
IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

Using Local Search Algorithms for

Cryptanalysis of Playfair Cipher

Reinhard Denis Najogie | 13509097
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
reinhard.denis@s.itb.ac.id

Abstract—Cryptanalysis methods for playfair cipher rely

on guessing and manual labors. These usually include

counting word frequencies (n-gram), matching possible pairs

of ciphertext and plaintext, etc. In short, this is a trial and

error method and doesn’t guarantee the decipherment will

be successful. However, if we can give some limitation on the

problem context, like short ciphertext, there are actually

several algorithms that have been used to decipher playfair

cipher. These algorithms mainly used in artificial intelligence

problems, specifically local search and optimization

problems. Some of the algorithms used in local search and

optimization problems are hill climbing, simulated annealing

and genetic algorithms. In this paper, we will try to use these

algorithms to decipher ciphertext encrypted using playfair

cipher.

Index Terms—playfair cipher, local search, hill climbing,

simulated annealing, genetic algorithms.

I. INTRODUCTION

Classical cryptography methods often consist of letter

substitutions. Playfair cipher is one of them. To make the

matter of cryptanalysis harder, playfair cipher uses bigram

(two-letters) substitution. This technique make it harder to

crack the encryption since the single-letter frequency of

the plaintext is well hidden now. The bigram frequency

still can be helpful for cryptanalysis, though.

Since the invention of playfair cipher, methods for its

cryptanalysis began to spread. Because cryptography era

came quite long before computer era, methods that have

been developed are methods that involved trial and error

by hand. Cryptanalyst are forced to count the bigram

frequency, make some guesses about the bigram

substitution, the key that used to encrypt, etc. A handy

guide on how to decrypt the playfair cipher this way has

been published on [1].

Instead of doing trial and error by hand, in this paper

we will explore smarter ways of doing the trial and error,

i.e. by using local search algorithms. This paper is

motivated by the work in [2], where simulated annealing

algorithm was used to decrypt a short playfair ciphers (80-

120 letters) without using a probable word. In addition of

this technique, we will also implement genetic algorithm

to decrypt playfair ciphers and compare their

performance, i.e. the time required to correctly decrypt

playfair ciphers.

II. BACKGROUND THEORY

A. The Playfair Cipher

The playfair cipher was named after Lord Playfair who

promoted its use, albeit the original inventor was

Wheatstone.

Playfair cipher uses a 5 x 5 square as a place to write the

key and later to do the actual encryption process. The way

key is used to encrypt in playfair cipher is unique. Say we

want the word “UNIQUE” as the key. The 5 x 5 square

will be like this:

U N I Q E

A B C D F

G H K L M

O P R S T

V W X Y Z

Figure 1 – 5 x 5 square for key UNIQUE

From Figure 1 above, we can understand the method for

filling the 5 x 5 square. That is, first to write the key

without repetition of letters already present in the square.

Next, we just continue filling alphabets from A-Z again

not already present in the table and is not J (we assumed

I=J to fit the alphabets in the 5 x 5 square).

Next, the plaintext will be encrypted bigramly (two by

two) using the following algorithm described in [2]:

1. When both letters appear in the same row, replace

them with letters directly right of them (wrap

around for corners). For the example square above,

“NQ” will be enciphered as “IE”.

2. When both letters appear in the same column,

replace them with letter directly below them (wrap

around for corners). For the example square above,

“IK” will be enciphered as “CR”.

3. When both letters are in different row and column,

replace them with letters that will form a rectangle

edges.

IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

For more practical explanation, refer to [2].

B. Local Search Algorithms

Local search algorithms are different from ordinary
1

search algorithms in the way they find the solution in the

state space. In ordinary search, we are interested not only

on the final solution or destination, but also on the path

required to travel to the solution. In local search, we are

interested only on the final solution. The way this is done

is by evaluating and modifying current state(s) (local

search) rather than systemically exploring paths from an

initial state (ordinary search). This is explained in [3].

Some algorithms that frequently used to solve local

search problems are hill climbing, simulated annealing,

and genetic algorithms.

Hill climbing is easier to explain using the following

figure:

Figure 2 – Hill climbing illustration. Figure taken

from [3]

In Figure 2, what a hill climbing algorithm will do is to

go increasing the value of objective function until it hit the

local maximum. In other words, hill climbing algorithm

will stop just after it find a downhill. Of course this will

not guarantee the best solution, but often times it is good

enough.

It is known that the hill climbing often failed to get the

best solution. The reason that it failed that it often stuck at

the local maximum, where the real key is on the global

maximum.

The pseudocode for hill climbing algorithm can be seen

below:

function hill-climbing(problem) returns a state that is a

local maximum

 current ←make-node(problem.INITIAL-STATE)

 loop do

 neighbor ← a highest-valued successor of current

 if neighbor.VALUE <= current.VALUE then return

current.STATE

 current ← neighbor

1 Ordinary here means that the search problem exhibits the following

characteristics: observable, deterministic, and known environments. For

more information check [3].

Figure 3 – Hill climbing pseudocode. Source: [3]

To overcome the limitation of hill climbing algorithm,

simulated annealing algorithm is used. Simulated

annealing is similar to hill climbing algorithm. A hill

climbing algorithm never makes downhill moves, whereas

simulated annealing can do this move occasionally, with

the intention of reaching the global maximum. A more

thorough explanation of the logic behind simulated

annealing can be found on [3].

 The simulated annealing algorithm pseudocode can be

seen below:

function simulated-annealing(problem,schedule) returns

a solution state

 inputs: problem, a problem

 schedule, a mapping from time to "temperature"

 current ← make-node(problem.INITIAL-STATE)

 for t = 1 to INF do

 T ← schedule(t)

 if T = 0 then return current

 next ← a randomly selected successor of current

 ∆E ← next.VALUE - current.VALUE

 if ∆E > 0 then current ← next

 else current ← next only with probability e^E/T

Figure 4 – Simulated annealing pseudocode. Source:

[3]

Another popular local search algorithm is genetic

algorithm. Unlike simulated annealing, genetic algorithm

uses “parents” to generate “child” states. In the beginning

the algorithm will generate a population consist of

individuals. Then these individuals will be selected

randomly to generate the child state. At small probability,

there will be mutation of the child state. This process is

iterated until some individual is fit enough, or enough

time elapsed. The pseudocode of this algorithm can be

seen below:

function genetic-algorithm(population, FITNESS-FN)

returns an individual

 inputs: population, a set of individuals

 fitness-fn, a function that measures the fitness of

an individual

 repeat

 new_population ← empty set

 for i = 1 to size(population) do

 x ← random-selection(population, fitness-fn)

 y ← random-selection(population, fitness-fn)

 child ← reproduce(x,y)

 if(small random probability) then child ←

mutate(child)

 add child to new_population

 population ← new_population

 until some individual is fit enough, or enough time has

elapsed

 return the best individual in population, according to

IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

fitness-fn

function reproduce(x,y) returns an individual

 inputs: x,y,parent individuals

 n ← length(x)

 c ← random number from 1 to n

 return append(substring(x,1,c),substring(y,c+1,n))

Figure 5 – Genetic algorithm pseudocode. Source:

[3]

C. Quadgrams Statistics

One of the technique often used in breaking classical

cipher is using letters frequency analysis. For playfair

cipher, we can make use of quadgram statistics instead of

instead of unigram, bigram, or trigram.

From the work on [4], we know that quadgram

frequencies work slightly better than trigrams. Hence for

the implementation, we will use quadgram statistics for

scoring the states on the hill climbing algorithm, simulated

annealing algorithm and genetic algorithm.

III. IMPLEMENTATION

A. Implementation Environment and Test Cases

The programs in this paper ran using standard command

line tools in Ubuntu 12.04 operating system. The

programming language of choice is C, for the sake of

speed.

Note the use of term like “fitness”, “similarity”, and

“score” refers to the same concept. That is, how far is the

guessed key by the algorithm to the real key that correctly

deciphers the ciphertexts.

To simplify the experiment, we will use all-caps

characters and without space, punctuation, nor any other

type of characters whatsoever. The following test cases

are the ciphertexts that we are going to use for the

experiment:

Testcase #1
2
:

XZOGQRWVQWNROKCOAELBXZWGEQYLGDRZX

YZRQAEKLRHDUMNUXYXSXYEMXEHDGNXZYN

TZONYELBEUGYSCOREUSWTZRLRYBYCOLZYLE

MWNSXFBUSDBORBZCYLQEDMHQRWVQWAEDP

GDPOYHORXZINNYWPXZGROKCOLCCOCYTZUE

UIICERLEVHMVQWLNWPRYXHGNMLEKLRHDUY

SUCYRAWPUYECRYRYXHGNBLUYSCCOUYOHR

YUMNUXYXSXYEMXEHDGN

This test case consisted of 254 characters.

Testcase #1 solution:

THEPLAYFAIRCIPHERWASTHEFIRSTPRACTICAL

DIGRAPHSUBSTITUTIONCIPHERTHESCHEMEWA

SINVENTEDINBYCHARLESWHEATSTONEBUTWA

2 This testcase was taken from [5]. We use will use it to compare the

performance with the genetic algorithm.

SNAMEDAFTERLORDPLAYFAIRWHOPROMOTED

THEUSEOFTHECIPHERTHETECHNIQUEXNCRYPT

SPAIRSOFLETXERSDIGRAPHSINSTEADOFSINGLE

LETXERSASINTHESIMPLESUBSTITUTIONCIPHER

Testcase #2:

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAB

GILVCWYRXDAHQRAPHMYKEUDFPHISEIDOZUF

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAB

GILVCWYRXDAHQRAPHMYKEUDFPHISEIDOZUF

HISZYTWQXBCADLMRTYYXFCZGBAILFHYIOAL

B

This test case consisted of 176 characters.

Testcase #2 solution:

THEQUICKBROWNFOXJUMPSOVERTHELAZYDO

GTHEQUICKBROWNFOXJUMPSOVERTHELAZYD

OGTHEQUICKBROWNFOXJUMPSOVERTHELAZY

DOGTHEQUICKBROWNFOXJUMPSOVERTHELAZ

YDOGTHEQUICKBROWNFOXJUMPSOVERTHELA

ZYDOG

Testcase #3:

SNHDURRYCSBSMFDCLKMDGESGCGDTPFQRMC

BVGVKLGBZXTCSMMUSPBSABITCFPRBGDVVPD

MPIHSBCPDUPGFFIRKGEARLCSBPRFCDOYQDCE

PDUCSRCWSBKDORLSVHMQYODGKKLBPQLCDH

BWBCPZIDSIKKZGKGIHPPRPRBGDVVPDMLKSY

MPSPWKEVKDKGSFKGUPVQGFVBCFGDMUGUV

HHNAGUGEUDTSMMCHQSIUPDABCMQCSGDBW

BHOGKGUPQHMHEPNFDOYQDCDPCSPYUCDOYQ

DCIPKLSMMCHQRIPFQDSFNSZBDCFGPDQCKZAR

BDBVFGRBYBSFUPIWHNQYPRSFPOFADGKGARK

YGDHDNKPR

This test case consisted of 354 characters.

Testcase #3 solution:

FIRSTLYTHESENDERANDRECEIVERMUSTAGREX

EONAKEYWORDINTHISEXAMPLETHEKEYWORDI

SWHEATSTONESNAMECHARLESTHELETXTERSO

FTHEALPHABETAREWRITXTENINASQUAREASXS

HOWNBEGINXNINGWITHTHEKEYWORDANDWIT

HIXICOMBINEDINTOXONEXELEMENTNOWCLICK

ONFORMDIGRAPHSTOBREAKTHEMESXSAGEINT

OPAIRSOFLETXTERSTHETWOLETXTERSINADIGR

APHMUSTBEDIFXFERENTSOANXHASBEXENADX

DEDTOSPLITXTHEDOUBLEMINHAMXMERSMITH

To get more accurate results, we will run the

implementation of each algorithms several times, and then

calculate the average to determine the time required to

find the correct key for deciphering. This is because there

is randomness involved in the algorithm (in swapping and

generating the key).Also, due to limited time, we limit the

time to 10 minutes. Above that, we consider the algorithm

fail to solve the cipher.

IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

B. Hill Climbing

For the hill climbing algorithm, we first generate a

random key as the starting state. Next we will alter this

key by randomly swapping the characters in the key and

measuring the score of each state. If we get a higher score,

then the new state become the starting state and we start

over again.

The results from hill climbing are:

Table 1 – Hill climbing results for test case #1

Run

number

Time required (seconds) Solved?

1 ∞ No

2 ∞ No

3 ∞ No

4 ∞ No

5 ∞ No

Table 2 – Hill climbing results for test case #2

Run

number

Time required (seconds) Solved?

1 ∞ No

2 ∞ No

3 ∞ No

4 ∞ No

5 ∞ No

Table 3 – Hill climbing results for test case #3

Run

number

Time required (seconds) Solved?

1 ∞ No

2 ∞ No

3 ∞ No

4 ∞ No

5 ∞ No

C. Simulated Annealing

There are some details that need to be explained before

implementing the simulated annealing algorithm. From the

general algorithm described in section 2, we need to

define what exactly are the input, output, and the states of

the problem.

The problem we have is clear, that is, to break a playfair

cipher without hints about the content or the key used.

The way we are going to do this is first to start guessing

with the key “ABCDEFGHIKLMNOPQRSTUVWSYZ”.

Actually we can just start with random string. This is just

an example. From this key, next we will calculate the

score, that is, the similarity of the decipherment result

with a typical English passage. The way we do this is by

using the quadgram statistics described earlier.

The process is repeated forever. We need to look at the

output of the program to check whether a correct

decipherment result has been found or not. At each loop,

whenever the simulated annealing program found a better

solution (bigger score that ever recorded) then it will be

printed to the screen.

For brevity, in this implementation we don’t code the

simulated annealing from scratch. We will use the

implementation in [5] and compare it with our own

implementation of genetic algorithm in the next section.

To better compare it, the first test case is the test case used

by the work in [5].

The results from the simulated annealing are:

Table 4 – Simulated annealing results for test case #1

Run

number

Time required (seconds) Solved?

1 366.3 Yes

2 38.72 Yes

3 201.1 Yes

4 105.5 Yes

5 57.3 Yes

Table 5 – Simulated annealing results for test case #2

Run

number

Time required (seconds) Solved?

1 ∞ No

2 ∞ No

3 ∞ No

4 ∞ No

5 ∞ No

Table 6 – Simulated annealing results for test case #3

Run

number

Time required (seconds) Solved?

1 131.43 Yes

2 30.36 Yes

3 31.89 Yes

4 55.32 Yes

5 169.37 Yes

D. Genetic Algorithm

The main difference between simulated annealing and

genetic algorithm is in genetic algorithm we need a pair of

“parents” to generate children. So, from two states we will

generate a new state.

The parents will be the candidate key for the playfair

cipher. Unlike in simulated annealing, in genetic

algorithm we need to generate a population of parents

first. After that, we will iterate to the size of population of

parents and pick randomly two states. From these states

we “marry” them and we get a new state. The fitness of

the offspring is calculated using similarity of the resulting

plaintext deciphered using this key to the quadgram

statistics of English language, similar to the method

employed at simulated annealing.

The results from the genetic algorithm are:

IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

Table 7 – Genetic algorithm results for test case #1

Run

number

Time required (seconds) Solved?

1 200.22 Yes

2 103.41 Yes

3 150.51 Yes

4 78.8 Yes

5 67.73 Yes

Table 8 – Genetic algorithm results for test case #2

Run

number

Time required (seconds) Solved?

1 ∞ No

2 ∞ No

3 ∞ No

4 ∞ No

5 ∞ No

Table 9 – Genetic algorithm results for test case #3

Run

number

Time required (seconds) Solved?

1 210.79 Yes

2 105.90 Yes

3 20.17 Yes

4 60.54 Yes

5 40.32 Yes

IV. ANALYSIS

A. Analysis for Hill Climbing

We found that the results from hill climbing algorithm

are unsatisfactory. This is due to the nature of hill

climbing that will only find local maximum solution.

Using this algorithm, when it found the local maximum it

will just exit and think it is the best solution.

This results match with the theory that hill climbing

hardly finish with the expected solution. Similar results

where hill climbing couldn’t find solution for playfair

ciphers were reported on [2].

B. Analysis for Simulated Annealing

We found the results from simulated annealing were

good. Most of the time it can find the solution within the

constrained time.

However it failed to give the correct solution for

characters that don’t exhibit English letters frequencies.

For example for repeated sentence in test case number 2,

it failed to find the expected result even though the

sentence consisted of legit English words.

C. Analysis for Genetic Algorithm

We found that the results from simulated annealing

were good. It can be said that the results are equally good

with simulated annealing, because the performance

difference is not really big, and it suffers similar problem

as simulated annealing (bad on sentences that don’t

exhibits English letter frequencies). Although the problem

nature doesn’t really match for the use of genetic

algorithm (genetic algorithm heavily used in optimization

problem), it still can produce a good results, even slightly

better than the simulated annealing. This results proved

that genetic algorithm is a good general-purpose algorithm

for any problem that can be presented as a searching

problem.

The only drawback of genetic algorithm is in that no

one really knows why genetic algorithm can produce good

results. It is not clear whether the good results come from

their performance or from the origin of evolution theory.

This problem is stated on [3]. For scientific purposes the

mathematical explanation of the genetic algorithm is still

lacking.

D. Summary

The performance comparison of the three algorithms

can be seen below:

Table 10 – Summary of local search algorithm

performances

Test

Case

Algorithm Average seconds

needed

1 Hill Climbing ∞

 Simulated Annealing 153.784

 Genetic Algorithm 120.134

2 Hill Climbing ∞

 Simulated Annealing ∞

 Genetic Algorithm ∞

3 Hill Climbing ∞

 Simulated Annealing 83.674

 Genetic Algorithm 87.544

Thus, it can be inferred that hill climbing is out of the

choice for cryptanalysis of playfair cipher, while

simulated annealing and genetic algorithm performed

almost equally good.

V. CONCLUSION

We found that of all the local search algorithms we

used to break playfair ciphers, hill climbing is the worse.

Apparently hill climbing is not a good choice for

searching the solution of a cipher due to the nature that the

key used for encryption usually lie on the global

maximum point of the search states.

We also observed that longer ciphertext doesn’t mean

longer time to solve. This is shown by results from test

case 1 and test case 3. Longer text actually will have more

similarity to the frequency of English letters.

Simulated annealing is a good choice of algorithm for

breaking the playfair cipher. The theory works well in

practice although sometimes it can take a long time to find

the solution due to randomness involved in the swapping

IF3058 Cryptography paper 1 – Sem. II Year 2012/2013

of the characters in the key.

Genetic algorithm is also a good choice for breaking

the playfair cipher. The performance in the experiment in

this paper is similar to those of simulated annealing, but

genetic algorithm usage is very broad and thus the result is

quite appealing.

It also important to note that the solution key found

using simulated annealing or genetic algoritms are not

necessarily unique (i.e. there are some keys that can lead

to correct deciphering of the ciphertext).

VI. FUTURE WORKS

Future works could be done on optimizing the

performance of simulated annealing and genetic

algorithm.

The work in this paper exhibits limitation of the number

of characters in the ciphertexts. The algorithms

implemented are only capable of solving small input

consisting of 100-300 characters. Therefore, future work

on solving larger size of ciphertexts still can be done.

Another concern from our experiment is the running

time of the algorithm. Future work may use the power of

parallel computation through multiple computers or using

the power of GPU to improve the running of the

algorithms for solving the playfair ciphers.

The accuracy of the results on this paper is also not

really high due to limited time to do experiment. For more

accurate results, future works should be done using more

test cases and more various type of test cases to compare

the performance of these algorithms.

Lastly, the local search algorithms can be tinkered to

solve other type of cryptographic scheme. For other

classical cryptographic methods this seems not really hard

to explore, but for modern cryptographic methods it might

be a challenging task.

VII. ACKNOWLEDGMENT

The author thanks Dr. Rinaldi Munir as the lecturer of

Cryptograhpy class in Informatics Engineering Institut

Teknologi Bandung for giving the assignment so that this

work is possible.

REFERENCES

[1] DEPARTMENT OF THE ARMY. “Basic Cryptanalysis”, FM 34-

40-2, FIELD MANUAL,1990, ch. 7.

[2] M. J. Cowan, “Breaking Short Playfair Ciphers with the Simulated

Annealing Algorithm”, Cryptologia. Vol. 32, Iss. 1, 2008.

[3] S. J. Russel, et al, “Artificial intelligence: a modern approach”,

Upper Saddle River, NJ: Prentice hall, 2010, ch. 4.

[4] James Lyons, “Quadgrams Statistics as a Fitness Measure”,

http://practicalcryptography.com/cryptanalysis/text-

characterisation/quadgrams/ - Accessed March 22nd 2013

[5] James Lyons, “Cryptanalysis of the Playfair Cipher”,

http://practicalcryptography.com/cryptanalysis/text-

characterisation/quadgrams/ - Accessed March 22nd 2013

STATEMENT

I hereby declare that this paper is the product of my own

work, not an excerpt, translation, nor plagiarism.

Bandung, March 23 2013

ttd

Reinhard Denis Najogie | 13509097

