probability e^E/T 

 

Figure 4 – Simulated annealing pseudocode. Source: 

[3] 

 

Another popular local search algorithm is genetic 

algorithm. Unlike simulated annealing, genetic algorithm 

uses “parents” to generate “child” states. In the beginning 

the algorithm will generate a population consist of 

individuals. Then these individuals will be selected 

randomly to generate the child state. At small probability, 

there will be mutation of the child state. This process is 

iterated until some individual is fit enough, or enough 

time elapsed. The pseudocode of this algorithm can be 

seen below: 

 

function genetic-algorithm(population, FITNESS-FN) 

returns an individual 

  inputs: population, a set of individuals 

          fitness-fn, a function that measures the fitness of 

an individual 

 

  repeat 

    new_population ← empty set 

    for i = 1 to size(population) do 

      x ← random-selection(population, fitness-fn) 

      y ← random-selection(population, fitness-fn) 

      child ← reproduce(x,y) 

      if(small random probability) then child ← 

mutate(child) 

      add child to new_population 

    population ← new_population 

  until some individual is fit enough, or enough time has 

elapsed 

  return the best individual in population, according to 
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fitness-fn 

 

function reproduce(x,y) returns an individual 

  inputs: x,y,parent individuals 

   

  n ← length(x) 

  c ← random number from 1 to n 

  return append(substring(x,1,c),substring(y,c+1,n)) 

 

Figure 5 – Genetic algorithm pseudocode. Source: 

[3] 

 

C. Quadgrams Statistics 

One of the technique often used in breaking classical 

cipher is using letters frequency analysis. For playfair 

cipher, we can make use of quadgram statistics instead of 

instead of unigram, bigram, or trigram. 

From the work on [4], we know that quadgram 

frequencies work slightly better than trigrams. Hence for 

the implementation, we will use quadgram statistics for 

scoring the states on the hill climbing algorithm, simulated 

annealing algorithm and genetic algorithm. 

 

 

III.   IMPLEMENTATION 

A. Implementation Environment and Test Cases 

The programs in this paper ran using standard command 

line tools in Ubuntu 12.04 operating system. The 

programming language of choice is C, for the sake of 

speed. 

Note the use of term like “fitness”, “similarity”, and 

“score” refers to the same concept. That is, how far is the 

guessed key by the algorithm to the real key that correctly 

deciphers the ciphertexts. 

To simplify the experiment, we will use all-caps 

characters and without space, punctuation, nor any other 

type of characters whatsoever. The following test cases 

are the ciphertexts that we are going to use for the 

experiment: 

 

Testcase #1
2
: 

XZOGQRWVQWNROKCOAELBXZWGEQYLGDRZX

YZRQAEKLRHDUMNUXYXSXYEMXEHDGNXZYN

TZONYELBEUGYSCOREUSWTZRLRYBYCOLZYLE

MWNSXFBUSDBORBZCYLQEDMHQRWVQWAEDP

GDPOYHORXZINNYWPXZGROKCOLCCOCYTZUE

UIICERLEVHMVQWLNWPRYXHGNMLEKLRHDUY

SUCYRAWPUYECRYRYXHGNBLUYSCCOUYOHR

YUMNUXYXSXYEMXEHDGN 

 

This test case consisted of 254 characters. 

 

Testcase #1 solution: 

THEPLAYFAIRCIPHERWASTHEFIRSTPRACTICAL

DIGRAPHSUBSTITUTIONCIPHERTHESCHEMEWA

SINVENTEDINBYCHARLESWHEATSTONEBUTWA

                                                           
2 This testcase was taken from [5]. We use will use it to compare the 

performance with the genetic algorithm. 

SNAMEDAFTERLORDPLAYFAIRWHOPROMOTED

THEUSEOFTHECIPHERTHETECHNIQUEXNCRYPT

SPAIRSOFLETXERSDIGRAPHSINSTEADOFSINGLE

LETXERSASINTHESIMPLESUBSTITUTIONCIPHER 

 

Testcase #2: 

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAB

GILVCWYRXDAHQRAPHMYKEUDFPHISEIDOZUF

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAB

GILVCWYRXDAHQRAPHMYKEUDFPHISEIDOZUF

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAL

B 

 

This test case consisted of 176 characters. 

 

Testcase #2 solution: 

THEQUICKBROWNFOXJUMPSOVERTHELAZYDO

GTHEQUICKBROWNFOXJUMPSOVERTHELAZYD

OGTHEQUICKBROWNFOXJUMPSOVERTHELAZY

DOGTHEQUICKBROWNFOXJUMPSOVERTHELAZ

YDOGTHEQUICKBROWNFOXJUMPSOVERTHELA

ZYDOG 

 

Testcase #3: 

SNHDURRYCSBSMFDCLKMDGESGCGDTPFQRMC

BVGVKLGBZXTCSMMUSPBSABITCFPRBGDVVPD

MPIHSBCPDUPGFFIRKGEARLCSBPRFCDOYQDCE

PDUCSRCWSBKDORLSVHMQYODGKKLBPQLCDH

BWBCPZIDSIKKZGKGIHPPRPRBGDVVPDMLKSY

MPSPWKEVKDKGSFKGUPVQGFVBCFGDMUGUV

HHNAGUGEUDTSMMCHQSIUPDABCMQCSGDBW

BHOGKGUPQHMHEPNFDOYQDCDPCSPYUCDOYQ

DCIPKLSMMCHQRIPFQDSFNSZBDCFGPDQCKZAR

BDBVFGRBYBSFUPIWHNQYPRSFPOFADGKGARK

YGDHDNKPR 

 

This test case consisted of 354 characters. 

 

Testcase #3 solution: 

FIRSTLYTHESENDERANDRECEIVERMUSTAGREX

EONAKEYWORDINTHISEXAMPLETHEKEYWORDI

SWHEATSTONESNAMECHARLESTHELETXTERSO

FTHEALPHABETAREWRITXTENINASQUAREASXS

HOWNBEGINXNINGWITHTHEKEYWORDANDWIT

HIXICOMBINEDINTOXONEXELEMENTNOWCLICK

ONFORMDIGRAPHSTOBREAKTHEMESXSAGEINT

OPAIRSOFLETXTERSTHETWOLETXTERSINADIGR

APHMUSTBEDIFXFERENTSOANXHASBEXENADX

DEDTOSPLITXTHEDOUBLEMINHAMXMERSMITH 

 

To get more accurate results, we will run the 

implementation of each algorithms several times, and then 

calculate the average to determine the time required to 

find the correct key for deciphering. This is because there 

is randomness involved in the algorithm (in swapping and 

generating the key).Also, due to limited time, we limit the 

time to 10 minutes. Above that, we consider the algorithm 

fail to solve the cipher. 
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B. Hill Climbing 

For the hill climbing algorithm, we first generate a 

random key as the starting state. Next we will alter this 

key by randomly swapping the characters in the key and 

measuring the score of each state. If we get a higher score, 

then the new state become the starting state and we start 

over again. 

The results from hill climbing are: 

 

Table 1 – Hill climbing results for test case #1 

 

Run 

number 

Time required (seconds) Solved? 

1 ∞ No 

2 ∞ No 

3 ∞ No 

4 ∞ No 

5 ∞ No 

 

Table 2 – Hill climbing results for test case #2 

 

Run 

number 

Time required (seconds) Solved? 

1 ∞ No 

2 ∞ No 

3 ∞ No 

4 ∞ No 

5 ∞ No 

 

Table 3 – Hill climbing results for test case #3 

 

Run 

number 

Time required (seconds) Solved? 

1 ∞ No 

2 ∞ No 

3 ∞ No 

4 ∞ No 

5 ∞ No 

 

 

C. Simulated Annealing 

There are some details that need to be explained before 

implementing the simulated annealing algorithm. From the 

general algorithm described in section 2, we need to 

define what exactly are the input, output, and the states of 

the problem. 

The problem we have is clear, that is, to break a playfair 

cipher without hints about the content or the key used. 

The way we are going to do this is first to start guessing 

with the key “ABCDEFGHIKLMNOPQRSTUVWSYZ”. 

Actually we can just start with random string. This is just 

an example. From this key, next we will calculate the 

score, that is, the similarity of the decipherment result 

with a typical English passage. The way we do this is by 

using the quadgram statistics described earlier. 

The process is repeated forever. We need to look at the 

output of the program to check whether a correct 

decipherment result has been found or not. At each loop, 

whenever the simulated annealing program found a better 

solution (bigger score that ever recorded) then it will be 

printed to the screen. 

For brevity, in this implementation we don’t code the 

simulated annealing from scratch. We will use the 

implementation in [5] and compare it with our own 

implementation of genetic algorithm in the next section. 

To better compare it, the first test case is the test case used 

by the work in [5].  

The results from the simulated annealing are: 

 

Table 4 – Simulated annealing results for test case #1 

 

Run 

number 

Time required (seconds) Solved? 

1 366.3 Yes 

2 38.72 Yes 

3 201.1 Yes 

4 105.5 Yes 

5 57.3 Yes 

 

Table 5 – Simulated annealing results for test case #2 

 

Run 

number 

Time required (seconds) Solved? 

1 ∞ No 

2 ∞ No 

3 ∞ No 

4 ∞ No 

5 ∞ No 

 

Table 6 – Simulated annealing results for test case #3 

 

Run 

number 

Time required (seconds) Solved? 

1 131.43 Yes 

2 30.36 Yes 

3 31.89 Yes 

4 55.32 Yes 

5 169.37 Yes 

 

D. Genetic Algorithm 

The main difference between simulated annealing and 

genetic algorithm is in genetic algorithm we need a pair of 

“parents” to generate children. So, from two states we will 

generate a new state.  

The parents will be the candidate key for the playfair 

cipher. Unlike in simulated annealing, in genetic 

algorithm we need to generate a population of parents 

first. After that, we will iterate to the size of population of 

parents and pick randomly two states. From these states 

we “marry” them and we get a new state. The fitness of 

the offspring is calculated using similarity of the resulting 

plaintext deciphered using this key to the quadgram 

statistics of English language, similar to the method 

employed at simulated annealing.  

The results from the genetic algorithm are: 
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Table 7 – Genetic algorithm results for test case #1 

 

Run 

number 

Time required (seconds) Solved? 

1 200.22 Yes 

2 103.41 Yes 

3 150.51 Yes 

4 78.8 Yes 

5 67.73 Yes 

 

Table 8 – Genetic algorithm results for test case #2 

 

Run 

number 

Time required (seconds) Solved? 

1 ∞ No 

2 ∞ No 

3 ∞ No 

4 ∞ No 

5 ∞ No 

 

Table 9 – Genetic algorithm results for test case #3 

 

Run 

number 

Time required (seconds) Solved? 

1 210.79 Yes 

2 105.90 Yes 

3 20.17 Yes 

4 60.54 Yes 

5 40.32 Yes 

 

 

IV.   ANALYSIS 

A. Analysis for Hill Climbing 

We found that the results from hill climbing algorithm 

are unsatisfactory. This is due to the nature of hill 

climbing that will only find local maximum solution. 

Using this algorithm, when it found the local maximum it 

will just exit and think it is the best solution. 

This results match with the theory that hill climbing 

hardly finish with the expected solution. Similar results 

where hill climbing couldn’t find solution for playfair 

ciphers were reported on [2]. 

 

B. Analysis for Simulated Annealing 

We found the results from simulated annealing were 

good. Most of the time it can find the solution within the 

constrained time. 

However it failed to give the correct solution for 

characters that don’t exhibit English letters frequencies. 

For example for  repeated sentence in test case number 2, 

it failed to find the expected result even though  the 

sentence consisted of legit English words.  

 

C. Analysis for Genetic Algorithm 

We found that the results from simulated annealing 

were good. It can be said that the results are equally good 

with simulated annealing, because the performance 

difference is not really big, and it suffers similar problem 

as simulated annealing (bad on sentences that don’t 

exhibits English letter frequencies). Although the problem 

nature doesn’t really match for the use of genetic 

algorithm (genetic algorithm heavily used in optimization 

problem), it still can produce a good results, even slightly 

better than the simulated annealing. This results proved 

that genetic algorithm is a good general-purpose algorithm 

for any problem that can be presented as a searching 

problem. 

The only drawback of genetic algorithm is in that no 

one really knows why genetic algorithm can produce good 

results. It is not clear whether the good results come from 

their performance or from the origin of evolution theory. 

This problem is stated on [3]. For scientific purposes the 

mathematical explanation of the genetic algorithm is still 

lacking. 

 

D. Summary 

The performance comparison of the three algorithms 

can be seen below: 

 

Table 10 – Summary of local search algorithm 

performances 

 

Test 

Case 

Algorithm Average seconds 

needed 

1 Hill Climbing ∞ 

 Simulated Annealing 153.784 

 Genetic Algorithm 120.134 

2 Hill Climbing ∞ 

 Simulated Annealing ∞ 

 Genetic Algorithm ∞ 

3 Hill Climbing ∞ 

 Simulated Annealing 83.674 

 Genetic Algorithm 87.544 

 

 

Thus, it can be inferred that hill climbing is out of the 

choice for cryptanalysis of playfair cipher, while 

simulated annealing and genetic algorithm performed 

almost equally good. 

 

V.   CONCLUSION 

We found that of all the local search algorithms we 

used to break playfair ciphers, hill climbing is the worse. 

Apparently hill climbing is not a good choice for 

searching the solution of a cipher due to the nature that the 

key used for encryption usually lie on the global 

maximum point of the search states. 

We also observed that longer ciphertext doesn’t mean 

longer time to solve. This is shown by results from test 

case 1 and test case 3. Longer text actually will have more 

similarity to the frequency of English letters. 

Simulated annealing is a good choice of algorithm for 

breaking the playfair cipher. The theory works well in 

practice although sometimes it can take a long time to find 

the solution due to randomness involved in the swapping 



IF3058 Cryptography paper 1 – Sem. II Year 2012/2013 

 

of the characters in the key. 

Genetic algorithm is also a good choice for breaking 

the playfair cipher. The performance in the experiment in 

this paper is similar to those of simulated annealing, but 

genetic algorithm usage is very broad and thus the result is 

quite appealing. 

It also important to note that the solution key found 

using simulated annealing or genetic algoritms are not 

necessarily unique (i.e. there are some keys that can lead 

to correct deciphering of the ciphertext). 

 

VI.   FUTURE WORKS 

Future works could be done on optimizing the 

performance of simulated annealing and genetic 

algorithm. 

The work in this paper exhibits limitation of the number 

of characters in the ciphertexts. The algorithms 

implemented are only capable of solving small input 

consisting of 100-300 characters. Therefore, future work 

on solving larger size of ciphertexts still can be done. 

Another concern from our experiment is the running 

time of the algorithm. Future work may use the power of 

parallel computation through multiple computers or using 

the power of GPU to improve the running of the 

algorithms for solving the playfair ciphers. 

The accuracy of the results on this paper is also not 

really high due to limited time to do experiment. For more 

accurate results, future works should be done using more 

test cases and more various type of test cases to compare 

the performance of these algorithms. 

Lastly, the local search algorithms can be tinkered to 

solve other type of cryptographic scheme. For other 

classical cryptographic methods this seems not really hard 

to explore, but for modern cryptographic methods it might 

be a challenging task. 
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