
Misinterpretation Cipher

IRVAN JAHJA / 13509099
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13509099@std.stei.itb.ac.id

March 15, 2012

Abstract
This paper describes an alternative to the usual encryp-
tion algorithms that grants no information to adversaries
on some circumstances and conditions. We present two
possible implementations of the cipher as well as exam-
ples on the usage of this cipher.

1 Introduction

1.1 Background
The flow of current modern researches on cryptography
mainly focus on the encryption of one plaintext. This
is indeed the most natural question posed for cryptog-
raphy, to safely send a message to another party in such
way that only the two involved parties are able to un-
derstand the message.

Unfortunately, such techniques are prone to crypt-
analysis techniques. Many cryptanalysis techniques re-
lies on finding a key for which the plaintext ’make
sense’, for instance by assuming that the plaintext is an
english text. The success of such algorithm is based on
the fact that each ciphertext is constructed from exactly
one plaintext and so, if they found a key for which the
plaintext is an english sentence, the probability that that
is the actual plaintext is astronomically high.

1.2 Alternative
It is then makes sense to ask whether we can encrypt
more than one plaintexts inside a single ciphertext. For
some plaintexts, cryptanalysis will never be succesful
without knowing the actual key, since now there are
a multitude of possible plaintexts and the question of

“which one of them is the real plaintext” cannot be an-
swered with absolute certainty by the adversary.

For the rest of this paper, we will call this technique
the misinterpretation cipher.

1.3 Usage
This kind of cipher is most usable to encrypt a text that
conveys a choice. For example, we can use this kind of
cipher to encrypt the result of a yes-no question. We en-
crypt in each ciphertext both “YES” and “NO”. Adver-
saries that decrypts the message will obtain both “YES”
and “NO”, from which they can gain no conclusion on
the real message.

There are of course some situations on which this ci-
pher is not ideal. Password encryption is an example:
a password encrypted using this cipher means that the
adversary upon cryptanalysis will obtain a small finite
set of possible passwords, from which he/she can try by
brute force the passwords to see which of them is the
correct password.

However, the virtue of this cipher is that it is ex-
tremely simple to implement. Indeed, we will show that
the simplest possible implementation is simpler than the
infamously weak Caesar Cipher. However, we have ar-
gued that without knowing the key, it is not possible
based on Cryptanalysis alone to know which of the pos-
sible plaintexts is the real plaintext.

Another virtue is that the key required is very small
compared to other respectable ciphers such as One Time
Pad. Indeed, in one plaintext ciphers, the key must be
inherently based on an enormous domain for otherwise
an adversary can easily guess the key by brute force.
This is not possible in our case, since there will be more
than one keys that is consistent with the given cipher-

1

text.

1.4 Roadmap
This paper is organized as follows. Section 2 will dis-
cuss a very simple implementation of this algorithm,
and then presents an implementation of the algorithm
in Python as well as some examples on encryptions
for ciphertext and plaintext. Section 3 will discuss an-
other idea based on Chinese Remainder Theorem. We
will present working implementation of the algorithm
as well as example usage of the algorithm.

2 A Very Simple Misinterpretation
Cipher

2.1 Idea
When you are asked to implement a misinterpretation
cipher, the most immediate solution is to simply concat
the two strings. Indeed, this is a possible implementa-
tion but suffers from the concept of “fairness”, that is,
if the key is streamed, one plaintext will be available far
before both plaintexts are available. The natural amend-
ment is to simply interleave the two plaintexts.

2.2 Encryption Algorithm
• Set up a constant N, denoting the number of plain-

texts to encrypt in a single ciphertext.

• Prepare N identical-length plaintext (by appending
characters if necessary)

• Randomly shuffle the plaintexts, and let the key be
the index of the actual plaintext in this ordering

• Interleave the plaintexts character by character in
order of the shuffle

• Send this as ciphertext.

2.3 Decryption Algorithm
• Receive the ciphertext

• Construct the plaintext by picking only the charac-
ters in the the positions X such that X modulo N =
key.

• Return the plaintext

2.4 Implementation
Figure 1 presents an implementation of the encryption
algorithm and the decryption counterpart is presented in
Figure 2.

Note that most of the code is spent on appending ’#’
to make the length of the plaintexts equal: under the
assumption the plaintexts are of equal length, the code
becomes very short.

2.5 Example Usage
We exemplify this by trying to send the message
conveying the time of attack. The real plaintext is
“DAWN”, and we will use key = 2 and N = 3, the
other two misleading messages being “NIGHT” and
“EVENING”. We do this by issuing the following com-
mand:

e n c r y p t ([’DAWN’ , ’NIGHT ’ , ’EVENING ’] , 2)

The result is ’NEDIVAGEWHNNTI##N##G#’. En-
cryption is performed by calling the following function:

d e c r y p t (’NEDIVAGEWHNNTI##N##G# ’ , 3 , 2)

which returns ’DAWN’. Note that indeed, the letter
’D’ is at position 2, equal to our key.

2.6 Complexity Analysis
The time required for both encryption and decryption is
O(N), where N is the total length of all plaintexts.

3 Chinese Remainder Theorem
based Algorithm

3.1 Introduction
Chinese Remainder Theorem is as follows. Suppose
n1, n2, . . . , nk are positive integers which are pairwise
coprime. Then, for any given sequence of non-negative
integers a1, a2, . . . , ak, such that ai < ni there exists
a unique non-negative integer x <

∏k
i=1 ni solving the

following system of simultaneous congruences.
x ≡ a1 (mod n1)
x ≡ a2 (mod n2)
...
x ≡ an (mod nk)
That is, ∀z : 1 ≤ z ≤ k → x ≡ az (mod nz).
Readers interested in the proof are referred to [2].

2

E n c r y p t s a s e t o f p l a i n t e x t s w i t h t h e g i v e n key . p l a i n t e x t s [0] i s t h e
r e a l p l a i n t e x t
def e n c r y p t (p l a i n t e x t s , key) :

F i r s t , make a l l p l a i n t e x t s have t h e same l e n g t h
max len = 0
f o r p l a i n t e x t in p l a i n t e x t s :

max len = max (max len , l e n (p l a i n t e x t))

p t = []
f o r i in r a n g e (l e n (p l a i n t e x t s)) :

p l a i n t e x t = p l a i n t e x t s [i]
p t co py = p l a i n t e x t
whi le l e n (p t co py) < max len :

p t co py = p tco py + ’ # ’

i f i == 0 :
s p e c i a l = p t c op y

e l s e :
p t . append (p t co py)

randomly s h u f f l e s t h e r e s t o f t h e p l a i n t e x t s
random . s h u f f l e (p t)
p t . i n s e r t (key , s p e c i a l)

i n t e r l e a v e i t
c i p h e r t e x t = ’ ’
f o r i in r a n g e (max len) :

f o r p in p t :
c i p h e r t e x t = c i p h e r t e x t + p [i]

re turn c i p h e r t e x t

Figure 1: Simple Interleave Encryption implementation in Python

D e c r y p t s a g i v e n c i p h e r t e x t
def d e c r y p t (c i p h e r t e x t , N, key) :

p l a i n t e x t = ’ ’
f o r i in r a n g e (l e n (c i p h e r t e x t)) :

i f i % N == key and c i p h e r t e x t [i] != ’ # ’ :
p l a i n t e x t = p l a i n t e x t + c i p h e r t e x t [i]

re turn p l a i n t e x t

Figure 2: Simple Interleave Decryption implementation in Python

3

In this section, we will represent plaintexts as a single
integer. The justification for this is that we can represent
string uniquely as an integer by transformations. For ex-
ample, one possible transformation of lower case char-
acters is by representing the string as a base 26 number.

3.2 Idea
First, the sender and the receiver will agree on the num-
ber of plaintexts encrypted in a single transmission. We
will call this number k. Then, they must agree on k pos-
itive pairwise coprime numbers n1, n2, ..., nk. Each of
these numbers must be greater than then largest possi-
ble plaintext. Finally, they pick one of these numbers
as the key. The size of the key can be made small by
sorting the coprime numbers and storing the index of
the key.

3.2.1 Encryption

We assume that the plaintexts to encrypt are
p1, p2, ..., pk and that if the key is y, the py is the real
plaintext.

The algorithm find 0 ≤ x <
∏k

i=0 ni such that the
following simultaneous equations hold: x ≡ p1 (mod
n1)

x ≡ p2 (mod n2)
...
x ≡ pk (mod nk)
That is, ∀z : 1 ≤ z ≤ k → x ≡ pz (mod nz).
The Chinese Remainder Theorem guarantees its

uniqueness and there are known polynomial time algo-
rithms to compute such number.

The algorithm then proceeds by sending x as the ci-
phertext.

3.2.2 Decryption

Decryption is extremely simple. Using the agreed key
y, it proceeds to obtain the plaintext from the ciphertext
x by the following operation:
p = x mod ny

3.3 Implementation
Figure 3 and 4 implements the two functions needed
by this algorithm, namely Extended Euclid and Chinese
Remainder Theorem. Figure 5 embodies the encryptor.
The constructor takes as its parameter the k numbers n1

through nk that has been agreed upon both parties.

Note that encryption does not require key as it is as-
sumed that the real plaintext is located as the key-th
plaintext provided.

3.4 Example Usage

For the sake of simplicity, we will take a contrived set of
numbers to encrypt which are not necessarily the result
of the encryption of a set of strings.

Our example will use N = 3 with the values of
n1, n2, n3 as three prime numbers 983, 991, and 997.
Note that the algorithm does not require the numbers to
be primes, it only require that the numbers are coprime
to each other.

The encryptor will be build as follows:

x = CRTEncrypt ([9 8 3 , 9 9 1 , 9 9 7])

To encrypt a set of messages, we will call the .en-
crypt() method of CRTEncrypt. For instance, to encrypt
messages 400, 500, and 600, we will call the following
function:

c i p h e r = x . e n c r y p t ([4 0 0 , 5 0 0 , 6 0 0])

In our example, the resulting ciphertext is:
335583821.

To decrypt the message, we will call the .decrypt()
method. Assuming that 500 is the real plaintext, we
call the function as:

p l a i n t e x t = x . e n c r y p t (3 3 55 83 8 21 , 1)

Note that in our implementation, the key is 0-based.
The result of the method invocation is 500, which is
consistent with what we are looking for.

3.5 Complexity Analysis

We will describe the complexity in term of the number
of bits required to represent all the k numbers feed into
the encryptor as n1 through nk. Assume it’s N .

Decryption consists of a single modular operation.
Using modern techniques such as FFT, a complexity of
O(NlogN) can be achieved.

Encryption is more complex. Multiplicating all k
numbers n1 through nk takes time proportional to
O(NlogN), using FFT for instance. Adding the sum-
mand of x takes O(NlogN). Finally, the Extended Eu-
clidian invoked k times contributes to O(k ∗ N) time.
Hence, the total complexity is O(k ∗N +NlogN).

4

Ex tended E u c l i d i m p l e m e n t a t i o n
def ee (a , b) :

o r i g a = a
o r i g b = b
a = abs (a)
b = abs (b)
swapped = 0
i f a < b :

(a , b) = (b , a)
swapped = 1

i f b == 0 :
i f swapped :

re turn (0 , 1)
e l s e :

re turn (1 , 0)

s0 = 1 ; s1 = 0 ; t 0 = 0 ; t 1 = 1
r0 = a ; r1 = b

whi le (True) :
q = r0 / / r1
r2 = r0 % r1
i f r2 == 0 :

i f o r i g a < 0 :
i f swapped : t 1 ∗= −1
e l s e : s1 ∗= −1

i f o r i g b < 0 :
i f swapped : s1 ∗= −1
e l s e : t 1 ∗= −1

i f swapped : re turn (t1 , s1)
e l s e : re turn (s1 , t 1)

s2 = s0 − q ∗ s1
t 2 = t 0 − q ∗ t 1
s0 = s1
s1 = s2
t 0 = t 1
t 1 = t 2
r0 = r1
r1 = r2

Figure 3: Extended Euclid implementation

5

Chinese Remainder Theorem i m p l e m e n t a t i o n
def c r t (a , n) :

p rod = 1
f o r i in n :

prod ∗= i

x = 0
f o r i in r a n g e (l e n (a)) :

v a l = ee (n [i] , p rod / / n [i])
x += v a l [1] ∗ a [i] ∗ (p rod / / n [i])

whi le x < prod :
x += prod

x %= prod
re turn x

Figure 4: Chinese Remainder Theorem Implementation

c l a s s CRTEncrypt (o b j e c t) :
def i n i t (s e l f , n) :

s e l f . n = n

Assumes p are i n t e g e r s .
def e n c r y p t (s e l f , p) :

re turn c r t (p , s e l f . n)

def d e c r y p t (s e l f , c i p h e r , key) :
re turn c i p h e r % s e l f . n [key]

Figure 5: Chinese Remainder Theorem misinterpretation cipher

6

3.6 Possible Improvement
We let any set of numbers n to be used. However, it
might be much more beneficial to use large prime num-
bers as n. This is so since factoring integer can yet be
solved efficiently [1]

4 Conclusion
Misinterpretation cipher has as its virtue simplicity in
implementation while at the same time maintaining the
property that in its use case, it is virtually unbreakable.

The major drawback of this cipher is the size of ci-
phertext is virtually multiplied by the number of pig-
gybacked messages. However, it is easy to see that in
the assumption that all possible combinations of plain-
texts is possible to be inputted by the user, we can do no
better than this.

References
[1] Richard P. Brent. Recent progress and prospects for

integer factorisation algorithms, 2000.

[2] Kenneth H. Rosen. Discrete Mathematics and Its
Applications, 5th Edition. 2003.

7

