
Security Analysis of RSA Algorithm

For Digital Signature and Way to Improve It

Galih Andana - 13507069

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Xugalz_@hotmail.com

Abstract — Nowadays, Internet are being the public

network communications which can be accessed by all

people around the world. If we are trying to send some

messages but there is not enough or appropriate security

service inside, then some message tapping or contents

modification can occure without known by us. But there is

some ways to keep its secrets and one of these methods is

Digital Signature or in Indonesian we call it “Tanda tangan

Digital”.

With this kind of method, we could keep our message

contains and validitiy the authorizeed , whatever if it was

come from the true person. But, there are still pro and

contra about this kind of methods among people due to its

security and ability. So in this paper, author will bring you

the advantages of using RSA and also the weakness of this

algorithm. And in addition, the author will bring you way

how to improve its security and ability.

Index Terms — Digital Signature, security, ability,

advantages, weakness, RSA Algorithm.

I. INTRODUCTION

I.1. RSA History and Founders

The first triggered work for RSA’s

born was come from Clifford Cocks, a

British mathematician, who was

working for the UK intelligence

agency GCHQ. At that time, he

described an equivalent system to

encrypt an internal document in 1973,

but it needed some expensive computers to accomplish

the implementation it at the time, so it was mostly just

considered as a curiosity and as far as is publicly known,

was never deployed. His discovery, however, was not

revealed until 1998 due to its top-secret classification, and

then Rivest, Shamir, and Adleman devised RSA

independently of Cocks' work.1

In cryptography, RSA it self (which stands for Rivest,

Shamir and Adleman who first publicly described it) is an

algorithm for public-key cryptography. RSA is an

algorithm which is known to be suitable for digital

signing as well as encryption, and was one of the first

1 A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems.

great advances in public key cryptography. RSA is widely

used in electronic commerce protocols, and is believed to

be secure given sufficiently long keys and the use of up-

to-date implementations.

The RSA algorithm was

publicly described in 1978 by

Ron Rivest, Adi Shamir, and

Leonard Adleman at MIT.

Since a paper describing the

algorithm had been published

in August 19772 prior to the

December 1977 filing date of the patent application,

regulations in much of the rest of the world precluded

patents elsewhere and only the US patent was granted.

I.2. RSA Algorithm

The best security system of RSA Algorithm is depend

on its dificulty to factorize the big integers to become its

prime factors p and q. The factorization process is done to

get the private key for our message. RSA will be stand as

long as there has not been founded any effective

algorithm to factorize a big integers to its prime factors.

Keys in RSA consists of public key, which can be

known to everyone and is used to encrypt the message.

Then the message which has been encrypted by public

key, can only be decrypted by using private key. But in

digital signaturing, we reverse the common way about its

both keys. In here, we rather use our private key to

encrypt the message as same as our hand-sign and then

we publish our public key to everyone. So if later they get

our message, they can decrypt it with our public key and

check whatever it message was come from the true person

and not has been modified by other people or not.

2 SIAM News, Volume 36, Number 5, June 2003.

II. GENERAL WAYS FROM RSA ALGORITHM

II.1. RSA Key Generator Algorithm

Here it is the algorithm to generate both public and

private keys for RSA :

1. Firstly, let’s choose two distinct secret prime numbers

𝑝 𝑎𝑛𝑑 𝑞.

We rather use p and q as same bit-length integers and

should be choosen uniformly at random and as length

as possible for the security reason.

2. Then let’s compute :

𝑛 = 𝑝 × 𝑞.

n is treated as the next modulus for our both public

and private keys. And n can be published to everyone.

3. Let Pi be the block of (plain) text to be encrypted.

Actually Pi is the numerical equivalent of the text

which may either be single letters or blocks of letters,

just as long as

𝑃𝑖 < 𝑝 − 1 × 𝑞 − 1 = 𝜑 𝑛

(φ is Euler's totient function).

4. Choose an integer e such that 1 < e < φ(n), and e and

φ(n) share no divisors other than 1 (e and φ(n) are

coprime). Then,, e will be used togerther with n as our

encryption key exponent (private key in digital

signaturing).

5. Now, let’s determine d (using modular arithmetic)

which satisfies the congruence relation. Which is :

𝑒 .𝑑 ≡ 1 (𝑚𝑜𝑑 𝜑(𝑛))

Or in other words, we can says :

𝑑 =
1 + 𝑘 𝜑 𝑛

𝑒

Then, d will be used together with n as our decryption

key and be published to everyone, so they can check

whatever a message is still authentic (public key in

digital signaturing).

6. Note : just for efficiency the following founded prime

values may be precomputed and stored as part of the

private key: p and q: the primes from the key

generation.3

 II.2. RSA Encryption and Decryption

There are some common variables known in RSA :

 p and q prime integers (secret)

 n = p x q (not secret)

 Φ (n) = (p – 1)(q – 1) (secret)

 e encryption key (secret)

 d decryption key (not secret)

 m plainteks (secret)

 c chiperteks (not secret)

3http://www.krellinst.org/UCES/archive/modules/charlie/pke/node10.

html

After both public and private keys are successfully

generated, next step is to sign the plainteks message by

convert its text into bit-bit of integer so that we can easily

doing math operation for it. Then the encryption

algorithm is :

𝐸𝑒 𝑚 = 𝑐 ≡ 𝑚𝑒 𝑚𝑜𝑑 𝑛

Then, after we get the ciphertext we can just append it

at the bottom of our message as Signature from us. Next

time, if some one has gotten our message, she/he can just

decrypt it with our public key :

𝐷𝑑 𝑐 = 𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑛

Picture 1- Digital Signaturing Process4

II.3. The Security Rate of RSA

RSA Algorithm’s security is based on its difficultness

to factorized its n as a big integer into p and q (the prime

factors), which they both are also big integers. Prime

number is a whole number, greater than 1 that can be

evenly divided only by 1 or itself, because of this

specificity, and all of the others numbers can be factorized

into prime numbers. “Factor” are the numbers you

multiply to get another number :

 And the main problem to break up the RSA algorithm

is to find out both prime factors of n as p and q which is

consists of up to 512 bit-integers. After n could be

factorized into p and q, such that n = p x q, then Φ(n) =

(p-1)(q-1) can be easily compute. Then, because d as the

public key is released to everyone (which is not secret

due to its functionality), the encryption key e also can be

easily found by using formula :

𝑒 =
1 + 𝑘 𝜑 𝑛

𝑑

4 technet.microsoft.com/en-us

It is because : e . d ≡ 1 (mod Φ(n)).

From now on, generally, it can be concluded that RSA

is still secure enough as far as the n number as the most

important key here consists of too big integers that could

not be factorized as well.

III. RSA ATTACKS AND WEAKNESSES POINTS

ANALYSIS

III.1. RSA Attacks

III.1.1. Factoring Large Integers

The first kind of attacks that implied on RSA algorithm

is to factorting the modulus n. Given the both

factorization of n, an attacker can easily construct n from

the decryption exponent formula :

𝑒 .𝑑 ≡ 1 (𝑚𝑜𝑑 𝜑(𝑛))

In this case, we could only solves the modulus by using

brute-force attack on it. Until now, there is no one of

factoring algorithms which have been steadily improving

enough to posing a threat to the RSA security, whereas

factoring large integers is one of computational

mathematics.

For completeness the writer notes that the current

fastest factoring algorithm is the General Number Field

Sieve. In number theory, this algorithm (GNFS) is the

most efficient classical algorithm known for factoring

integers which is larger than 100 digits. Heuristically, its

complexity for factoring an integer n (consisting of log n

bits) is of the form Its running time on n-bit integers is :

 𝑐 + 𝑜 𝑛 × 𝑛
1
3 × 𝑙𝑜𝑔

2
3 × 𝑛

for some c < 2.5

This number filed of GNFS sieve has the same main

principle (both special and general) as an simple rational

sieve. Suppose f is an n - degree polynomial of rational

number Q, and r is a complex root of f. Then, f(r) = 0,

which can be rearranged to express 𝑟𝑛 as a linear

combination of powers of r less than n. This equation can

be used to reduce away any powers of r ≥ n. For example,

if 𝑓(𝑥) = 𝑥2 + 1 and r is the imaginary unit i, then

𝑖2 + 1 = 0, or 𝑖2 = − 1 . This allows us to define the

complex product :

 𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 𝑖 + 𝑏𝑑 𝑖2 =
 (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖.

In general, this leads directly to the algebraic number

field 𝑄(𝑟), which can be defined as the set of real

numbers given by:

𝑎𝑛−1𝑟
𝑛−1 + . . . + 𝑎1𝑟

1 + 𝑎0𝑟
0,

where 𝑎0, . . . ,𝑎𝑛−1 are in Q.

5 http://crypto.stanford.edu

The product of any two such values can be computed by

taking the product as polynomials, then reducing any

powers of r ≥ n as described above, then let a be value in

the same form.

Then lets compute the given integers N and e which e

satisfying 𝑔𝑐𝑑(𝑒,𝜑(𝑁)) = 1 by the algorithm which is

implemented polynom factorizing as explained above,

define the function 𝑓𝑒 ,𝑁 :

𝑍𝑁
∗ → 𝑍𝑁

∗ 𝑏𝑦 𝑓𝑒 ,𝑁 𝑥 = 𝑥
1
𝑒 𝑚𝑜𝑑 𝑁

III.1.2. Common Modulus Seeker

To avoid generating a different modulus N = pq for

each user one may wish to fix N once and for all. The

same N is used by all users. A trusted central authority

could provide user - i with an unique pair of his / hers 𝑒𝑖𝑖
and 𝑑𝑖 from which user - i and forms a private key 𝑁, 𝑒𝑖
and a public key 𝑁,𝑑𝑖 .

At the first glance this may seem to work for a

signature :

𝐶 = 𝑀𝑒𝐴𝑙𝑖𝑐𝑒 𝑚𝑜𝑑 𝑁

intended for Alice cannot be modified by Bob since Bob

does not possess 𝑒𝑎𝑙𝑖𝑐𝑒 . However, this is incorrect and the

resulting system is still not insecure enough because Bob

still can recover the encrytion key by Alice public key

𝑑𝐴𝑙𝑖𝑐𝑒

This observation has been done by Simmons, he showed

that an RSA modulus should never be used by more than

one entity by looking up from its modulo.

III.1.3. Blinding Attack

Now let 𝑁,𝑑 be the private key and 𝑁, 𝑒 be the

corresponded public key. Then, suppose a problem that

someone wants us to give signature on a uncommon

message 𝑀 ∈ 𝑍𝑁
∗ . But trully, it just the fake message

which derived from r where created by someone :

 𝑀′ = 𝑟𝑒 𝑀 𝑚𝑜𝑑 𝑁

We may be accept to provide our signature 𝑆0 on the true-

looking 𝑀′ . But then our private signature on message M

will be revealed by :

𝑆 = 𝑆′ 𝑟 𝑚𝑜𝑑 𝑁

Due to :

𝑆𝑒 = (𝑆′)𝑒 𝑟𝑒 = (𝑀′)𝑒𝑑 𝑟𝑒 ≡ 𝑀′ 𝑟𝑒
= 𝑀 (𝑚𝑜𝑑 𝑁)

By this way, someone can obtain our valid signature on

a certain message by asking us to sign a random

“blinded” message.

III.1.4. Fault - Base Attack

In this case, we will have 3 common variables known

as 𝑛,𝑑, 𝑒 where n and e are public known and d is

private known only, then for which the signature with the

private key d and length N is computed using the fixed-

window exponentiation (FWE) algorithm with a window

size w, we call k the number of windows in the private

key d, that is, k = N/w. Let us call 𝑠 a corrupted signature

of the message m computed with the private key d.

Assume that a single-bit binary value change has occurred

at the output during its computation.

An attacker that can collect at least 𝑆 = 𝑘 · 𝑙𝑛(2𝑘)

different pairs 𝑚, 𝑠 has a probability pr = 1/2 to recover

the private key d of N bits in polynomial time -

𝑂(2𝑤𝑁3𝑆).

Picture 2 - Fault Base Attack6

This is the pseudo-code look up he significant window

from data public key and N , which are public known as

the sample picture above is :

window search (m, s, e, win_size, win_idx)

{

 found = 0;

 for(d[win_idx] in [0..2ˆwin size-1];

 sqr_iter in [0..win_size-1];

 fault_in [0..#bits(d)-1])

 found += test_equation 10(m, s, e,

 win_idx,d[win_idx],sqr_iter,fault_loc)

 if (found == 1)

 return d[win_idx]

 else

 return -1

}

The private key then will be invoked by the given

window above with this pseudo-code function :

private key recovery (array<m,s>, e, win_size)

{

 num win = #bits(d) / win_size

 for(win idx_in [num_win-1..0])

 for (<m,s> in array<m,s>)

 {

 d[win_idx] = window_search(m,s,e,

 win_size, win_idx)

 if (d[win_idx] >= 0)

 break;

 }

 if (d[win idx] < 0)

 double_win_size;

}

6 www.eecs.umich.edu

III.2. RSA Weakness

III.2.1. Weakness At The Key Exchange

Such as common encryption algorithm, the main

problem for being a successful sent and received a

message is if it is not being excused by anyone who does

not have any privilage except the true receiver. And in

cryptography it is called as “Man-In-The-Middle Attack”.

Picture 3 - Man-In-The-Middle-Attack7

It can be occured because the sender and ther receiver

must exchange their public key to each other by any

communications tools or network, this is absolutely

caused an opportunity by an attacker to be the Man-In-

The-Middle-Attack, who was explained by picture above.

In case, Alice and Bob send their own key off into

communications network, and let’s call Carol cut through

into their communication then he pretend as one of them

(Alice or Bob). Carol then pretend as Alice to Bob, and

send him his public key, because of Bob’s trustness, Bob

will accept Carol’s key and sure that it is come from true

Alice. This is also happen at the other side, Carol pretend

as Bob to Alice, then he sent his public key to Alice.

Alice will accept it because she believes that it was come

from true Bob.

Next step, Carol keep the true message from Bob to

Alice and send the encrypted message, which has been

encrypted by his private key in signaturing. Then Alice

will believe that this message was authentic and came

from Bob then accept it without knowing that was Carol

in the middle of them.

III.2.1. Known Plainteks Moreover Use The Same Key

Other side of RSA weakness is in its encryption which

has a common pattern to be analysed if we had known

one of the plainteks sent. Then, we could choose other

plainteks to be encrypted by public key in our plainteks

dictionary. This dictionary was used to break or recover

the private key of the true receiver and to modify the

message without being known.

Without loss of generality, assume that n = pq in RSA

is a 512 bit number. Let e be the public exponent which is

publicly known and d be the secret exponent which is

7 www.securitydocs.com

stored inside the dictionary device. Now choose P from

plaintext’s storage, then the corresponding ciphertext is

 𝐶 = 𝑃𝑒 (1)

(In the following, only residues modulo n are shown, e.g.,

we use P^e instead of P^e mod n). We denote the binary

representation of the secret exponent as :

d = d511|d510| ...|di|...|d1|d0 (2)

where di, takes value 1 or 0, is the ith bit and where x|y

denotes concatenation of x and y. Further, we denote

C0=C, C1=C^2, C2=C^{2^2}, ..., C511=C^{2^511} (3)

Given C and d, we can express the corresponding

plaintext P as

P=(C511^d511)(C510^d510)...(Ci^di) ...(C1^d1)(C0^d0)

We assume that the attacker is in physical possession of

this device and that he can repeat the experiment with the

same key by applying external physical effects to obtain

outputs due to single bit errors.8

IV. CONTRIBUTION AND WAY TO IMPROVE RSA

IV.1. Prime Number Generator

RSA Algorithm it self, consists of 2 base cycle, first is

key generator and the second is message sending, so the

writer try to implement the Prime number generator by

making own algorithm to generate and check whatever a

big integer is prime or not.

Picture 4 - Self Key Generator

By the 25 times experimental result to generate N-bit

prime number, we need at least :

bit for p and q Average Processing (s)
Times

(x)

3 – 4 0,2 7

5 – 6 0 7

7 – 8 17,2 5

9 – 10 594,2 3

10 – 12 902,1 3

8 cryptome.quintessenz.at

/* Own build Prime Checking */

public bool isPrima(BigInteger x)

{

 int count = 0;

 if (x >= 2)

 {

 if (x != 2)

 {

 if (x % 2 != 0)

 {

 for (BigInteger i = 2; i <=

 (x.sqrt() + 1); i++)

 {

 if ((x % i) == 0)

 count++;

 }

 if (count > 1)

 return false;

 else

 return true;

 }

 else

 return false;

 }

 else

 return true;

 }

 else

 return false;

}

Its prime checking use the effective looking up just by

square rootof the big integers checked, it is also usefull

for making private key and public key for RSA algorithm,

both at the same time.

IV.2. Other “Way” Computational to Generate Prime

Number

Beside using own effective algorithm, the writer also

included a new algorithm provided by BigInteger class in

C# which is very usable to get or checked about kinds of

big prime number. In this library, every prime number

from 2 until 2000 are noted structurally. Its can handle at

most 512 bit length for p and d within 60 sec process.

Here it is the short capture of the BigInteger class :
public class BigInteger{

// maximum length of the BigInteger in uint (4

bytes)

// change this to suit the required level of

precision.

private const int maxLength = 70;

// primes smaller than 2000 to test the

generated prime number

public static readonly int[] primesBelow2000 = {

 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97,

 101, 103, 107, 109, 113, 127, 131, 137,

139, 149, 151, 157, 163, 167, 173, 179, 181,

191, 193, 197, 199,

 211, 223, 227, 229, 233, 239, 241, 251,

257, 263, 269, 271, 277, 281, 283, 293,

 307, 311, 313, 317, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397,

 401, 409, 419, 421, 431, 433, 439, 443,

449, 457, 461, 463, 467, 479, 487, 491, 499,

 503, 509, 521, 523, 541, 547, 557, 563,

569, 571, 577, 587, 593, 599,

 601, 607, 613, 617, 619, 631, 641, 643,

647, 653, 659, 661, 673, 677, 683, 691,

 701, 709, 719, 727, 733, 739, 743, 751,

757, 761, 769, 773, 787, 797,

 809, 811, 821, 823, 827, 829, 839, 853,

857, 859, 863, 877, 881, 883, 887,

 907, 911, 919, 929, 937, 941, 947, 953,

967, 971, 977, 983, 991, 997,

 1009, 1013, 1019, 1021, 1031, 1033, 1039,

1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093,

1097,

 1103, 1109, 1117, 1123, 1129, 1151, 1153,

1163, 1171, 1181, 1187, 1193,

 1201, 1213, 1217, 1223, 1229, 1231, 1237,

1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,

 1301, 1303, 1307, 1319, 1321, 1327, 1361,

1367, 1373, 1381, 1399,

 1409, 1423, 1427, 1429, 1433, 1439, 1447,

1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489,

1493, 1499,

 1511, 1523, 1531, 1543, 1549, 1553, 1559,

1567, 1571, 1579, 1583, 1597,

 1601, 1607, 1609, 1613, 1619, 1621, 1627,

1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,

 1709, 1721, 1723, 1733, 1741, 1747, 1753,

1759, 1777, 1783, 1787, 1789,

 1801, 1811, 1823, 1831, 1847, 1861, 1867,

1871, 1873, 1877, 1879, 1889,

 1901, 1907, 1913, 1931, 1933, 1949, 1951,

1973, 1979, 1987, 1993, 1997, 1999 };

private uint[] data = null; //

stores bytes from the Big Integer

public int dataLength; // number

of actual chars used

//**

 // Constructor (Default value for

BigInteger is 0

//**

public BigInteger()

{

 data = new uint[maxLength];

 dataLength = 1;

 }

There is a function in Big Integers called ModInverse(),

this is can help us findout the true factor of prime number

with extra fast time. By using BigInteger algorithm, the

application builded here could operated better than before

esspecially at the key.

public BigInteger modInverse(BigInteger modulus)

{

 BigInteger[] p = { 0, 1 };

 BigInteger[] q = new BigInteger[2];//quotients

 BigInteger[] r = { 0, 0 }; //remainders

 int step = 0;

 BigInteger a = modulus;

 BigInteger b = this;

while

(b.dataLength>1||(b.dataLength==1&&b.data[0]!=0))

{

 BigInteger quotient = new BigInteger();

 BigInteger remainder = new BigInteger();
 if (step > 1)

 {
 BigInteger pval=(p[0]-(p[1]*q[0]))%modulus;

 p[0] = p[1];

 p[1] = pval;

 }

 if (b.dataLength == 1)

 singleByteDivide(a,b,quotient,remainder);

 else

 multiByteDivide(a,b,quotient,remainder);

 q[0] = q[1];

 r[0] = r[1];

 q[1] = quotient; r[1] = remainder;

 a = b;

 b = remainder;

 step++;

 }

If(r[0].dataLength>1||(r[0].dataLength==1&&r[0].data[0]

!= 1))

 throw (new ArithmeticException("Noinverse!"));

BigInteger result = ((p[0] - (p[1] * q[0])) %

modulus);

if ((result.data[maxLength-1] & 0x80000000)!=0)

 result += modulus;//get the least + modulus

return result;

}

By using this class, the writer application could

construct more than 10-bit length integer key in short time

below :

bit for p and q Average Processing (s)
Times

(x)

8 0 3

30 0 4

128 0,6 5

256 0,8 5

512 3,1 7

 Our concentration is in the key generation because it is

the main strength of RSA Algorithm and it is needed to

improve its security.

IV.3. RSA Modifications

Until now on, RSA algorithm is still secure enough for

being one of the signature schemes with appendix for new

applications. There are 2 mentioned modified RSA from

RSA Laboratory :9

RSAES-OAEP (RSA Encryption Scheme - Optimal

Asymmetric Encryption Padding) is a public-key

encryption scheme combining the RSA algorithm with the

OAEP method.

RSASSA-PSS which is (RSA Signature Scheme with

Appendix - Probabilistic Signature Scheme) an

asymmetric signature scheme with appendix combining

the RSA algorithm with the PSS encoding method.

RSA-SHA which is consists of 2 step encryption

algorithm, first let generate the number of seed public and

private key then you can give your sign to the message

with the private key, then second step is to hash our

message with SHA Algorithm so our signature could not

be read as ussually as common signature which use only

RSA.

V. CONCLUSION

RSA security algorithm is based on the difficulty of

factoring large numbers into prime factors. It can be

concluded that RSA is safe only if n is big enough.

RSA is much slower than symmetric key cryptography

algorithms such as AES and DES.

There are 2 common weakness of RSA security :

Man-In-The-Middle Attack :

A man who infiltrate into the middle of someone

communications and make a modifications or changes to

the message sent by other people.

Chosen-plaintext Attack :

RSA is vulnerable to the Chosen-plaintext attack.

Suppose if someone has some plaintext of the messages.

He can select some of the plaintext to encrypted public

key premises, then save the results in the dictionary. Then

analys intercepting communications channels and to

compare the GCC cipherteks intercepted by cipherteks in

the dictionary. If there are similarities, then kriptanalis

can use the dictionary to learn the contents of the

message.

VII. ACKNOWLEDGMENT

In this part of paper, the writer would like to say thanks

to :

1. God,

For His kindness and blesses to the writer so this

paper could be finished and released.

2. Sir Rinaldi Munir,

For his Cryptography lecture until now and

9 http://www.rsa.com/rsalabs/node.asp?id=2146

guidance to the writer about being a great

cryptanalys.

3. Parents,

For their hope and pray to our God, so the writer

stand up until now and finish this paper.

4. Google Search Engine,

For its help to the writer to find a lot of suitable

webpage and references in English and Indonesian.

5. Friends,

For always cheer the writer up and give some

advices so this paper could be finished.

And others people where the writer could not mention

each one of them. The writer was very glad to be a

cryptanalys, and hope someday there will appear other

famous cryptographers from Indonesia just like Adi

Shamir or Clifford Cocks. Thanks and God Bless You.

REFERENCES

[1] Rivest, R.; A. Shamir; L. Adleman (1978). "A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems".

Communications of the ACM 21W.-K. Chen, Linear Networks and

Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–

135.

[2] SIAM News, Volume 36, Number 5, June 2003, "Still Guarding

Secrets after Years of Attacks, RSA Earns Accolades for its

Founders", by Sara RobinsonB. Smith, “An approach to graphs of

linear forms (Unpublished work style),” unpublished.

[3] http://www.krellinst.org/UCES/archive/modules/charlie/pke/node10

.html.

[4] technet.microsoft.com/en-us.

[5] http://icaferina.blogspot.com/2010/02/rsa-algorithm.html.

[6] http://crypto.stanford.edu/~dabo/pubs/papers/RSA-survey.pdf

[7] http://www.eecs.umich.edu/~taustin/papers/DATE10-rsa.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 15 Mei 2010

Galih Andana - 13507069

