
Makalah IF3058 Kriptografi – Sem. II Tahun 2011/2012

Very Secure Hash Algorithm

Edwin Lunando/13509024

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

edwinlunando@gmail.com

Abstract—the secure hash algorithm-1(SHA-1) is one of

the most widely used in the world. Unfortunately, in the

meantime, there were a lot of people found a way to get

collision value of SHA-1 that makes the SHA-1 is not secure

enough. We need a better hash function. In this paper, the

writer will present an implementation and analysis of a new

hash function named very secure hash algorithm (VSHA).

This algorithm is an improvement of the SHA-1.

Index Terms—SHA-1, hash function, cryptography

I. INTRODUCTION

In these days, security is an important aspect that

cannot be neglected in our life. There are a lot of private

data that were communicated every day and there are

many people that would like to break it for their own

matter. Every kind of applications needs a secure way to

communicate or store data. In the meantime, most

application use cryptography to send or store the data

securely.

One of the most widely used cryptography technique is

hash function. Hash function is used to check the integrity

of one data. It returns a value that theoretically will be

different if the data is not the same. The hash function

that mostly used is the secure hash algorithm (SHA-1). In

order to keep the confidentiality of a password, most

application only stores the hash value of the password. So

that, the owner of the account knows the password, not

even the admin or developer knows about the password.

Unfortunately, many researchers have found ways to

break the hash function. In 2005 they have found a way to

find collision with a computational effort fewer than 2
69

operations. On the same year, an improvement on the

SHA-1 attack was announced and lowering the

complexity required for finding the collision in SHA-1 to

2
63

 operations. In 2008, an attack methodology may

produce hash collisions with an estimated theoretical

complexity of 2
51

 to 2
57

 operations. If we estimate the

increasing of number of operations per second by moore’s

law, we can find a collision on SHA-1 in less than a

minute in the few next year. Clearly, we need a better

hash function.

With the new design of hash function, very secure hash

algorithm (VSHA), we are a step closer to a more secure

way to send and store data. The main thing to note is that

we need to sacrifice speed in order to gain security. We

need extra operations to make the algorithm more

complex.

The VSHA has a lot of improvement from SHA-1 even

though the structure is still the same. SHA-1 has a good

and efficient structure. We only need to make it more

complex and add some new operation to make it more

secure.

The analysis and implementation of the VSHA will be

presented at this paper. This paper will also show that the

VHSA is theoretically unfeasible to be broken so that, the

VSHA could be used as the new hash function, replacing

the SHA-1.

II. THEORY

II.I Cryptographic Hash Function

A cryptographic hash function is a hash function, that

is, an algorithm that takes an arbitrary block of data and

returns a fixed-size bit string, the (cryptographic) hash

value, such that an (accidental or intentional) change to

the data will (with very high probability) change the hash

value. The data to be encoded is often called the

"message," and the hash value is sometimes called the

message digest or simply digests.

The ideal cryptographic hash function has four main or

significant properties:

 It is easy to compute the hash value for any

given message.

 It is infeasible to generate a message that has a

given hash.

 It is infeasible to modify a message without

changing the hash.

 It is infeasible to find two different messages

with the same hash.

Cryptographic hash functions have many information

security applications, notably in digital signatures,

message authentication codes (MACs), and other forms of

authentication. They can also be used as ordinary hash

functions, to index data in hash tables, for fingerprinting,

to detect duplicate data or uniquely identify files, and as

checksums to detect accidental data corruption. Indeed, in

information security contexts, cryptographic hash values

are sometimes called (digital) fingerprints, checksums, or

just hash values, even though all these terms stand for

functions with rather different properties and purposes.

Most cryptographic hash functions are designed to take

a string of any length as input and produce a fixed-length

hash value.

Makalah IF3058 Kriptografi – Sem. II Tahun 2011/2012

A cryptographic hash function must be able to

withstand all known types of cryptanalytic attack. As a

minimum, it must have the following properties:

 Pre-image resistance: given a hash h, it should

be infeasible to find any message m such that

h = hash (m). This concept is related to that

one-way function.

 Given an input m1, it should be difficult to

find another input m2 where m1 != m2 such

that hash (m1) = hash (m2). This property is

sometimes referred to as weak collision

resistance.

 Collision resistance: it should be hard to find

two different messages m1 and m2 such that

hash (m1) and hash (m2). Such a pair is called

a hash collision.

II.II Secure Hash Algorithm-1

In cryptography, SHA-1 is a cryptographic hash

function designed by the United States National Security

Agency and published by the United States NIST as a

U.S. Federal Information Processing Standard. SHA

stands for "secure hash algorithm". The three SHA

algorithms are structured differently and are distinguished

as SHA-0, SHA-1, and SHA-2. SHA-1 is very similar to

SHA-0, but corrects an error in the original SHA hash

specification that led to significant weaknesses. The

SHA-0 algorithm was not adopted by many applications.

SHA-2 on the other hand significantly differs from the

SHA-1 hash function.

Figure 1 SHA-1 operation

SHA-1 is the most widely used of the existing SHA

hash functions, and is employed in several widely used

applications and protocols. In 2005, security flaws were

identified in SHA-1, namely that a mathematical

weakness might exist, indicating that a stronger hash

function would be desirable. Although no successful

attacks have yet been reported on the SHA-2 variants,

they are algorithmically similar to SHA-1 and so efforts

are underway to develop improved alternatives. A new

hash standard, SHA-3, is currently under development —

an ongoing NIST hash function competition is scheduled

to end with the selection of a winning function in 2012.

SHA-1 produces a 160-bit message digest based on

principles similar to those used by Ronald L. Rivest of

MIT in the design of the MD4 and MD5 message digest

algorithms, but has a more conservative design.

The original specification of the algorithm was

published in 1993 as the Secure Hash Standard, FIPS

PUB 180, by US government standards agency NIST

(National Institute of Standards and Technology). This

version is now often referred to as SHA-0. It was

withdrawn by NSA shortly after publication and was

superseded by the revised version, published in 1995 in

FIPS PUB 180-1 and commonly referred to as SHA-1.

SHA-1 differs from SHA-0 only by a single bitwise

rotation in the message schedule of its compression

function; this was done, according to NSA, to correct a

flaw in the original algorithm which reduced its

cryptographic security. However, NSA did not provide

any further explanation or identify the flaw that was

corrected. Weaknesses have subsequently been reported

in both SHA-0 and SHA-1. SHA-1 appears to provide

greater resistance to attacks, supporting the NSA’s

assertion that the change increased the security.

In cryptographic practice, “difficult” generally means

“almost certainly beyond the reach of any adversary who

must be prevented from breaking the system for as long

as the security of the system is deemed important.” The

meaning of the term is therefore somewhat dependent on

the application, since the effort that a malicious agent

may put into the task is usually proportional to his

expected gain. However, since the needed effort usually

grows very quickly with the digest length, even a

thousand-fold advantage in processing power can be

neutralized by adding a few dozen bits to the latter.

In some theoretical analyses “difficult” has a specific

mathematical meaning, such as not solvable in asymptotic

polynomial time. Such interpretations of difficulty are

important in the study of provably secure cryptographic

hash functions but do not usually have a strong

connection to practical security. For example, an

exponential time algorithm can sometimes still be fast

enough to make a feasible attack. Conversely, a

polynomial time algorithm (e.g., one that requires n20

steps for n-digit keys) may be too slow for any practical

use.

These are examples of SHA-1 digests. ASCII encoding

is used for all messages.

SHA1("The quick brown fox jumps over the lazy dog")

= 2fd4e1c6 7a2d28fc ed849ee1 bb76e739 1b93eb12

SHA1("The quick brown fox jumps over the lazy cog")

= de9f2c7f d25e1b3a fad3e85a 0bd17d9b 100db4b3

Makalah IF3058 Kriptografi – Sem. II Tahun 2011/2012

III. VERY SECURE HASH FUNCTION (VSHA)

STRUCTURE

The pseudo-code of the VSHA will be given first.

Every single line will be analyzed to proof the strength of

the algorithm. Here’s the pseudo-code:

h0 = 0x24839348

h1 = 0xDBED3423

h2 = 0x92304EBE

h3 = 0xDF89Ab93

h4 = 0xA0494834

Pre-processing:

append the bit '1' to the message

append 0 = k < 512 bits '0', so that the resulting

message length (in bits) is congruent to 448 (mod 512)

append length of message (before pre-processing), in

bits, as 64-bit big-endian integer

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

for each chunk

 break chunk into sixteen 32-bit big-endian words

w[i], 0 = i = 15

 Extend the sixteen 32-bit words into eighty 32-bit

words:

 for i from 16 to 99

 w[i] = (w[i-3] xor w[i-5] xor w[i-8] xor w[i-14]

xor w[i-16]) leftrotate 1

 Initialize hash value for this chunk:

 a = h0

 b = h1

 c = h2

 d = h3

 e = h4

 Main loop:[31]

 for i from 0 to 99

 if 0 = i = 19 then

 f = (b and not c) or not ((not b) and d)

 k = 0x5A827999

 else if 20 = i = 39

 f = (b and c) xor not c xor (d or not b)

 k = 0x6ED9EBA1

 else if 40 = i = 59

 f = (b and c) or (b and d) or (c and d)

 k = 0x8F1BBCDC

 else if 60 = i = 79

 f = b xor c xor d xor not c

 k = 0xCA62C1D6

 else

 f = (not b and c) xor (b and not d)

 k = 0xBA92DE21

 temp = (a leftrotate 5) + f + e + k + w[i]

 e = d leftrotate 20 xor e

 d = c rightrotate 15 xor not d xor (c leftrotate 10

and d rightrotate 20)

 c = (b leftrotate 30) xor (b rightrotate 15) xor (b

leftrotate 20)

 b = (not a rightrotate 20 and a leftrotate 20) xor a

leftrotate 30

 a = temp

 Add this chunk's hash to result so far:

 h0 = h0 + a

 h1 = h1 + b

 h2 = h2 + c

 h3 = h3 + d

 h4 = h4 + e

Produce the final hash value (big-endian):

digest = hash = h2 append h0 append h3 append h4

append h1

This function relies on the Merkle-Damgard

construction to achieve great complexity and fixed length

output. At the first time, the first value of the function

(h0, h1, h2, h3, h4) is changed from SHA-1. The value

needs to be changed because it is the most basic way to

change something. We want to create a different value

from SHA-1. The default output length is still 512 bit,

although we could modify the algorithm to produce

different length output. For the chunk iteration, it was

extended into 100 iterations. The cryptanalysis could

break the SHA-1 algorithm easily if the numbers of the

iterations are below 60. So, we need to increase the

iterations.

The operations that are meant to fill the w array is also

improved. The VSHA add an additional xor operation

with w[i-5] to achieve more complexity.

In the main loop, the number of iteration is increased as

the first iteration number needs to be same as the main

loop. The bitwise operations located in the main loop

have been improved. At those iterations, mainly the

VHSA adds xor and not operations. So, all operations

have minimum bitwise operations of 4. The VHSA add a

lot of bitwise function because it was not as costly as

other complex function. The k variable is still the same

because changing by changing it, it do not give better

result.

After the bitwise function, the algorithm comes to the

next function, The Merkle-Damgard construction. A hash

function must be able to process an arbitrary-length

message into a fixed-length output. This can be achieved

by breaking the input up into a series of equal-sized

blocks, and operating on them in sequence using a one-

way compression function. The compression function can

either be specially designed for hashing or be built from a

block cipher. A hash function built with the Merkle–

Damgård construction is as resistant to collisions as is its

compression function; any collision for the full hash

function can be traced back to a collision in the

Makalah IF3058 Kriptografi – Sem. II Tahun 2011/2012

compression function.

Figure 2 Merkle-Damgard construction

The Merkle-Damgard construction is made different

for VHSA because this is the heart of a hash function.

The VSHA were added a lot of operations. It also use a

right rotate and left rotate. In SHA-1 it only used left

rotate. The VSHA also added xor operation and some

bitwise operation in order to be more complex.

IV. IMPLEMENTATION AND ANALYSIS OF

VSHA

This is the result of an implementation of VHSA tested

on a text file. The value of the text file is this.

The quick brown fox jumps over the lazy dog

The result of the VSHA function is:

9fcc1b7b22a8605034fc5f934bb6292917a06041

If the input file is changed by a single character, for

example.

ahe quick brown fox jumps over the lazy dog

The result of the VSHA function will be changed

dramatically.

2ac973f65e502e0bdcfb28c9ba9e48cbef2af6

If the input file is added one character, for example.

The quick brown fox jumps over the lazy dog1

The result of the VSHA function will be changed

dramatically again.

b7a987ddafb1017e677a072562dc6f689986188e

It is true that the performance of VSHA is slightly

lower that SHA-1 because of the added operations, but as

the computational power will increase by the moore’s

law, it would be an endless race. While the algorithm will

be made more complex and it needs high computational

power to break it.

It is very hard for now to define a secure hash function

as according to pigeonhole principle, as long as we try all

the combination of a hash function, we’ll be able to find a

collision. There are a lot of attacks to hash function.

For a hash function for which L is the number of bits in

the message digest, finding a message that corresponds to

a given message digest can always be done using a brute

force search in 2L evaluations. This is called a preimage

attack and may or may not be practical depending on L

and the particular computing environment. The second

criterion, finding two different messages that produce the

same message digest, known as a collision, requires on

average only 2L/2 evaluations using a birthday attack.

In terms of practical security, a major concern about

these new attacks is that they might pave the way to more

efficient ones. Whether this is the case has yet to be seen,

but a migration to stronger hashes is believed to be

prudent. Some of the applications that use cryptographic

hashes, such as password storage, are only minimally

affected by a collision attack. Constructing a password

that works for a given account requires a preimage attack,

as well as access to the hash of the original password

(typically in the shadow file) which may or may not be

trivial. Reversing password encryption (e.g., to obtain a

password to try against a user's account elsewhere) is not

made possible by the attacks. (However, even a secure

password hash cannot prevent brute-force attacks on weak

passwords.).

The VHSA has the same operation as SHA-2, but the

structure is using the SHA-1 style. So, the VSHA is more

efficient than SHA-2 and has stronger security power that

SHA-1.

It is very difficult to try to break a hash function

because it needs great computational power which cannot

be bought by any people. However, since there are similar

operations like SHA-2, we could believe that the VHSA

is eligible to become a secure hash function that could

replace the SHA-1.

V. CONCLUSION

In short, the VSHA is an improvement from SHA-1

structure but using the SHA-2 operations to make it

complex. The VSHA could replace the broken SHA-1

algorithm since, it was powerful enough to withstand

from attacks.

To improve the VSHA, you can use some of the world

hardest problem like discrete logarithms, integer

factorization, or subset sums to make the hash function is

more powerful. The are many cryptographic algorithm

that relies on the problem and most of the are widely

used.

REFERENCES

[1] http://www.cut-the-knot.org/do_you_know/pigeon.shtml. Online.

[Accessed 13 May 2012]
[2] http://crackstation.net/hashing-security.Online.[Accessed 13 May

2012]

[3] http://www.itl.nist.gov/fipspubs/fip180-1.htm. Online [Acessed 13
May 2012]

http://www.cut-the-knot.org/do_you_know/pigeon.shtml
http://crackstation.net/hashing-security
http://www.itl.nist.gov/fipspubs/fip180-1.htm

Makalah IF3058 Kriptografi – Sem. II Tahun 2011/2012

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

ttd

Edwin Lunando/13509024

