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Abstract — Nowadays, Internet are being the public 

network communications which can be accessed by all 

people around the world. If we are trying to send some 

messages but there is not enough or appropriate security 

service inside, then some message tapping or contents 

modification can occure without known by us. But there is 

some ways to keep its secrets and one of these methods is 

Digital Signature or in Indonesian we call it “Tanda tangan 

Digital”. 

With this kind of method, we could keep our message 

contains and validitiy the authorizeed , whatever if it was 

come from the true person. But, there are still pro and 

contra about this kind of methods among people due to its 

security and ability. So in this paper, author will bring you 

the advantages of using RSA and also the weakness of this 

algorithm. And in addition, the author will bring you way 

how to improve its security and ability. 

 

Index Terms — Digital Signature, security, ability, 

advantages, weakness, RSA Algorithm. 

 

 

I.   INTRODUCTION 

I.1. RSA History and Founders 

The first triggered work for RSA’s 

born was come from Clifford Cocks, a 

British mathematician, who was 

working for the UK intelligence 

agency GCHQ. At that time, he 

described an equivalent system to 

encrypt an internal document in 1973, 

but it needed some expensive computers to accomplish 

the implementation it at the time, so it was mostly just 

considered as a curiosity and as far as is publicly known, 

was never deployed. His discovery, however, was not 

revealed until 1998 due to its top-secret classification, and 

then Rivest, Shamir, and Adleman devised RSA 

independently of Cocks' work.1 

In cryptography, RSA it self (which stands for Rivest, 

Shamir and Adleman who first publicly described it) is an 

algorithm for public-key cryptography. RSA is an 

algorithm which is known to be suitable for digital 

signing as well as encryption, and was one of the first 

                                                           
1 A Method for Obtaining Digital Signatures and Public-Key 

Cryptosystems. 

great advances in public key cryptography. RSA is widely 

used in electronic commerce protocols, and is believed to 

be secure given sufficiently long keys and the use of up-

to-date implementations. 

The RSA algorithm was 

publicly described in 1978 by 

Ron Rivest, Adi Shamir, and 

Leonard Adleman at MIT. 

Since a paper describing the 

algorithm had been published 

in August 19772 prior to the 

December 1977 filing date of the patent application, 

regulations in much of the rest of the world precluded 

patents elsewhere and only the US patent was granted.  

I.2. RSA Algorithm 

The best security system of RSA Algorithm is depend 

on its dificulty to factorize the big integers to become its 

prime factors p and q. The factorization process is done to 

get the private key for our message. RSA will be stand as 

long as there has not been founded any effective 

algorithm to factorize a big integers to its prime factors. 

Keys in RSA consists of public key, which can be 

known to everyone and is used to encrypt the message. 

Then the message which has been encrypted by public 

key, can only be decrypted by using private key. But in 

digital signaturing, we reverse the common way about its 

both keys. In here, we rather use our private key to 

encrypt the message as same as our hand-sign and then 

we publish our public key to everyone. So if later they get 

our message, they can decrypt it with our public key and 

check whatever it message was come from the true person 

and not has been modified by other people or not. 
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II.   GENERAL WAYS FROM RSA ALGORITHM 

II.1. RSA Key Generator Algorithm 

Here it is the algorithm to generate both public and 

private keys for RSA :  

1. Firstly, let’s choose two distinct secret prime numbers 

𝑝 𝑎𝑛𝑑 𝑞. 

We rather use p and q as same bit-length integers and 

should be choosen uniformly at random and as length 

as possible for the security reason. 

2. Then let’s compute : 

𝑛 =  𝑝 × 𝑞. 

n is treated as the next modulus for our both public 

and private keys. And n can be published to everyone. 

3. Let Pi be the block of (plain) text to be encrypted. 

Actually Pi is the numerical equivalent of the text 

which may either be single letters or blocks of letters, 

just as long as 

𝑃𝑖 <  𝑝 − 1 ×  𝑞 − 1 = 𝜑 𝑛  

(φ is Euler's totient function). 

4. Choose an integer e such that 1 < e < φ(n), and e and 

φ(n) share no divisors other than 1 (e and φ(n) are 

coprime). Then,, e will be used togerther with n as our 

encryption key exponent (private key in digital 

signaturing). 

5. Now, let’s determine d (using modular arithmetic) 

which satisfies the congruence relation. Which is : 

𝑒 .𝑑 ≡  1 (𝑚𝑜𝑑 𝜑(𝑛)) 

Or in other words, we can says : 

𝑑 =  
1 + 𝑘 𝜑 𝑛  

𝑒
 

Then, d  will be used together with n as our decryption 

key and be published to everyone, so they can check 

whatever a message is still authentic (public key in 

digital signaturing). 

6. Note : just for efficiency the following founded prime 

values may be precomputed and stored as part of the 

private key: p and q: the primes from the key 

generation.3 

 II.2. RSA Encryption and Decryption 

There are some common variables known in RSA : 

 p and q  prime integers (secret) 

 n = p x q  (not secret) 

 Φ (n) = (p – 1)(q – 1)  (secret) 

  e encryption key (secret) 

 d decryption key (not secret) 

 m plainteks (secret) 

 c chiperteks (not secret) 
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After both public and private keys are successfully 

generated, next step is to sign the plainteks message by 

convert its text into bit-bit of integer so that we can easily 

doing math operation for it. Then the encryption 

algorithm is : 

𝐸𝑒 𝑚 = 𝑐 ≡ 𝑚𝑒  𝑚𝑜𝑑 𝑛 

Then, after we get the ciphertext we can just append it 

at the bottom of our message as Signature from us. Next 

time, if some one has gotten our message, she/he can just 

decrypt it with our public key : 

𝐷𝑑 𝑐 = 𝑚 ≡ 𝑐𝑑  𝑚𝑜𝑑 𝑛 

 

 

Picture 1- Digital Signaturing Process4 

 

II.3. The Security Rate of RSA 

RSA Algorithm’s security is based on its difficultness 

to factorized its n as a big integer into p and q (the prime 

factors), which they both are also big integers. Prime 

number is a whole number, greater than 1 that can be 

evenly divided only by 1 or itself, because of this 

specificity, and all of the others numbers can be factorized 

into prime numbers. “Factor” are the numbers you 

multiply to get another number : 

 

 

 And the main problem to break up the RSA algorithm 

is to find out both prime factors of n as p and q which is 

consists of up to 512 bit-integers. After n could be 

factorized into p and q, such that n = p x q, then Φ(n) = 

(p-1)(q-1) can be easily compute. Then, because d as the 

public key is released to everyone (which is not secret 

due to its functionality), the encryption key e also can be 

easily found by using formula : 

 

𝑒 =  
1 + 𝑘 𝜑 𝑛  

𝑑
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It is because : e . d ≡ 1 (mod Φ(n)). 

From now on, generally, it can be concluded that RSA 

is still secure enough as far as the n number as the most 

important key here consists of too big integers that could 

not be factorized as well. 

 

 

III.   RSA ATTACKS AND WEAKNESSES POINTS 

ANALYSIS  

III.1. RSA Attacks 

III.1.1. Factoring Large Integers 

  

The first kind of attacks that implied on RSA algorithm 

is to factorting the modulus n. Given the both 

factorization of n, an attacker can easily construct n from 

the decryption exponent formula : 

𝑒 .𝑑 ≡  1 (𝑚𝑜𝑑 𝜑(𝑛)) 

In this case, we could only solves the modulus by using 

brute-force attack on it. Until now, there is no one of 

factoring algorithms which have been steadily improving 

enough to posing a threat to the RSA security, whereas 

factoring large integers is one of computational 

mathematics. 

For completeness the writer notes that the current 

fastest factoring algorithm is the General Number Field 

Sieve. In number theory, this algorithm (GNFS) is the 

most efficient classical algorithm known for factoring 

integers which is larger than 100 digits. Heuristically, its 

complexity for factoring an integer n (consisting of log n 

bits) is of the form Its running time on n-bit integers is : 

  𝑐 + 𝑜 𝑛  × 𝑛
1
3 × 𝑙𝑜𝑔

2
3 × 𝑛  

for some c < 2.5 

This number filed of GNFS sieve has the same main 

principle (both special and general) as an simple rational 

sieve. Suppose f is an n - degree polynomial of rational 

number Q, and r is a complex root of f. Then, f(r)  = 0, 

which can be rearranged to express 𝑟𝑛  as a linear 

combination of powers of r less than n. This equation can 

be used to reduce away any powers of r ≥ n. For example, 

if 𝑓(𝑥)  =  𝑥2 +  1 and r is the imaginary unit i, then 

𝑖2  +  1 = 0, or 𝑖2  =  − 1 . This allows us to define the 

complex product : 

 𝑎 + 𝑏𝑖  𝑐 + 𝑑𝑖 =  𝑎𝑐 +   𝑎𝑑 + 𝑏𝑐 𝑖 +   𝑏𝑑 𝑖2  =
 (𝑎𝑐 −  𝑏𝑑)  + (𝑎𝑑 + 𝑏𝑐)𝑖. 

In general, this leads directly to the algebraic number 

field 𝑄(𝑟), which can be defined as the set of real 

numbers given by: 

𝑎𝑛−1𝑟
𝑛−1 + . . . + 𝑎1𝑟

1  +  𝑎0𝑟
0, 

where 𝑎0, . . . ,𝑎𝑛−1 are in Q. 
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The product of any two such values can be computed by 

taking the product as polynomials, then reducing any 

powers of r  ≥  n as described above, then let a be value in 

the same form. 

Then lets compute the given integers N and e which e 

satisfying 𝑔𝑐𝑑(𝑒,𝜑(𝑁)) = 1 by the algorithm which is 

implemented polynom factorizing as explained above, 

define the function 𝑓𝑒 ,𝑁 : 

𝑍𝑁
∗ →  𝑍𝑁

∗  𝑏𝑦 𝑓𝑒 ,𝑁 𝑥 =  𝑥
1
𝑒  𝑚𝑜𝑑 𝑁 

 

III.1.2. Common Modulus Seeker 

 

To avoid generating a different modulus N = pq for 

each user one may wish to fix N once and for all. The 

same N is used by all users. A trusted central authority 

could provide user - i with an unique pair of his / hers 𝑒𝑖𝑖  
and 𝑑𝑖  from which user - i and forms a private key  𝑁, 𝑒𝑖  
and a public key  𝑁,𝑑𝑖 . 

At the first glance this may seem to work for a 

signature :  

𝐶 =  𝑀𝑒𝐴𝑙𝑖𝑐𝑒  𝑚𝑜𝑑 𝑁  

intended for Alice cannot be modified by Bob since Bob 

does not possess 𝑒𝑎𝑙𝑖𝑐𝑒 . However, this is incorrect and the 

resulting system is still not insecure enough because Bob 

still can recover the encrytion key by Alice public key 

𝑑𝐴𝑙𝑖𝑐𝑒  

This observation has been done by Simmons, he showed 

that an RSA modulus should never be used by more than 

one entity by looking up from its modulo. 

 

 

III.1.3. Blinding Attack 

 

Now let  𝑁,𝑑  be the private key and  𝑁, 𝑒  be the 

corresponded public key. Then, suppose a problem that 

someone wants us to give signature on a uncommon 

message 𝑀 ∈ 𝑍𝑁
∗ . But trully, it just the fake message 

which derived from r where created by someone : 

 𝑀′ =  𝑟𝑒  𝑀 𝑚𝑜𝑑 𝑁 

We may be accept to provide our signature 𝑆0 on the true-

looking 𝑀′ . But then our private signature on message M 

will be revealed by : 

𝑆 =  𝑆′ 𝑟  𝑚𝑜𝑑 𝑁 

Due to : 

𝑆𝑒  =  (𝑆′)𝑒 𝑟𝑒  =  (𝑀′)𝑒𝑑 𝑟𝑒 ≡  𝑀′ 𝑟𝑒  
=  𝑀 (𝑚𝑜𝑑 𝑁) 

 

By this way, someone can obtain our valid signature on 

a certain message by asking us to sign a random 

“blinded” message.  

 

 



III.1.4. Fault - Base Attack 

 

In this case, we will have 3 common variables known 

as  𝑛,𝑑, 𝑒  where n and e are public known and d is 

private known only, then for which the signature with the 

private key d and length N is computed using the fixed-

window exponentiation (FWE) algorithm with a window 

size w, we call k the number of windows in the private 

key d, that is, k = N/w. Let us call 𝑠  a corrupted signature 

of the message m computed with the private key d. 

Assume that a single-bit binary value change has occurred 

at the output during its computation. 

An attacker that can collect at least 𝑆 =  𝑘 ·  𝑙𝑛(2𝑘) 

different pairs  𝑚, 𝑠   has a probability pr = 1/2 to recover 

the private key d of N bits in polynomial time - 

𝑂(2𝑤𝑁3𝑆). 

 

 

Picture 2 - Fault Base Attack6 

 

This is the pseudo-code look up he significant window 

from data public key and N , which are public known as 

the sample picture above is : 

 

window search (m, s, e, win_size, win_idx) 

{ 

 found = 0; 

 for(d[win_idx] in [0..2ˆwin size-1]; 

  sqr_iter in [0..win_size-1]; 

  fault_in [0..#bits(d)-1] ) 

 found += test_equation 10( m, s, e, 

 win_idx,d[win_idx],sqr_iter,fault_loc) 

 if (found == 1)  

  return d[win_idx] 

 else 

  return -1 

} 

 

The private key then will be invoked by the given 

window above with this pseudo-code function : 

 
private key recovery ( array<m,s>, e, win_size) 

{ 

 num win = #bits(d) / win_size 

 for(win idx_in [num_win-1..0] ) 

  for (<m,s> in array<m,s>) 

  { 

 d[win_idx] = window_search(m,s,e, 

 win_size, win_idx) 

 if (d[win_idx] >= 0)  

  break; 

 } 

 if (d[win idx] < 0)  

 double_win_size; 

} 
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III.2. RSA Weakness 

III.2.1. Weakness At The Key Exchange 

 

Such as common encryption algorithm, the main 

problem for being a successful sent and received a 

message is if it is not being excused by anyone who does 

not have any privilage except the true receiver. And in 

cryptography it is called as “Man-In-The-Middle Attack”. 

 

Picture 3 - Man-In-The-Middle-Attack7 

 

It can be occured because the sender and ther receiver 

must exchange their public key to each other by any 

communications tools or network, this is absolutely 

caused an opportunity by an attacker to be the Man-In-

The-Middle-Attack, who was explained by picture above. 

In case, Alice and Bob send their own key off into 

communications network, and let’s call Carol cut through 

into their communication then he pretend as one of them 

(Alice or Bob). Carol then pretend as Alice to Bob, and 

send him his public key, because of Bob’s trustness, Bob 

will accept Carol’s key and sure that it is come from true 

Alice. This is also happen at the other side, Carol pretend 

as Bob to Alice, then he sent his public key to Alice. 

Alice will accept it because she believes that it was come 

from true Bob. 

Next step, Carol keep the true message from Bob to 

Alice and send the encrypted message, which has been 

encrypted by his private key in signaturing. Then Alice 

will believe that this message was authentic and came 

from Bob then accept it without knowing that was Carol 

in the middle of them. 

 

 

III.2.1. Known Plainteks Moreover Use The Same Key 

 

Other side of RSA weakness is in its encryption which 

has a common pattern to be analysed if we had known 

one of the plainteks sent. Then, we could choose other 

plainteks to be encrypted by public key in our plainteks 

dictionary. This dictionary was used to break or recover 

the private key of the true receiver and to modify the 

message without being known.  

Without loss of generality, assume that n = pq in RSA 

is a 512 bit number. Let e be the public exponent which is 

publicly known and d be the secret exponent which is 
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stored inside the dictionary device. Now choose P from 

plaintext’s storage, then the corresponding ciphertext is 

     𝐶 =  𝑃𝑒  (1) 

(In the following, only residues modulo n are shown, e.g., 

we use P^e instead of P^e mod n). We denote the binary 

representation of the secret exponent as : 

d = d511|d510| ...|di|...|d1|d0 (2) 

 

where di, takes value 1 or 0, is the ith bit and where x|y 

denotes concatenation of x and y. Further, we denote 

C0=C, C1=C^2, C2=C^{2^2}, ..., C511=C^{2^511} (3) 

 

Given C and d, we can express the corresponding 

plaintext P as 

P=(C511^d511)(C510^d510)...(Ci^di) ...(C1^d1)(C0^d0)  

 

We assume that the attacker is in physical possession of 

this device and that he can repeat the experiment with the 

same key by applying external physical effects to obtain 

outputs due to single bit errors.8 

 

 

IV.   CONTRIBUTION AND WAY TO IMPROVE RSA  
 

IV.1. Prime Number Generator 

 

RSA Algorithm it self, consists of 2 base cycle, first is 

key generator and the second is message sending, so the 

writer try to implement the Prime number generator by 

making own algorithm to generate and check whatever a 

big integer is prime or not. 

 

 

Picture 4 - Self Key Generator 

By the 25 times experimental result to generate N-bit 

prime number, we need  at least : 

bit for p and q Average Processing (s) 
Times 

(x) 

3 – 4 0,2 7 

5 – 6 0 7 

7 – 8 17,2 5 

9 – 10 594,2 3 

10 – 12 902,1 3 
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/* Own build Prime Checking */ 

public bool isPrima(BigInteger x) 

{ 

 int count = 0; 

   if (x >= 2) 

   { 

       if (x != 2) 

       { 

          if (x % 2 != 0) 

             { 

 for (BigInteger i = 2; i <=  

 (x.sqrt() + 1); i++) 

                  { 

                       if ((x % i) == 0) 

                           count++; 

                  } 

                       if (count > 1) 

                            return false; 

                        else 

                            return true; 

              } 

              else 

                 return false; 

        } 

              else 

                 return true; 

    } 

    else 

        return false; 

} 

 

 

Its prime checking use the effective looking up just by 

square rootof the big integers checked, it is also usefull 

for making private key and public key for RSA algorithm, 

both at the same time. 

 

 

IV.2. Other “Way” Computational to Generate Prime 

Number 

 

Beside using own effective algorithm, the writer also 

included a new algorithm provided by BigInteger class in 

C# which is very usable to get or checked about kinds of 

big prime number. In this library, every prime number 

from 2 until 2000 are noted structurally. Its can handle at 

most 512 bit length for p and d within 60 sec process. 

Here it is the short capture of the BigInteger class : 
public class BigInteger{ 

// maximum length of the BigInteger in uint (4 

bytes) 

// change this to suit the required level of 

precision. 

 

private const int maxLength = 70; 

 

// primes smaller than 2000 to test the 

generated prime number 

 

public static readonly int[] primesBelow2000 = { 

        2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 

89, 97, 

        101, 103, 107, 109, 113, 127, 131, 137, 

139, 149, 151, 157, 163, 167, 173, 179, 181, 

191, 193, 197, 199, 

 211, 223, 227, 229, 233, 239, 241, 251, 

257, 263, 269, 271, 277, 281, 283, 293, 

 307, 311, 313, 317, 331, 337, 347, 349, 

353, 359, 367, 373, 379, 383, 389, 397, 

 401, 409, 419, 421, 431, 433, 439, 443, 

449, 457, 461, 463, 467, 479, 487, 491, 499, 



 503, 509, 521, 523, 541, 547, 557, 563, 

569, 571, 577, 587, 593, 599, 

 601, 607, 613, 617, 619, 631, 641, 643, 

647, 653, 659, 661, 673, 677, 683, 691, 

 701, 709, 719, 727, 733, 739, 743, 751, 

757, 761, 769, 773, 787, 797, 

 809, 811, 821, 823, 827, 829, 839, 853, 

857, 859, 863, 877, 881, 883, 887, 

 907, 911, 919, 929, 937, 941, 947, 953, 

967, 971, 977, 983, 991, 997, 

 1009, 1013, 1019, 1021, 1031, 1033, 1039, 

1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 

1097, 

 1103, 1109, 1117, 1123, 1129, 1151, 1153, 

1163, 1171, 1181, 1187, 1193, 

 1201, 1213, 1217, 1223, 1229, 1231, 1237, 

1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 

 1301, 1303, 1307, 1319, 1321, 1327, 1361, 

1367, 1373, 1381, 1399, 

 1409, 1423, 1427, 1429, 1433, 1439, 1447, 

1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 

1493, 1499, 

 1511, 1523, 1531, 1543, 1549, 1553, 1559, 

1567, 1571, 1579, 1583, 1597, 

 1601, 1607, 1609, 1613, 1619, 1621, 1627, 

1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 

 1709, 1721, 1723, 1733, 1741, 1747, 1753, 

1759, 1777, 1783, 1787, 1789, 

 1801, 1811, 1823, 1831, 1847, 1861, 1867, 

1871, 1873, 1877, 1879, 1889, 

 1901, 1907, 1913, 1931, 1933, 1949, 1951, 

1973, 1979, 1987, 1993, 1997, 1999 }; 

 

 

private uint[] data = null;             // 

stores bytes from the Big Integer 

public int dataLength;                 // number 

of actual chars used 

 

 

        

//**********************************************

************************* 

        // Constructor (Default value for 

BigInteger is 0 

        

//**********************************************

************************* 

 

public BigInteger() 

{ 

    data = new uint[maxLength]; 

    dataLength = 1; 

  } 

 

There is a function in Big Integers called ModInverse(), 

this is can help us findout the true factor of prime number 

with extra fast time. By using BigInteger algorithm, the 

application builded here could operated better than before 

esspecially at the key. 

 
         

public BigInteger modInverse(BigInteger modulus) 

{ 

  BigInteger[] p = { 0, 1 }; 

  BigInteger[] q = new BigInteger[2];//quotients 

  BigInteger[] r = { 0, 0 };        //remainders 

  int step = 0; 

  BigInteger a = modulus; 

  BigInteger b = this; 

 

while 

(b.dataLength>1||(b.dataLength==1&&b.data[0]!=0)) 

{ 

     BigInteger quotient = new BigInteger(); 

    BigInteger remainder = new BigInteger(); 
    if (step > 1) 

    { 
        BigInteger pval=(p[0]-(p[1]*q[0]))%modulus; 

        p[0] = p[1]; 

        p[1] = pval; 

    } 

    if (b.dataLength == 1) 

      singleByteDivide(a,b,quotient,remainder); 

    else 

      multiByteDivide(a,b,quotient,remainder); 

    q[0] = q[1]; 

    r[0] = r[1]; 

    q[1] = quotient; r[1] = remainder; 

    a = b; 

    b = remainder; 

    step++; 

 } 
 

If(r[0].dataLength>1||(r[0].dataLength==1&&r[0].data[0]

!= 1)) 

  throw (new ArithmeticException("Noinverse!")); 

BigInteger result = ((p[0] - (p[1] * q[0])) % 

modulus); 

if ((result.data[maxLength-1] & 0x80000000)!=0) 

    result += modulus;//get the least + modulus 

return result; 

} 

 

 

By using this class, the writer application could 

construct more than 10-bit length integer key in short time 

below :  

 
 

 

bit for p and q Average Processing (s) 
Times 

(x) 

8 0 3 

30 0 4 

128 0,6 5 

256 0,8 5 

512 3,1 7 

 

 

 Our concentration is in the key generation because it is 

the main strength of RSA Algorithm and it is needed to 

improve its security. 

 

 

 

 



IV.3. RSA Modifications 

 

Until now on, RSA algorithm is still secure enough for 

being one of the signature schemes with appendix for new 

applications. There are 2 mentioned modified RSA from 

RSA Laboratory :9 

RSAES-OAEP (RSA Encryption Scheme - Optimal 

Asymmetric Encryption Padding) is a public-key 

encryption scheme combining the RSA algorithm with the 

OAEP method. 

RSASSA-PSS which is (RSA Signature Scheme with 

Appendix - Probabilistic Signature Scheme) an 

asymmetric signature scheme with appendix combining 

the RSA algorithm with the PSS encoding method. 

RSA-SHA which is consists of 2 step encryption 

algorithm, first let generate the number of seed public and 

private key then you can give your sign to the message 

with the private key, then second step is to hash our 

message with SHA Algorithm so our signature could not 

be read as ussually as common signature which use only 

RSA. 

 

 

V.   CONCLUSION 

RSA security algorithm is based on the difficulty of 

factoring large numbers into prime factors. It can be 

concluded that RSA is safe only if n is big enough.  

RSA is much slower than symmetric key cryptography 

algorithms such as AES and DES. 

There are 2 common weakness of RSA security : 

Man-In-The-Middle Attack : 

A man who infiltrate into the middle of someone 

communications and make a modifications or changes to 

the message sent by other people. 

Chosen-plaintext Attack  : 

RSA is vulnerable to the Chosen-plaintext attack. 

Suppose if someone has some plaintext of the messages. 

He can select some of the plaintext to encrypted public 

key premises, then save the results in the dictionary. Then 

analys intercepting communications channels and to 

compare the GCC cipherteks intercepted by cipherteks in 

the dictionary. If there are similarities, then kriptanalis 

can use the dictionary to learn the contents of the 

message. 
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