
1 

 

Simple Audio Cryptography 
 

Yusuf Adriansyah, 13507120
 1
  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
1 
if17120@students.itb.ac.id  

 

 

 

Abstract— Audio cryptography is not about audio encryp-

tion, or encryption in audio data. Instead, audio cryptography 

shares similar conception to visual cryptography. A plain data 

is split into two or more shares. Each single share does not 

convey any meaning, but when shares are combined together 

they will reveal the original plain data. 

In visual cryptography, an image – the "plaintext" here – is 

broken down to pixel level and its pixels are distributed among 

shares, with proper calculation. These shares now only consist 

of scattered pixels or black and white blocks, meaningless. De-

cryption process does not require computer aid, the receiver 

party simply piles up those meaningless pictures, then the ori-

ginal picture appears. 

Similarly in audio cryptography, the "plaintext" is an au-

dio data. This audio data is broken down to its samples and 

they are distributed among shares. If an eavesdropper plays 

one share in a media player, he or she will only hear mean-

ingless hiss sound, or possibly annoying noise sound. But 

when shares are mixed together i.e. using an audio editor, the 

original audio comes back. 

 

Index Terms—audio cryptography, audio mixing, audio 

shares, digital audio, kriptografi audio. 

 

 

I.   INTRODUCTION 

Classical cipher algorithms deal with text data. Terms 

such "plaintext" and "ciphertext" emerge from here. As 

world moving to more modern techniques, modern cipher 

algorithms deal with binary data. These binaries can re-

present everything — texts, spreadsheets, images, multi-

media, programs, etc. At this point, an audio data can be 

encrypted using any modern cipher, from simple XOR 

method to ElGamal. 

The weak point is, these ciphers are breakable. Even 

that strong DES can be broken using brute force method 

and appropriate amount of patience. Then cryptographers 

made a new invention called steganography.  

Steganography does not encrypt data, but hides it. The 

main reason is, cryptograms are suspicious. By removing 

this "suspicious" property of securing data, nobody would 

suspect the steganogram. Unfortunately, steganography is 

no longer secure. Steganalysis methods have been res-

earched, and anyone can find the hidden message. Even 

the ste-ganogram contains encrypted text, various crypt-

analysis techniques can be employed to find the secret 

message. A tool such StegSecret (http://stegsecret.source 

forge.net/) has ability to detect LSB and EOF stegano-

graphy methods inside a steganart. 

Later, Moni Naor and Adi Shamir proposed a new 

scheme in EuroCrypt 94 meeting
[1]

. This was called "visu-

al cryptography". Visual cryptography is interesting be-

cause it does not require computer aid in decryption pro-

cess. The idea was to split the original image into two or 

more images called share(s). As smallest units which 

build up an image are pixels, visual cryptography distri-

butes these pixels among shares. The additive property of 

light is used. Also the shares are random and therefore 

suspect to a censor
[2]

. Encryption process does require 

computer, but the decryption does not. According to the 

prior agreement between the sender (one who break the 

image to shares) and the recipients (called "participants"), 

there is a minimum number of participants having to ga-

ther around then stack the shares up, in that way only the 

original image will appear. Yes, the shares were printed in 

transparencies. 

Similar conception can be applied in audio data. The 

big obstacle is, audio data is large (and so is video). Ba-

sically, any media data which has temporal aspect is 

large. In audio or video, whatever you hear or see is valid 

only for a relatively short moment. For example, consider 

you are listening to someone speaking "hello". At this 

second you hear he says the syllable "hé" [/hɛ/], but 0.2 

second later he is already saying "llo" [/loʊ̯/] and does not 

saying "hé" anymore. This is contrasted to still images; an 

image will look exactly the same at any second you look 

at it. 

That is why steganography in audio and video are hard-

ly applied. An uncompressed audio for 1 second length in 

audioCD-quality consumes 44100 × 16 bits = 88200 bytes 

of data. If it is stereo, just double the number. Uncom-

pressed still image having dimensions of 1 cm × 1 cm 

with 72 dpi resolution consumes only 2523 bytes of data. 

Yes, it's only 2,5 KB. A compressed audio using MP3 

compression at 128 kbps demands 16 KB per second, so 

1-minute MP3 audio is about 960 KB. How do you find a 

steganogram container which capable to hold this 960 KB 

of data? 

Audio cryptography also suffers the same problem, au-

dio is large. Even if you managed to find a steganogram 

container large enough for your audio data, how do you 

send this steganogram? Transmission bandwidth in com-

puter networks (or internet) is limited; therefore it is not 

efficient to send this extremely-large steganogram. 

Instead of hiding it inside a steganophon, let's break it 

into shares which could be mixed to reveal the original 

audio. Since each share will have the same size of data 

mailto:if17120@students.itb.ac.id


2 

 

compared to the original audio, producing 2 shares will 

produce 2 × size of the original audio. This is much smal-

ler than hiding it in a steganophon. But yes, we still need 

a computer for the decryption process. 

 

II.  SOUND 

What is sound? Sound is a physical phenomenon 

caused by something that vibrates. To be honest, sound is 

variations of pressure, travelling as wave. Sound wave 

needs a medium to travel. This medium can be solid, li-

quid, or gas, such as the air. Sound wave cannot travel in 

vacuum. Thus, sound wave in air is variations of air pres-

sure. If these variations of air pressure lie inside human 

hearing range (which has frequency limit from 20 Hz to 

20 kHz), that sound is audible – which can be detected by 

human eardrums. 

Sound wave is longitudinal wave. Longitudinal wave is 

a wave that its oscillation (vibration) direction is parallel 

to its travel direction. Another type of wave is transverse 

wave, which have its vibration direction is perpendicular 

to its travel direction. Therefore, longitudinal wave has 

compressions and expansions, while traverse wave has 

peaks and valleys. 

 

A. How sound represented 

This section talks about analog sound. 

Recall the definition that sound (in air) is variations of 

air pressure, and also sound is longitudinal wave which 

has compression and expansion. Hope this picture helps: 

 

 
Figure 1. How sound represented 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Properties of sound 

2a. Low frequency, but same amplitude as 2b. 

2b. High frequency, but same amplitude as 2a. 

2c. Low amplitude, but same frequency as 2d. 

2d. High amplitude, but same frequency as 2c. 

High amplitude will produce a louder sound, and high 

frequency will produce a higher pitch. 

 

B. How sound digitized 

Analog sounds are recorded using a microphone. Mi-

crophone converts sound wave into electrical wave – but 

it is still analog. This analog electrical wave will be con-

verted to digital audio inside an A/DC (analog to digital 

converter) chip inside your sound card. 

There are two methods to discretize analog signal into 

digital, they are called PCM (pulse code modulation) and 

PDM (pulse density modulation). The one which used to 

convert analog audio into digital audio is PCM. The PCM 

itself has three steps: sampling, quantizing, and coding. 

Sampling — the time axis of an analog audio is sliced 

into many fixed intervals. For every beginning of each in-

terval, we read the instantaneous value of the wave. How 

many samples do we need? That is sample rate, a number 

describing how many samples are taken every 1 second. 

According to the Nyquist theorem, if an analog signal 

contains frequency components up to f Hz, then the sam-

pling rate should be at least 2f Hz. If the sampling rate is 

exactly 2f Hz, we call it critical sampling
[3]

. Why 2f ? As 

you see, sound wave is oscillating up and down to repre-

sent one compression and one expansion of air pressure. 

One compression and one expansion is one wavelength, 

so a sound having frequency of f Hz has f positive sam-

ples (above the time axis) and f negative samples (under 

the time axis). Human voice rarely exceed 4 kHz, then 

telephone uses 8 kHz sample rate. Audio CD uses 44100 

Hz sampling rate so that it can cover frequencies up to 

22050 Hz, a little above the upper limit of human hearing. 

Quantizing — there are various instantaneous values 

after sampling is done. For these values, we do quantize 

them to a fixed number of allowed values. How many 

quantization levels do we need? That is bit depth. Why it's 

called "bit" depth will be discussed in the next step, 

coding. There are 2 kinds of bit depth commonly used, 8-

bit and 16-bit. Using 8-bit means you have 256 quanti-

zation levels available, numbered from 0 to 255 where 

value 128 is the central axis. Values above 128 are posi-

tive samples and below 128 are negative ones
[4]

. 

pressure higher 

pressure lower 

normal air 

pressure 
time 

Detector 
(ear) 

  Sound source 
(something vibrates) 

Molecules of 

gasses in air 

Expansion 

(local air pressure is lower) 

Compression 

(local air pressure is higher) 

At  t = x, ear detects local air pressure is higher. 

pressure higher 

pressure lower 

normal air 

pressure 
time 

At  t = x + Δx, ear detects local air pressure is lower. 



3 

 

Coding — is the last step. After quantization is done, 

computer stores every (quantized) value in all samples 

using binary representation. Since we use 8-bit or 16-bit 

quantization levels, computer stores each sample's value 

using one byte or two bytes, respectively. For wave for-

mat (those who end in .wav), 8-bit audio is stored as un-

signed byte, 0 to 255. For 16-bit audio, they are stored as 

signed word ranging from −32768 to +32767. 

 

C. How digital audio replayed 

This section tells about the reverse process from previ-

ous section. Since human ear cannot understand digital 

signal (i.e. 10001011 11001000), we need to convert the 

digital audio back into analog audio. This has been done 

by D/AC (digital to analog converter) chip inside your 

sound card. D/AC will generate analog signal to drive the 

device called speaker. 

 

 

 
Figure 3. How speakers work. These pictures are actually an 

animation. Visit http://electronics.howstuffworks.com/speaker5.htm 

to see the full animation. 

The coil will move the membrane back and forth, ac-

cording to the polarity of voltage given into it. Positive 

sample will push the diaphragm up, and vice versa. This 

up-and-down movement occurs very fast thus vibrates 

surrounding air. This vibration propagates to our eardrum 

and our brain interprets it as a sound. 

This also explains why we cannot have all-positive or 

all-negative samples in the digital audio file. If all sam-

ples are positive, coil in speaker only push the membrane 

forward without ever pulling it backward — no vibration, 

no sound. 

 
Figure 4. Analog audio being digitized using 4 quantization levels. 

This picture can be found on [VAH07] page 6. 

 

D.  Compressed audio 

Uncompressed audio files are very large. Here is the 

formula: 

 File size = SR × BD × L × C (1) 

where SR is the sample rate, BD is the bit depth, L is the 

length of audio (in seconds), and C is number of channels. 

 

SR × BD itself is called bit rate. For example, an audio 

CD always has 2 channels (that is stereo), 44100 Hz of 

sample rate, and 16-bit depth (2 bytes). One minute audio 

will be: 

 File size = 44100 × 2 × 60 × 2 

 = 10 584 000 bytes 

 ≈ 10,1 MB. 

 

That is why various audio compression algorithms have 

been researched. Most commonly used are MPEG audio 

layer III, a.k.a MP3. It can compress that 10 MB audio 

into about 1 MB. Other common alternatives are AAC 

(advanced audio coding) and WMA (windows media au-

dio). 

Equation (1) above only applies to uncompressed au-

dio. For compressed ones, the formula is much simpler: 

 

 File size = bit rate × length of audio (2) 

 

If the sound card only accepts uncompressed PCM, the 

CPU has to decompress the compressed audio first, before 

sending it to the sound card. When a compressed audio 

such as MP3 is being played on a media player, the media 

player will choose a suitable codec (compressor-decom-

pressor) to decompress the audio. Every compression for-

mat has its own codec. 

 

III.   THE CRYPTOGRAPHY 

A. Decryption 

It's rather odd for discussing decryption first and en-

http://electronics.howstuffworks.com/speaker5.htm


4 

 

cryption later. However, an important theory used in de-

cryption here is taken into consideration when encryption 

process is being done. Therefore decryption should be ex-

plained first. 

Since ciphertexts take form as shares, they need to be 

combined in order to reveal the plaintext. As in visual 

cryptography we put one share on top of another, in audio 

cryptography we mix one share with the other share. 

Audio mixing is just summing up the values of sam-

ples. For example, Alice is standing beetween two sound 

sources. One generates a sin x waveform, and the other 

generates a sin 2x waveform. When these two sources 

were made active at the same moment, Alice will hear a 

sin x + sin 2x waveform. Depends on Alice's distance to 

source 1 and source 2, the mixed sound will be similar to 

A sin x + B sin 2x, where A and B are amplitudes factor 

being heard at Alice's place. 

When a sample +7000 and +3000 are mixed, they be-

comes a +10000 sample. +5000 and −15000 result into 

value −10000. +7500 and −7500 will become zero — yes, 

they anihillate each other. If the left channel has certain 

samples and the right channel has the exact negation va-

lue from the left channel inside a stereo music, a strange 

sound effect (SFX) is heard. If you have a chance, try it. 

An example is a anime song titled "Naruto Ondo". 

In audio mixing, an effect called clipping does occur. If 

one sample has a value of +10000 and another sample has 

a value of +15000, they sum up into one sample having 

value of +25000. This value is still allowed in 16-bit 

audio. But when one sample −25000 and −8000 are 

mixed, they resulted in a sample having value of −33000. 

This value is out of range in 16-bit audio. Audio mixer 

devices or the audio editor automatically cuts (clips) the 

sample at the maximum value allowed: −32768 for nega-

tive samples in 16-bit audio and +32767 for positive sam-

ples in 16-bit audio. 

When mixing the audio shares, we must ensure that no 

clipping occurred. Clipping is lossy. Once a group of sam-

ples clipped, the original waveform of those samples will 

never possible to reconstruct, possibly makes loss of the 

original spoken word from the original audio. Thousands 

of samples having values like alternating maximum plus 

and minus values are really annoying loud noise. For this 

reason, we lower the volume (amplitude) of each shares 

first, before we mix them. A balanced mixed audio from 

audio 1 and audio 2 has the ratio 50% from audio 1 and 

50% from audio 2. 

 

B. Encryption 

 

 Encryption is done by breaking each sample's value 

into two values or more. These values must return to the 

original sample's value when they are summed up. 

For instance, one sample having value of +17328 is 

broken into two samples, each of them has +8496 and 

+8832. The sample +8496 is stored in share number one, 

and +8832 is stored in share two. When these shares are 

mixed, the value +17328 comes back. 

Note that there are many combinations that can yield 

+17328. Below are some of them: 

 +17328 = (+8832) + (+8496) 

 +17328 = (+8664) + (+8664) 

 +17328 = (+10000) + (+7328) 

 +17328 = (+19541) + (−2213) 

 +17328 = (−10995) + (+28323) 

 +17328 = (+32767) + (−15439) 

 … and so on. 

 

So far we found three schemes we can use to break an 

audio into two shares: 

1. Break all samples into half of their original value. 

This is really a bad idea. Setting all samples' value 

half from the original means only setting their vo-

lume 50% from the original. Then each share is an 

exact copy from the original audio, only that they 

are quieter (has lower amplitude). Spoken words or 

music inside each share is still perceptible! Do not 

use this scheme. 

2. Break each sample into shares, with every share's 

sample has value lower than the original sample. 

This is what conveyed from this example above: 

+17328 = (+8832) + (+8496) 

Every sample is broken down into two values lo-

wer than its original values. Not necessarily half, 

but any combination that fullfills this formula 

 

 𝑥1 +  𝑥2 = 𝑥
|𝑥1| < |𝑥|
|𝑥2| < |𝑥|

  (3) 

can do. (x is the original sample's value.) 

Now shares contain meaningless hiss sound. Since 

every shares has samples lower than the original 

audio, shares are quiter (have lower volume or am-

plitude). These could subject to noise gate. Noise 

gate, or noise reduction system, or hiss cut, or what 

ever the name is, removes low-volume hiss noise 

to make high-volume samples more clear to hear. 

Participants could encounter such situations if we 

transmit the shares using a radio station and their 

radio tuner has a noise reduction feature. We don't 

expect this happens, because original information 

can be lost. Then we can double the volume (am-

plitude) of each share, and then tell the participants 

to cut down the volume half before they mix the 

shares. 

3. Break each sample into a valid random possibility 

of combination. 

This idea was carried out by these examples above: 

 +17328 = (+10000) + (+7328) 

 +17328 = (+19541) + (−2213) 

 +17328 = (−10995) + (+28323) 

 +17328 = (+32767) + (−15439) 

Every sample is broken down into any combina-

tion that satisfies this formula: 

 
𝑥1 + 𝑥2 = 𝑥

 min value ≤ 𝑥1 , 𝑥2 ≤ max value
  (4) 



5 

 

(Min value is −128 for 8-bit audio, and −32768 for 16-

bit audio. Max values also apply.) 

Using this third scheme, we need not to worry about 

noise gate and clipping any longer. The shares contain 

meaningless scrambled noise, and they are not always 

have low volume (amplitude). This scheme is the best. 

 

IV.   SAMPLE IMPLEMENTATION 

I made an application in Visual Basic 2008 which does 

the encryption function. This application only accepts un-

compressed audio (i.e. *.wav files), then breaks it into two 

shares, and saves the shares again as .wav files. These 

.wav share files are playable in any media player.  

 
Figure 5. My implementation in VB 

I use this algorithm to break samples into shares. Loop 

for each sample in the original audio file: 

𝑥 = random 0 to 𝑧  

𝑦 = random (0 to 1) 

𝑠1 = 𝑠𝑦 + 𝑥 

𝑠2 = 𝑠 1 − 𝑦 −  𝑥 

where: 

s is the original sample, 

s1 and s2 are share one's and share two's sample, 

x is a random number ranging from 0 to z, 

y is a random number ranging from 0 to 1, 

z is the maximum number permitted by the audio. 

Maximum number permitted by audio depends on the 

situation. If the original audio is 8-bit, then z = 127 if s is 

positive, or −128 if s is negative. If 16-bit then z = 32767 

if s is positive or −32768 otherwise. Also I have to gua-

rantee that relationship s = s1 + s2 is still satisfied. And 

don't forget to take care of clipping, that is, s1 and s2 must 

be kept inside the range given by its bit depth. 

The underlying core process is inside these codes. Yes 

this is Visual Basic, not C#. All comments (those who be-

gin with a single quote [']) are translated into English. 

'variables declaration 
Dim orijinal As WaveData 
Dim s1 As WaveData 
Dim s2 As WaveData 
Dim result As Boolean 
Dim asli As Short, rusak1 As Integer 
Dim rusak2 As Integer 
Dim temp1 As Single, temp2 As Short 
Dim clipmax As Short, clipmin As Short 

'load the audio 
orijinal = New WaveData() 
result = orijinal.OpenWAV(OrigAudio.Text) 
If result = False Then 
  MessageBox.Show( _ 
    "Unable to open the original audio.", "Error", _ 
    MessageBoxButtons.OK, _ 
    MessageBoxIcon.Exclamation) 
  orijinal.Dispose() 
  GoTo selesai 
End If 
'progress bar's upper limit 
Progress.Maximum = orijinal.Length + 10 
Progress.Value = 1 
'determine clipping limits 
If orijinal.BitDepth = WaveData.bitdepthtype._8bit _ 
Then 
  clipmax = 127 
  clipmin = -128 
Else 
  clipmax = 32767 
  clipmin = -32768 
End If 
Progress.PerformStep() 
'prepare two shares 
s1 = New WaveData(orijinal.Channel, _ 
  orijinal.BitDepth, orijinal.SampleRate, _ 
  orijinal.Length) 
Progress.PerformStep() 
s2 = New WaveData(orijinal.Channel, _ 
  orijinal.BitDepth, orijinal.SampleRate, _ 
  orijinal.Length) 
Progress.PerformStep() 
'initialize the pseudo-random generator 
Randomize() 
Progress.PerformStep() 
'start! 
If orijinal.Channel = WaveData.channeltype.mono Then 
  For i As Integer = 0 To orijinal.Length - 1 
    asli = orijinal.GetSample(i, 0) 
    If asli > 0 Then 
      temp1 = Rnd() * clipmax 
      temp2 = Int(temp1) 
      temp1 = Rnd() 
      rusak1 = Int(asli * temp1) + temp2 
      'take care of the clipping 
      If rusak1 > clipmax Then rusak1 = clipmax 
      rusak2 = Int(asli * (1.0F - temp1)) - temp2 
      If rusak2 > clipmax Then rusak2 = clipmax 
    ElseIf asli < 0 Then 
      temp1 = Rnd() * Math.Abs(clipmin + 1) 
      temp1 *= -1 
      temp2 = Fix(temp1) 
      temp1 = Rnd() 
      rusak1 = Int(asli * temp1) + temp2 
      If rusak1 < clipmin Then rusak1 = clipmin 
      rusak2 = Int(asli * (1.0F - temp1)) - temp2 
      If rusak2 < clipmin Then rusak2 = clipmin 
    End If 
    s1.SetSample(i, 0) = rusak1 
    s2.SetSample(i, 0) = rusak2 
    Progress.PerformStep() 
  Next i 
ElseIf orijinal.Channel = _ 
 WaveData.channeltype.stereo Then 
  '-------------8c snip-snip 8c------------- 
  'Codes for stereo files are exactly the same. 
  'the only difference is that the encryption is done 
  'on both channels (left and right). 
  'To save space, codes are not shown. 
  '-------------8c snip-snip 8c------------ 
End If 
'here encryption is done, save all shares. 
s1.SaveWAV(Share1.Text) 
s2.SaveWAV(Share2.Text) 



6 

 

Prior to develop this application, first I made a class 

called "WaveData", which is used in this application. 

WaveData provides basic operation for wave audio such 

as loading from and saving to .wav files, set volume, set 

mute, mixing, and getting or setting individual samples. 

This paragraph is written to clarify codes shown in pre-

vious page, which include "WaveData".  

The variables' names are still in Indonesian. The integer 

asli corresponds to s, the original sample. Rusak1 and Ru-

sak2 are s1 and s2 respectively. But variables named s1 

and s2 represent WaveData objects, not the samples, for 

which I will use their "saveWAV" function later. Next, 

Temp1 and Temp2 are temporary variables used for many 

purposes, such as defining x and y in my algorithm. Clip-

min and clipmax defines the clipping limit permitted (z), 

and their values depend on orijinal's bit depth. At last, 

names such as "OrigAudio", "Share1", "Share2", are the 

names for text box controls inside my main window form. 

Following this way, each share now features annoying 

noise. Unfortunately, after some trial using some .wav test 

files, the original audio is still audible inside each share. 

This algorithm does not completely obfuscate the original 

audio. 

Now I will describe how to restore the audio from these 

two shares. Open all shares in your favourite audio editor. 

For the time being, I use Country.wav as a test file. After 

encryption is done, two files named Country_share1.wav 

and Country_share2.wav were created. Screenshots here 

are for Adobe® Soundbooth CS4: 

 
Figure 6. Open Country_share1.wav and Country_share2.wav in 

Adobe Soundbooth. 

 
Figure 7. Probably you see a block of green color like in figure 6. 

But if you deep-zoom it, you will see how scrambled the actual 

waveform is. 

At this point, do a "select all" operation (Ctrl+A) for 

Country_share1.wav, then copy it to clipboard (Ctrl+C). 

Afterwards, navigate to Country_share2.wav. Also select 

all (Ctrl+A) for Country_share2.wav, and then do a mix 

paste operation (Ctrl+Shift+V or by clicking menu Edit > 

Mix Paste). 

 

 
Figure 8. Mix-paste Country_share1.wav to Country_share2.wav. 

 

 
Figure 9. After mixing is done, you will see a waveform resembles 

the original audio file. Play it, the swinging country music comes 

back. Some little noises are introduced due to clipping effects 

occurred at the time of encryption. 

 

V.   CONCLUSION 

Audio cryptography uses interferences of sound waves, 

similar to visual cryptography that uses addition of light. 

Why people don't use audio cryptography? Possibly the 

reason is that audio files are large, and the secret content 

inside the audio file (such as a person's speech) can be ex-

pressed in a text file and encrypted using any enciphering 

algorithm which does not waste spaces like audio do. 

The strength of audio cryptography relies on the algo-

rithm responsible for breaking samples into shares. Un-

like mine, good algorithm should obfuscate all audio sam-

ples as random as possible, resulting shares containing 

only noise or hiss sound, and obligated to be reversible. 

At the time this paper is written, only few references 

available. Audio cryptography still has wide prospect to 

grow. We are still dreaming for a reversible lossless audio 

compression, which can play major role in future audio 

cryptography. 

 



7 

 

REFERENCES 

[1]  http://www.wisdom.weizmann.ac.il/~naor/PUZZLES/visual_sol.html  

[2] http://www.springerlink.com/content/p4hqaw072d7e67pc/  

[3]  Guojun Lu, Multimedia Database Management System. Norwood, 

MA: Artech House, 1999. ISBN 0-890-06342-7. 

  (used in IF4055 Multimedia System) 
[4]  http://sharkysoft.com/archive/wave/docs/javadocs/lava/riff/wave/ 

doc-files/riffwave-frameset.htm  

[5]  http://electronics.howstuffworks.com/speaker.htm through 
http://electronics.howstuffworks.com/speaker8.htm 

[6]  http://us.generation-nt.com/answer/mixing-audio-samples-help-

31056382.html 
[7]  [VAH07] Frank Vahid, Digital Design. Hoboken, NJ: John Wiley 

& Sons, 2007. ISBN 0-470-04437-3. 
[8]  Muhammad Fajrin Rasyid, "Kriptografi Audio dengan Teknik In-

terferensi Non-Biner". Makalah TA Teknik Informatika angkatan 

2004, Institut Teknologi Bandung. 
 (http://www.informatika.org/~rinaldi/TA/Makalah_TA%20Fajrin.

pdf ) 

[9]  https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ 
[10] http://stackoverflow.com/questions/376036/algorithm-to-mix-

sound 

[11] http://www.vttoth.com/digimix.htm  
[12] http://upload.wikimedia.org/wikipedia/commons/b/b8/Ear.jpg  

 

 

 

PERNYATAAN 

STATEMENT 

Dengan ini saya menyatakan bahwa makalah yang saya 

tulis ini adalah tulisan saya sendiri, bukan saduran, atau 

terjemahan dari makalah orang lain, dan bukan plagiasi. 

 

I hereby declare that this paper is my own work, and is 

not a rechauffe, not a translation from other's paper, and is 

not a plagiarism. 

 

Bandung, 29 April 2010    

 
 Yusuf Adriansyah 

 13507120 

 

http://www.wisdom.weizmann.ac.il/~naor/PUZZLES/visual_sol.html
http://www.springerlink.com/content/p4hqaw072d7e67pc/
http://sharkysoft.com/archive/wave/docs/javadocs/lava/riff/wave/%20doc-files/riffwave-frameset.htm
http://sharkysoft.com/archive/wave/docs/javadocs/lava/riff/wave/%20doc-files/riffwave-frameset.htm
http://electronics.howstuffworks.com/speaker.htm
http://electronics.howstuffworks.com/speaker8.htm
http://us.generation-nt.com/answer/mixing-audio-samples-help-31056382.html
http://us.generation-nt.com/answer/mixing-audio-samples-help-31056382.html
http://www.informatika.org/~rinaldi/TA/Makalah_TA%20Fajrin.pdf
http://www.informatika.org/~rinaldi/TA/Makalah_TA%20Fajrin.pdf
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://stackoverflow.com/questions/376036/algorithm-to-mix-sound
http://stackoverflow.com/questions/376036/algorithm-to-mix-sound
http://www.vttoth.com/digimix.htm
http://upload.wikimedia.org/wikipedia/commons/b/b8/Ear.jpg

