
Security and Public Key Cryptography

on BREW Mobile Platform

Samsu Sempena 13507088
1

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
if17088@students.if.itb.ac.id

Abstract— Mobile users are continually increasing and

mobile environments covers wider area of applications from

contents download, e-shopping, e-government, and many

more. Unfortunately, in the real world there are many

malware (code designed to in some way attack the device,

the network, or the end user) infiltrate in end user

application. So, we need to secure mobile platforms.

There are many mobile platforms out there, but this

paper will focus to analyze the security issue in BREW

Mobile Platform (BREW MP) as one of the largest mobile

platform among Blackberry, iPhone, Windows Mobile,

Android, and many more. This paper will begin with

introduction about public key infrastructure in mobile

networks and BREW Platform. After that this paper will

cover some security functions provided by BREW MP such

as to limit code privileges, to implement cryptography

algorithm provided by BREW MP, and code authorization

with RSA and some variants of SHA. Finally, this paper also

provides analysis of strong and weak points of security on

BREW MP if compared with other platforms.

Index Terms—BREW, Security, PKI, RSA, SHA

I. INTRODUCTION

I.1 Public Key Cryptography

 Until 1970s, there was only symmetric key

cryptography that use the same key to decrypt and encrypt

a message. But, one more important problem in

cryptography, how to send the secret key to the receiver?

Sending the secret key via public channel is really not

safe. Then the idea of asymmetric key cryptography was

emerged in 1976. The first paper published in IEEE about

this asymmetric key cryptography was written by Diffie-

Hellman (an engineer from Stanford University) with title

“New Directions in Cryptography”.

Later, asymmetric key cryptography is also called

public key cryptography. In this scheme, both of sender

and receiver will have a pair of key, public key to encrypt

the message and private key to decrypt the message.

The idea behind public key cryptography is based to

the facts that computation for encrypting and decrypting

message is easy to be implemented and nearly impossible

to derive private key (d) from public key (e).

Figure 1. Public Key Cryptography Scheme

With the scheme of public key cryptography, we could

gain some main benefits:

1. We need not have to send a secret key, we only

need to keep our private key safely

2. Can be used to reassure the transmission of

symmetric key

3. We need not to change the pair of our public and

private key for a long period since its nearly

impossible by computation for deriving our private

key from our public key.

But, there are still some lack in public key algorithm,

there are:

1. Basicly,the process of encryption and decryption

will be slower than symmetric key cryptography

because we use operation power of big integer in

public key cryptography

2. Size of ciphertext can be bigger from plaintext

(two until four times the size of plaintext)

3. Size of public/private key generally bigger than

symmetric key

4. Can‟t give any information about sender‟s

information, because our public key is known by

everyone.

5. Although is really impossible to derive private

key to decrypt a message, but still there is no

guarantee that public key cryptography is really

safe because it really depends on difficulties to

solve arithmetic problem in generate the key.

I.2 RSA

RSA algorithm is one of the most popular public key

algorithms. RSA algorithm was created by 3 researchers

in MIT (Massachussets Institute of Technology) in 1976,

they are Ron (R)ivest, Adi(S)hamir, and Leonard

(A)dleman.

Figure 2. RSA public key encryption and decryption

Parameters used in RSA algorithm are

No Parameters Privilege

1 p and q (prime number) Secret

2 n = p . q Not secret

3 Φ(n) = (p-1).(q-1) Secret

4 e (public key) Not secret

5 d (private key) Secret

6 m (plaintext) Secret

7 c (ciphertext) Not secret

Essentially, the public key is the product of two randomly

selected large prime numbers „p‟ and „q‟, and the secret

key is the two primes themselves. The algorithm encrypts

data using the product, and decrypts it with the two

primes, and vice versa. A mathematical description of the

encryption and decryption expressions is shown below:

Encryption: c=me (mod n)

Decryption: m=cd (mod n)

RSA algorithm works with these steps :

1. Choose prime numbers p and q

2. Find their product n = pq

3. Calculate phi(n) = (p-1).(q-1)

4. Select an integer “e” in which the gcd(e,phi(n)) = 1

5. Calculate d such that e*d = 1 mod (phi(n))

6. The public key is (e,n)

7. The private key is (d,n)

8. Plaintext can be any number m, where m < n, and

neither p nor q divides m

9. The ciphertext is C = Me (mod n)

10. The plaintext is Cd = Med (mod n)

The security of the RSA cryptosystem depends on the

difficulty of factoring n. It is currently difficult to obtain

the private key„d‟ from the public key (n, e). However if

one could factor n into p and q, then one could obtain the

private key„d‟. If a method is discovered for factoring

arbitrary integers quickly, then any RSA private key

could be discovered and the system would become

insecure.

Factoring n: The fastest known factoring algorithm

developed by Pollard is the General Number Field Sieve,

which has running time for factoring a large number of

size n, of order

1 2

3 3
64

exp (log) (log log)
9

n n

The method relies upon the observation that if integers

x and y are such that x ≠ y (mod n) and
2 2x = y (mod n)

then gcd(x − y, n) and gcd(x+y, n)

are non-trivial factors of n.

The following table gives the number of operations

needed to factor n with GNFS method, and the time

required if each operation uses one microsecond, for

various lengths of the number n (in decimal digits)

Digits Number of Operation Time

100 9.6× 108 16 minutes

200 3.3 × 1012 38 days

300 1.3 × 1015 41 years

400 1.7 × 1017 5313 years

500 1.1 × 1019 3.5 × 105 years

1024 1.3 × 1026 4.2 × 1012 years

2048 1.5 × 1035 4.9 × 1021 years

From the table given above we can see that with the

fastest know factoring algorithm, it still need a lot amount

of time to factoring n. If no new method or approach to

solve this problem faster, then RSA will always be safe.

I.3 BREW Mobile Platform

BREW (Binary Runtime

Environment for Wireless) is an

application development platform

created by Qualcomm, originally

for CDMA mobile phones, but

GSM is now also supported. BREW is first debuted in

September 2001.

The main advantage of BREW platforms is that the

application can easily port between all Qualcomm

devices. BREW acts between the application and the

wireless device on-chip operating system in order to

allow programmers to develop applications without

needing to code for system interface or understand

wireless application.

Developers can develop an application on BREW

mobile platform with C or C++ language. Java is also

supported if the handset has a Java Virtual Machine

available.

II. PUBLIC KEY CRYPTOGRAPHY IN BREW

Nowadays, mobile devices are very common. That‟s

why we need to ensure the security for information

transaction over mobile devices. Cryptography is one

approach to ensure security, especially public key

cryptography.

BREW as one of large mobile platform also has

provided its developers with some cryptography

algorithms API in “AEESecurity.h”, “AEERSA.h”,and

many others.

The algorithms are categorized by its interface.

ICipher interface:

- Block3DES, BlockDES

- BlockAES128, BlockAES192, BlockAES256

- StreamCipher (CBC,CFB,CTR,OFB)

- StreamARC4

IPubKey interface:

- RSA

- ECC

IPubKeyUtil interface:

- SHA1, SHA256, SHA384, SHA512

This paper will only implement RSA algorithm through

IRSA interface. IRSA interface provides access to the

RSA public key cryptographic algorithm and the basic

underlying modular exponentiation . It also provides

some of the padding and encoding commonly used with

the RSA algorithm. Last it is modestly useful for

managing memory in which keys are stored. But, RSA

implementation in BREW of course have some lack

because it run on very limited resource of memory, so

here are a few notes on what is absent. There is no key

generation because it will be extremely slow in software,

but might be acceptable on a DSP. Also there is no way to

retrieve a key once stored. Some of the modern padding

types, OEAP and PSS in particular, are not available.

There is also no way to store a full private/public key pair

to enable faster private key operations using the Chinese

Remainder Theorem.

There are some methods will be used, such as

IRSA_Decrypt() and IRSA_Encrypt(). Below is the

prototype of function that will be used in next section.

 int IRSA_Init

 (

 IRSA* pIRSA,

 const byte* pchModulus,

 int cbModulus,

 const byte* pchExponent,

 int cbExponent

)

Parameters

pIRSA : Pointer to IRSA interface object

pchModulus : [in] Pointer to modulus

cbModulus : [in] Modulus size in bytes

pchExponent : [in] Pointer to public or private

exponent

chExponent : [in] Public or Private exponent size in

bytes

Return Value

SUCCESS: RSA key initialization successful.

AEE_CRYPT_INVALID_KEY: Key NULL or zero

length

ENOMEMORY: Storage for the key could not be

allocated

 void IRSA_Decrypt

 (

 IRSA* pIRSA,

 const byte* pbIn,

 int cbIn,

 byte* pbOut,

 int *pcbOut,

 int ePadType,

 uint32* pdwResult,

 AEECallback *pCB

)

 Void IRSA_Encrypt

 (

 IRSA* pIRSA,

 const byte* pbIn,

 int cbIn,

 byte* pbOut,

 int *pcbOut,

 int ePadType,

 uint32* pdwResult,

 AEECallback *pCB

)

Parameters

pIRSA : Pointer to the IRSA interface

pbIn : [in] pointer to buffer of data to decrypt

cbIn : [in] length of input buffer

pbOut : [out] pointer to buffer to store

encrpypted data, caller allocated

pcbOut : [in/out] length of output buffer on

input, length of data on output

ePadType : [in] type of padding to use

pdwResult : [out] result code

pCB : [in] completion callback

Below is the snippet code for using this API to encrypting

a message with RSA algorithm and decrypting it back.

1. Include statement

We must list all of header library used in the

program, because program can only run with the

listed library. In this section, we also need to add

include to file MIF (Module Information File) and

also BRH (BREW Resource Header) if we use

external resource in our BREW application.

mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/IRSA/IRSA.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Constants/NULL.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/IRSA/IRSA.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/uint32.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/AEECallback/AEECallback.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/IRSA/IRSA.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/byte.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Datatypes/uint32.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/AEECallback/AEECallback.htm
mk:@MSITStore:C:/Program%20Files/BREW%20SDK%204.0.4%20SP02/sdk/docs/BREWAPIReference.chm::/BREWAPIReference/BREW%20API%20Reference/Interfaces/IRSA/IRSA.htm

2. Applet structure

We should declare all the control we need in this applet

structure. Every attribute on application will be referenced

as static since only one application can run. AEEApplet,

AEEDeviceInfo is a must for every application. In this

section, I have added some more attribute, there are Menu

control, text control, and also RSA interface attribute.

3. Initiation program

In this part we create every instance we need. I have

added a menu control, two text control,and an instance of

RSA interface.

4. Free

Mobile platform have limited resource, that‟s why every

single byte of memory is so precious. So,free the memory

binded to every control is a must for developer.

5. Encrypt

This method is the implementation RSA algorithm to

encrypt a message. In this case we get the text in the

plaintext and show the encrypted text in the cipher text

6. Decrypt

This method is the implementation RSA algorithm to

encrypt a message

Actually there were some important steps to get our

BREW application run :

1. Specify MIF from MIF editor

2. Specify resource file with Resource Editor

3. Display the menu

4. Setting some development environment for BREW

application

But, I only placed some part of the implementation code

to keep focus only in the implementation RSA in BREW.

Figure 3. BREW Simulator

Figure 4. Program interface

III. CODE PRIVILEGE LIMITATION

BREW provide the ability to limit the privilege of an

application to the telephone functionality. Privilege of an

application can be set from the MIF (Module Information

File). Some privileges in BREW are:

1. Access file
2. Access network

3. Web access

4. TAPI (Telephone API)

5. Position location

6. Access to ringer directory

7. Write access to shared directory

8. Access to sector information

9. Access to address book

10. Download*

11. All (system)*

Some privilige marked with asterisk (*) which means

these kinds of privileges are not supplied for common
application because selecting these privilege levels may

cause the application to fail True BREW Testing which is

the requirement for an application to be placed in QIS

(Qualcomm Internet Services) where end users can

download their application. So, a developer must grant

special permission to use some of BREW privilege, so it

is hoped can ensure better security.

IV. CODE AUTHORIZATION

Code authorization is achieved by implements digital

signing of dynamic module on BREW-enabled devices.

There are two types of keys and certificates necessary:

1. Root keys and certificates

2. Signing keys and certificates

Digital signing in BREW is based upon public key (or

asymmetric) cryptography. Public key cryptography use

public and private key that with adequate key lengths, one

cannot deduce the private key from knowledge of its

associated public key, a signature and the digital object

which was signed. This is the basis of non-repudiation.

BREW Key Generation use standards X509 certificate

hierarchy, formats, and algorithms. It use RSA key

algorithm, modulus up to 4096 bits but for reasonable

performance the maximum practical keys for today‟s

(2009) hardware are modulus 2048 bits, public exponent

3.

BREW supports some certificate signing algorithms:

1. RSA with SHA1 and PKCS1 padding

2. RSA with SHA256 and PKCS1 padding

3. RSA with SHA384 and PKCS1 padding

4. RSA with SHA512 and PKCS1 padding

The process of digital signing in BREW will through

some steps :

1. Certificate Authority provides device manufacturer

with root certificate

2. Device manufacturer immutably configures root

certificate into device image

3. Certificate authority issues signing certificate(s) to

signing authority

4. Developers submit unsigned code to signing

authorities

5. Signing authority issue digital signatures for code

which meet the criteria set forth in their signing

policy

Those steps are shown in diagram below,

Figure 5. Digital Signing Ecosystem

Below is an example of certification for BREW

application :

Field Value

Version CA_DEFINED

Serial Number CA_DEFINED

Signature

Algorithm

sha256WithRSAEncryption

Issuer o=CA_NAME

cn=CA_NAME Signing root

Validity notBefore = GENERATION_DATE

notAfter = 20_YEARS_LATER

Subject o=CA_NAME

cn=CA_NAME Code Signing root

Public Key Info Algorithm = RSA

Modulus = 2048 bits

Exponent = 3(F0)

Extensions : basic

constraint

OID {id-ce 19}

Criticality : TRUE

cA = TRUE

pathLenConstraint = 2

V. CONCLUSION

After the explanation above, we have seen that the need

of cryptographic for securing our information have been

so important for mobile devices. BREW mobile platform

have provided some security and cryptograhic feature,

such as :

1. Cryptographic library (symmetric and asymmetric

key cryptographic)

2. Code privilege limitation

3. Code authoritation

BREW also has changed their regulation since 2006

that every developers need to pay a great amount of

money to get access to digital sign, so only serious

developers that want to bring their application to the

market will sign their application. Each application also

need to pass TBT (TRUE BREW Testing) that ensure that

the application doesn‟t contain security risk in it.

But, there is still weakness point in this system, for

example RSA algorithm used in mobile devices is more

simple than in general use because of its limited memory

so basicly it will reduce the robustness of the

cryptography algorithm.

REFERENCES

[1] https://BREWmobileplatform.qualcomm.com/devnet/prod/resourc

es/devEx/library/techguides/CSK/Code_Auth_thru_Digital_Signin

g/Code_Auth_thru_Digital_Signing.pdf.

Code Authorization on BREW MP through Digital Signing.

Accessed on 28
th
 April 2010.

[2] http://BREW.qualcomm.com/BREW/en/developer/faq/business_f

aq.htm. Accessed on 17
th
 May 2010.

[3] BREW API Reference. Qualcomm, 2009.

[4] http://garsia.math.yorku.ca/~zabrocki/math5020f05/RSA.doc.

RSA Cryptography. Accessed on 16
th
 Mei 2010.

[5] http://itslab.csce.kyushu-u.ac.jp/iwap04/invited_tanaka.pdf.

Current topics on Mobile PKI. Accessed on 28
th
 April 2010.

[6] Munir,Rinaldi. Diktat Kriptografi. Bandung,2006.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 17 Mei 2010

Samsu Sempena

NIM. 13507088

https://brewmobileplatform.qualcomm.com/devnet/prod/resources/devEx/library/techguides/CSK/Code_Auth_thru_Digital_Signing/Code_Auth_thru_Digital_Signing.pdf
https://brewmobileplatform.qualcomm.com/devnet/prod/resources/devEx/library/techguides/CSK/Code_Auth_thru_Digital_Signing/Code_Auth_thru_Digital_Signing.pdf
https://brewmobileplatform.qualcomm.com/devnet/prod/resources/devEx/library/techguides/CSK/Code_Auth_thru_Digital_Signing/Code_Auth_thru_Digital_Signing.pdf
http://brew.qualcomm.com/brew/en/developer/faq/business_faq.html#B8
http://brew.qualcomm.com/brew/en/developer/faq/business_faq.html#B8
http://garsia.math.yorku.ca/~zabrocki/math5020f05/RSA.doc
http://itslab.csce.kyushu-u.ac.jp/iwap04/invited_tanaka.pdf

