
On El-Gamal and Fermat’s Primality Test

IRVAN JAHJA / 13509099
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13509099@std.stei.itb.ac.id

May 6, 2012

Abstract
We discuss the feasibility of using the simple Fermat’s
Primality Test to generate prime required as a key to the
public key El-Gamal cryptosystem. This option is ap-
pealing due to the simplicity of Fermat’s Primality Test,
but is marred with the existance of Carmichael Num-
bers.

1 Introduction

1.1 Background
El-Gamal is one of the most used public key cryptosys-
tem. This accounts to its simplicity of implementation
as well for being one of the earliest relatively secure
public key cryptosystem to be published. For instance,
GNU Privacy Guard software and recent versions of
PGP are major user of this system.

One of the major challenges in this algorithm is the
generation of sufficiently large prime, used to generate
the Cyclic Group G required in the entire computation
of the algorithm. One of the most popular method is the
Rabin-Miller Primality testing, but it suffers from the
lack of ability to detect Carmichael Numbers.

There has been numerous studies on Carmichael
Number, proving many of its properties [1] [8] [16] [10]
[7] [4]. The study of El-gamal itself is equally numer-
ous [22] [19], beginning with its classic paper [6].

1.2 Roadmap
The paper will begin with some background theories on
fermat primality testing as well as the El-Gamal Cryp-
tosystem itself. Then, the paper will discuss how El-

Gamal reacts with non prime p, and then discuss the
case with Carmichael Numbers. The paper then closes
with a possible way to take advantage of the behavior
of El-Gamal with composite p.

Throughout this paper, pseudocodes in Python-like
languages will be presented as to make things less ab-
stract.

2 Background Theory

2.1 Fermat Primality Testing
Fermat Primality Testing is one of the fastest primality
testing algorithm. Interested readers are referred to the
book by Cormen et. al [20], and we will only give a
brief explanation in this section.

The Fermat’s Primality Testing is based on the Fer-
mat’s Little Theorem:

If p is prime and 1 ≤ p < p, then ap−1 ≡ 1 (mod p).

Which was given by Pierre D. Fermat and whose for-
mal proof were only given 40 years after it was pub-
lished.

To test whether n is prime, the Fermat’s Primality
Testing repeatedly pick a and tests the following equiv-
alence:

an−1 ≡ 1 (mod n).

If an a is found for which the equation above fails to
hold, then n is declared composite and a is said to be its
witness.

The Fermat Little Theorem, however, suffers from
the numbers known as Carmichael Numbers, which are
composite numbers for which the equation an−1 ≡ 1
(mod n) holds for all a.

1

2.2 Carmichael Number
The properties of Carmichael Numbers have been well-
studied. There are an infinite number of Carmichael
Numbers [2]. Furthermore, from [16], Carmichael
Numbers n has the following properties:

• n is square-free

• n has at least three prime factors

• p|n implies p− 1|n− 1 and p < n0.5

Although there are an infinite number of Carmichael
Numbers, it is not known whether there also exists an
infinite amount of Carmichael Numbers with exactly
three factors. For instance, up to 1018, there are 35585
Carmichael Numbers with exactly 3 prime divisors
[15]. For comparison, there are 24739954287740860
primes [5].

There are numerous number of Carmichael Numbers
C(X), with its asymptotic growh being at least X0.332

[9]. An upperbound on the number of Carmichael
Number has also been established, but is rather diffi-
cult to phrase concisely [7]. This numerous number of
Carmichael Numbers inhibit the usefulness of the Fer-
mat Primality Testing to test in general whether a num-
ber is prime.

In general, there is no known easy way to distinguish
a Carmichael number with a prime number except by
testing its primality using some other methods [13].

2.3 Other Primality Tests
PRIMES, the problem of deciding whether a number
N is prime, has been proven to be in P [1], giving an
O(log1 2N) algorithm. Lenstra and Hendrick proceeds
to improve its complexity to O(log6 N) unconditionally
[11]. These discoveries have been made recently and
until such it was widely believed that PRIMES is not in
P.

Rabin Miller, a probability primalistic test, achieves
respectable accuracy using log4 N complexity, and is
widely used [17] [14]. A deterministic variant of this
algorithm is also present and its currently tightest com-
plexity is due to [3]. It is worth noting that this com-
plexity is not strictly polynomial in logN , unlike the
one due presented in [1].

2.4 El-Gamal
El-Gamal [6] is an asymmetric public key cryptosys-
tem based on the difficulty of finding discrete loga-

rithms [12]. Discrete Logarithm is stated formally as
follows.

Given a, b, and p, find x such that

ax ≡ b (mod p).

El-Gamal is widely used. For instance, GNU Privacy
Guard software and recent versions of PGP are major
user of this system.

As with many public key cryptosystems, the El-
Gamal algorithm consists of three distinct steps:

• Key Generation - Generates both public and pri-
vate key from a given prime p

• Encryption - The process to encrypt a message us-
ing the public key in such way that only the holder
of the private key is able to decipher the message.

• Decryption - The process of inverting the en-
crypted message to obtain the original message.

Their respective pseudocodes are presented in the ac-
companying python-like pseudocodes.

It is worth noting that it is possible to create a re-
versed variant of El-Gamal, (signature scheme instead
of encrypting message) – that is, to create a message
that can only be deciphered by the public key and can-
not be constructed without creating the private key. This
is known as the El-Gamal Signature Scheme.

2.5 Inverse

Finding inverse quickly is important for the El-Gamal
cryptosystem, in the decryption phase. Algorithms to
find inverses quickly are well-known - Fermat little the-
orem provides one such alternative for prime p. Recall
that Fermat Little theorem states for a prime p and any
integer 1 ≤ a < p:
ap−1 ≡ 1 (mod p)
Hence,
ap−2 ∗ a ≡ 1 (mod p)
Therefore, the inverse of a mod p is ap−2, which can

be computed efficiently using modular exponentiation.
This equation is, however, only valid for prime p.

The following theorem generalizes inverses for non
primes p:

Theorem 1. If a is relatively prime to p, then there ex-
ists an integer b such that a ∗ b ≡ 1 (mod p).

2

Produces t h e p r i v a t e and p u b l i c k e y s
def g e n e r a t e k e y (p)

g = random number between 0 and p−1
x = random number between 0 and p−1
h = g∗∗x
p u b l i c key = (p , g , h)
p r i v a t e key = (x)

Figure 1: Key Generation

E n c r y p t s a message m t h a t can o n l y be read by p r i v a t e key owner
Assumes t h a t m < p
def e n c r y p t (p , g , h , m)

y = random number between 0 and q−1
c1 = g∗∗y
s = h∗∗y
c2 = m ∗ s
re turn (c1 , c2)

Figure 2: Encryption

D e c r y p t s c1 and c2 i n t o m
def e n c r y p t (p , g , h , x , c1 , c2)

s = c1 ∗∗x
m = c2 ∗ i n v e r s e (s)

Figure 3: Encryption

3

To proof this, we will show the famous Bezout’s
Identity. For a given a and b, form all values ax + by,
and pick the smallest positive number d amongst all of
them. Now, the remainder of dividing either a or b
by d is also of the form ax′ + by′, since we assumed
d = ax + by. However, since this remainder must be
strictly smaller than d, it follows from the fact that d is
the smallest positive ax + by that d is zero, so that d
divides both a and b.

If c is another divisors of both a and b, c also divides
ax+by = d. This implies that d is the greatest common
divisor of a and b.

Hence, if a is relatively prime to p, there exists x and
y such that ax + py = 1. Hence, ax ≡ 1 (mod p), and
so x is the inverse of a, completing the proof.

This theorem is founded for a long time, for instance
in [21].

The extended euclid algorithm is one of the possible
implementations to compute the inverses of numbers ef-
ficiently. Interested readers are referred to the excellent
book due to Cormen et. al [20].

3 A Simple Carmichael Detection
We first notice that since a Carmichael number has at
least three distinct divisors

Theorem 2. There exists at least one divisor p of a
Carmichael number N such that p ≤ N1/3.

Proof: If this were not true, then all divisors of N are
greater than N1/3. Since a Carmichael Number has at
least three divisors, N =

∏
Di ≥ D0 ∗ D1 ∗ D2 ≥

N1/3∗3x > N , which is a contradiction.
Hence, we obtain a simple way to detect whether N

is carmichael. It is sufficient to test that amongst the
first N1/3 numbers, there are no number which divides
N .

4 El-Gamal and Non-Primality
The only dependency of the El-Gamal algorithm with
the primality of p is in the process of inverting s. Indeed,
this is the only operations amongst the other operations
(exponentiation, multiplication, etc.) that is non- trivial.

Recall that s = hy = gxy . Hence, for s to be rel-
atively prime to p, it is sufficient to let g be relatively
prime to p. Hence, our algorithm proposes that the ini-
tial g should be made relatively prime to p.

With this change, what are the consequences? We
claim that the algorithm will work as intended. Indeed
at no other stage of the algorithm the fact that p is not
prime makes difference. Hence, the algorithm is indeed
stay correct.

Our worries is then whether or not the problem of dis-
crete logarithm can be efficiently solved for Carmichael
Numbers. Citing [23], the problem of discrete logar-
tihm over composite number is still difficult as long as
the factorization of the composite number remains un-
known.

Recalling that Carmichael numbers must have at least
three distinct prime divisors, the problem of factoriz-
ing it becomes significantly easier. Indeed, the above
discussion on Carmichael detecting already yields an
O(N1/3) algorithm, which may get even weaker since
there are no strict upper bound on the number of divi-
sors of a Carmichael Number.

We demonstrated this fact by performing experiment
by listing all Carmichael numbers below 1012, show in
the table below.

Factors Count Percentage
3 1000 12.134%
4 2102 25.507%
5 3156 38.296%
6 1714 20.798%
7 262 3.179%
8 7 0.085%
All 8241 100.000%

From the first 8247 Carmichael numbers, we ob-
served that all of them has a factor less than or equal to
6917, which is less than 1012∗1/3, consistent with our
analysis. However, the distribution of these numbers
show that there are extremely few numbers amongst
the Carmichael Numbers whose smallest factor is of
size O(1012∗1/3), as shown in the accompanying fig-
ure. In particular, we observed that more than 85%
of those carmichael numbers have a smallest factor
less than 100. We conjecture than this trend will con-
tinue for larger Carmichael Numbers, hence factoring a
Carmichael Number in most cases should proof to be
easy.

Hence, we advise that it is not pointless to double
check the numbers passing the Fermat Primality Test
with slower primality checking methods, such as the
venerated Rabin-Miller method [17] [14]. We have to
reiterate that the number of Carmichael Number is sig-
nificant that checks like this is of importance if secu-
rity is to be guaranteed. However, since the number of

4

5

Carmichael Numbers in the face of Prime Numbers is
very small, this double check is in average will be exe-
cuted at most once, and very rarely twice, and so retains
the efficiency of the Fermat’s Primality Check.

To conclude, from our discussions so far, the cor-
rectness of El-Gamal remains unaffected by the non-
primality of p. However, from the viewpoint of security
as described in [23], a particularly bad choice of non-
prime p may lead to security breach.

5 Alternative p
Our discussion has shed light on the possibility of an-
other choice for p. Since El-Gamal do not necessarily
require p to be prime, we may as well choose a p to
be a product of two large primes, similar to how we
choose the key required for the RSA algorithm [18]. It
is arguably easier to find two primes of smaller value.
Furthermore, we can apply this recursively to the two
primes to obtain a recursive algorithm that may stop its
iteration at any depth – corresponding to the degree of
security we desire.

The algorithm is presented as a very simple and suc-
cinct pseudocode, which is a function on the number of
bits of p that we desire.

Note that since factorization methods are known to
run in approximately the smallest divisor of N , the se-
curity of this algorithm depends greatly on threshold.
In particular, it is not difficult that it is possible to crack
this algorithm in O(2threshold), so extra caution should
be exercised in picking the value of threshold as to
avoid this issue.

6 Conclusion
Although the majority of El-Gamal implementation re-
lies on prime p, this is not necessary for the correctness
of the algorithm to continue to hold. Hence, it is abso-
lutely okay, from the viewpoint of correctness, to use
Fermat’s Primality Test to generate the large prime re-
quired, as in the event it becomes a Carmichael Num-
ber, the algorithm’s correctness stay intact. However,
this may not be the case from the viewpoint of secu-
rity, as the discrete logarithm problem boils down to
integer factorization in the event that the moduli is non-
prime [23].

Furthermore, this property may be further exploited
by using a divide and conquer algorithm to construct a

p from several smaller primes that are still big and make
it difficult to factorize.

7 Appendix

7.1 Declaration of Non Plagiarism
I hereby confirm that this paper is the product of my
own work and is not an excerpt and/or translation of the
work of other entities.

Bandung, May 6th 2012

Irvan Jahja
13509099

References
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Sax-

ena. PRIMES is in P. 2004.

[2] W. R. Alford, Andrew Granville, and Carl Pomer-
ance. There are infinitely many Carmichael num-
bers. Ann. of Math. (2), 139(3):703–722, 1994.

[3] E. Bach. Explicit bounds for primality testing and
related problems. 55(191):355–380, 1990.

[4] R. Balasubramanian and S. V. Nagaraj. Den-
sity of carmichael numbers with three prime fac-
tors. Math. Comput., 66(220):1705–1708, Octo-
ber 1997.

[5] M. Deleglise and J. Rivat. Computing &pgr;(x):
the meissel, lehmer, lagarias, miller, odlyzko
method. Math. Comput., 65(213):235–245, Jan-
uary 1996.

[6] Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Proceedings of CRYPTO 84 on Advances in cryp-
tology, pages 10–18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[7] Paul Erdos. On pseudoprimes and carmichael
numbers. Pub. Math. Deprecen, 4:20–206, 1956.

6

def compute p (n u m b e r o f b i t s)
i f n u m b e r o f b i t s <= t h r e s h o l d :

re turn g e n e r a t e p r i m e (n u m b e r o f b i t s)
e l s e :

re turn compute p (n u m b e r o f b i t s / 2) ∗ compute p (n u m b e r o f b i t s / 2)

Figure 4: Encryption

[8] Andrew Granville and Carl Pomerance. Two
contradictory conjectures concerning carmichael
numbers. Math. Comput., 71(238):883–908, April
2002.

[9] Glyn Harman. On the number of carmichael num-
bers up to x, 2005.

[10] Everett W. Howe. Higher-order carmichael num-
bers. MATH. COMP, 69:1719, 1998.

[11] Hendrik W. Lenstra, Jr. Primality testing with
gaussian periods. In Proceedings of the 22nd
Conference Kanpur on Foundations of Software
Technology and Theoretical Computer Science,
FST TCS ’02, pages 1–, London, UK, UK, 2002.
Springer-Verlag.

[12] Kevin S McCurley. The discrete logarithm prob-
lem, 1990.

[13] Zachary S. McGregor-Dorsey. Methods of primal-
ity testing.

[14] Gary L. Miller. Riemann’s hypothesis and tests
for primality. Journal of Computer and System
Sciences, 13(3):300–317, December 1976. invited
publication.

[15] R.G.E. Pinch. On using carmichael numbers for
public key encryption systems, 1997.

[16] Richard G. E. Pinch. The carmichael numbers up
to 1016. Math. Comp, 61:381–391, 1998.

[17] M O Rabin. Probabilistic algorithm for testing
primality. Journal of Number Theory, 12(1):128–
138, 1980.

[18] R.L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Communications of the
ACM, 21:120–126, 1978.

[19] Claus Peter Schnorr and Markus Jakobsson. Se-
curity of signed elgamal encryption (extended ab-
stract), 2000.

[20] Ronald L. Rivest Clifford Stein Thomas H. Cor-
men, Charles E. Leiserson. Introduction to algo-
rithms (second edition), 2001.

[21] J.-P. Tignol. Galois’ theory of algebraic equa-
tions. John Wiley & Sons, Inc., New York, NY,
USA, 1987.

[22] J. Wu and D. R. Stinson. On the security of the
elgamal encryption scheme and damg ˚ ard’s vari-
ant.

[23] Masao Kasahara Yasuyuki Murakami. A dis-
crete logarithm problem over composite modulus,
1993.

7

