
Differential Characteristics Search for Basic SPN Cipher
Gozali Harda Kumara (13502066)

Teknik Informatika
Sekolah Tinggi Elektro Informatika

Institut Teknologi Bandung

Abstract

Finding the most probable differential
characteristic for a block cipher is often a
tedious task if one do it manually, while a brute
force search will require ܱሺ2 . 2ሻ time, where ݊ is the cipher’s block size.

In this paper, we will present an algorithm that
will search for best differential characteristic of
a given Substitution Permutation Network
(SPN). This algorithm uses best-first search,
and has been applied to 16-bit cipher with 8
rounds. This algorithm uses an assumption that
best characteristic will be found on plaintexts
that differs exactly one sub-block.

1 Introduction
Differential cryptanalysis, introduced by Biham and
Shamir (1991), is a chosen plaintext attack, which
means that the attacker could choose a plaintext to
encrypt. It exploits the high probability of certain
constant differences of plaintext and the
corresponding ciphertext in a block cipher.

Let ܲᇱ ൌ ሾܲᇱଵ ܲᇱଶ … ܲᇱሿ and ܲ’’ ൌ ሾܲᇱᇱଵ ܲᇱᇱଶ … ܲᇱᇱሿ
be two plaintext of a certain block cipher which is
encrypted to ܥᇱ ൌ ሺܲᇱሻܧ ൌ ሾܥԢଵܥԢଶ ᇱᇱܥ Ԣሿ andܥ … ൌ ሺܲ’’ሻܧ ൌ ሾܥԢԢଵܥԢԢଶ ԢԢሿ. Thus, the plaintextܥ …
difference is defined by Δܲ ൌ ܲᇱ ⊕ ܲᇱᇱ, hence, ܲ߂ ൌ ሾܲᇱଵ ⊕ ܲᇱᇱଵ ܲᇱଶ ⊕ ܲᇱᇱଶ … ܲᇱ ⊕ ܲᇱᇱሿ
similarly, ܥ߂ ൌ ሾܥᇱଵ ⊕ ᇱଶܥ ᇱᇱଵܥ ⊕ ᇱᇱଶܥ ᇱܥ … ⊕ ᇱᇱሿܥ
To perform differential cryptanalysis, an attacker
must be able to construct a differential characteristic ܲ߂ ՜ It must be . that is valid with probability ܥ߂
noted that to construct such differential characteristic,
an attacker must try every possible ܲ߂ ՜ ,pairs ܥ߂
and then pick the most probable of them. This task

needs to be done carefully with an enormous amount
of time.

This paper will present an algorithm that can be used
as a tool to search the best differential characteristic
of a basic Substitution Permutation Network cipher.
The remaining five sections in the paper are
organized as follow: In Section 2, a construction of a
basic SPN cipher is introduced. The cipher is then
used as a target of our search algorithm. In Section 3,
we will describe the differential characteristic
constructs of our cipher. In Section 4, the algorithm
result to search differential characteristic is presented.
Section 5 will show our experimental result for the
algorithm, and in Section 6, conclusions are drawn
relevant to our work.

2 Basic SPN Cipher
Heys (2001) constructed a basic SPN cipher which
use a structure proposed by Feistel (1973). His cipher
has a fixed substitution and permutation table, and
operates in 4 rounds. We will modify that cipher, so
it will have a flexible substitution and permutation
table, and a variable number of rounds. This cipher
takes a 16 bit input block, and illustrated in Figure 1.

2.1 Operations

From Figure 1, we can see that our cipher consists of
three basic operations: Substitution in 4-bits sub-
blocks., permutation of bit positions, and mixing with
subkeys. These three operations will be repeated for ݊ number of rounds.

2.1.1 Substitution
The substitution portion of our cipher breaks the 16-
bits block to four 4-bits sub-blocks. Each sub-block
then substitutes its input by looking up to 4x4 S-box
(i.e. an S-Box with 4-bits inputs and outputs). This S-
box can be easily implemented by an array which has
sixteen 4-bits values, and indexed by an integer

representing its input bits. Table 1 will shows an
example of such S-Box.

Table 1 Example of an S-Box

0 1 2 3 4 5 6 7
E 4 D 1 2 F B 8
8 9 A B C D E F
3 A 6 C 5 9 0 7

Key Mixing

SBox SBox SBox SBox

Permutation

Key Mixing

SBox SBox SBox SBox

Permutation

Key Mixing

SBox SBox SBox SBox

Permutation

SubKey

SubKey

SubKey

Figure 1. Basic Substitution Permutation Network Cipher

2.1.2 Permutation
After substitutions of sub-blocks have been
performed, our cipher combines all of the 4-bits sub-
blocks and permutates its bit positions by looking up
to P-Box. Our P-Box will take a bit position as its
input and outputs the bit’s position after permutation
has been performed. This P-Box can be implemented
by an array which has sixteen integer values
representing output positions and indexed by input
positions, where 0 corresponds to the left-most bit

and 15 to the right-most bit. An example of this P-
Box implementation is given in Table 2.

Table 2 Example of a P-Box

0 1 2 3 4 5 6 7
0 4 8 12 1 5 9 13
8 9 10 11 12 13 14 15
2 6 10 14 3 7 11 15

2.1.3 Key Mixing
To perform key mixing, our cipher will generate a
subkey for each round, and do bit-wise exclusive-OR
between subkey and input block of a round. To get a
round-subkey, our cipher will circularly shift its
previous round-subkey to the left by one bit. The
subkey for the first round is the 16-bit key itself.

2.2 Decryption

In order to decrypt a previously encrypted block, data
is passed backwards through the network. However,
the decryption’s S-Box is the inverse of the
encryption’s. Thus, in order to allow data to be
decrypted, S-Box must be one-to-one mappings with
the same number input and output bits.

2.3 Differential Characteristics

To construct a differential characteristic of our
cipher, we must first construct differential
characteristics for each round. And analyze every
operation on them.

2.3.1 Analyzing Substitution Portion
Let ݔܤݏሺݔሻ ൌ be a function which performs ݕ
substitution in our S-Box, and ݁ܿ݊݁ݎݎݑܿܿሺΔݔ ՜ Δݕሻ

be the number of occurrence where two inputs with Δݔ ൌ Ԣݔ ⊕ ԢԢ difference is substituted by twoݔ
outputs with Δݕ ൌ Ԣݕ ⊕ ԢԢݕ ൌ Ԣሻݔሺݔܤݏ ⊕ ԢԢሻݔሺݔܤݏ
difference. Thus, the probability ݔܾܵሺΔݔ ՜ Δݕሻ
where Δݔ ՜ Δݕ valid can be computed with,

ݔሺΔݔܾܵ ՜ Δݕሻ ൌ ݔሺΔ݁ܿ݊݁ݎݎݑܿܿ ՜ Δݕሻ16

We know that substations portion of our cipher is
performed on four sub-blocks substitutions by S-Box.
Thus, if ܾݑܵሺΔݔ ՜ Δݕሻ is the probability of Δݔ
substituted by Δݕ being valid, then,

ݔሺΔܾݑܵ ՜ Δݕሻ ൌ .ݔሺΔݔܤܵ . Δݔଷ ՜ Δݕ. . Δݕଷሻ .ସݔሺΔݔܤܵ . Δݔ ՜ Δݕସ. . Δݕሻ .଼ݔሺΔݔܤܵ . Δݔଵଵ ՜ Δ଼ݕ. . Δݕଵଵሻ .ଵଶݔሺΔݔܤܵ . Δݔଵହ ՜ Δݕଵଶ. . Δݕଵହሻ

ൌ ෑ .ସାݔሺΔݔܾܵ . Δݔସାଷ ՜ Δݕସା. . Δݕସାଷሻଷ
ୀ

2.3.2 Analyzing Key Mixing Portion
In this section, we will prove that key mixing
portions of our cipher is irrelevant to differential
characteristics.

Let ݓԢ ൌ ᇱݔ ۩ ԢԢݓ andݕܾ݁݇ݑݏ ൌ ᇱݔ ۩ beݕܾ݁݇ݑݏ
two key-mixed blocks, thus, their difference ∆ݓ is
defined by, ∆ݓ ൌ ᇱݓ ⊕ ᇱᇱ ൌݓ ൫ݔᇱ ⊕ ൯݅ݕܾ݁݇ݑݏ ⊕ ൫ݔᇱᇱ ⊕ ൯ ൌ݅ݕܾ݁݇ݑݏ ሺݔԢ ⊕ ԢԢሻݔ ⊕ ݕܾ݁݇ݑݏ ⊕ ൌݕܾ݁݇ݑݏ ݔ∆

Hence, key-mixed input difference is equal to un-
mixed input difference.

2.3.3 Analyzing Permutation Portion
The last portion of our cipher round to analyze is
permutation. Let we define ି݉ݎ݁ଵሺݕሻ ൌ to be the ݔ
inverse function of permutation, thus, by deriving
from all of our equation from previous subsection, a
round differential characteristics ݀݊ݑܴ can be
computed by, ݀݊ݑܴሺΔݔ ՜ Δݕሻ ൌ

ෑ .ସାݔ൫Δݔܾܵ . Δݔସାଷ ՜ Δݕషభሺସାሻ. . Δݕషభሺସାሻ൯ଷ
ୀ

2.3.4 Characteristics of Overall Cipher
After knowing characteristics of every cipher’s
round, we can combined them to construct overall
cipher differential characteristic.

The overall differential characteristic probability ݎ݄݁݅ܥ of our cipher that has ܴ݊ݏ݀݊ݑ number of
round can be computed by,

ݔሺΔݎ݄݁݅ܥ ՜ Δݕሻ

ൌ ෑ ݎݔሺΔ݀݊ݑܴ ՜ Δݎݔାଵሻோ௨ௗ௦ିଵ
ୀ

where Δݎݔ ൌ Δݔ, and Δݎݔோ௨ௗ௦ ൌ Δݕ.

3 Search Algorithm
This section will describe our algorithm to search
differential characteristic. To construct the algorithm,
we must first construct S-Box characteristic, find
round characteristic, and finally find cipher
characteristic.

3.1 Constructing S-Box Characteristic

Consider an S-Box with input ݔ ൌ ሾݔଵ ݔଶ ݔଷ ݔସሿ and
output ݕ ൌ ሾݕଵ ݕଶ ݕଷ ݕସሿ. All its differential
characteristics ݔܾܵሺΔݔ ՜ Δݕሻ with probability
can be found by trying every possible input ݔ and ݔԢ.
The pseudocode of function fsbc() in Figure 3 will
describe a function that will construct differential
characteristics of a given S-Box.

Input: SBox: Arrays[0..15] of integer;
Variables: pSBox: arrays [Δx][Δy] of
 probability;
 x, x’: 4-bit input;
Initialization: pSBox[Δx][Δy] = 0;
Algoritm:
for (x = 0 to F) do:
 for (x’ = 0 to F) do:
 Δx = x ⊕ x’;
 Δy = SBox[x] ⊕ Sbox[y’];
 pSBox[Δx][Δy]++;

for each pSBox[Δx][Δy] do:
 pSBox[Δx][Δy] = pSBox[Δx][Δy]/16;

Output: pSBox;

Figure 3 Pseudocode of Function fsbc()

Function fsbc() accepts an S-Box SBox as input and
will output pSBox, where pSBox[Δݔ][Δݕ] is a
probability that ܾܵݔሺΔݔ ՜ Δݕሻ being valid. The
function starts with trying to count occurrence of Δݔ ՜ Δݕ with ݔ from 0 to F and ݔԢ from 0 to F. It
then divide the occurrences with 16.

3.2 Finding Round Characteristics

After constructing the S-Box characteristic, we can
now find characteristics for a round that has Δݔ as its
input difference. The pseudocode of function frc() in
Figure 4 will describe a function that will output a list
of differential characteristics of a given input
difference for a round.

Input: Δx: Input Difference;

Variables:
PBox : Permutation Box;
characs: List of (Δy, probability)
 pairs;
Algoritm:
rsb(characs, Δx, 0, 1, 0);
for each Δy in characs do:
 Δy = permutate(PBox, Δy);

Output: characs;

Figure 4 Pseudocode of Function frc()

Input:
characs: List of (Δy, probability)
 pairs;
Δx, Δy : Input and output difference;
p : Current probability;
i : Current Round;

Variables:
SBox : Substitution Box;
pSBox : SBox Characteristics;
nr : Number of Rounds

Algorithm:
if (i = nr) then :
 characs.add(Δy,p x pSBox[Δxi][Δyi]);
else :
 if (Δxi = 0) then :
 Δyi = Δxi;
 rsb(characs, Δx, Δy, p, i+1);
 else :
 for (y = 0 to 15) do :
 if (pSBox[Δxi][y] != 0) then :
 Δyi = y;
 rsb (characs, Δx, Δy
 p*pSBox[x][y], i+1);

Figure 5 Pseudocode of Procedure rsb()

Function frc() accepts an input block difference Δx as

input and will output characs, a list of (Δݕ, pair (
where p is probability that ܴ݀݊ݑሺΔݔ ՜ Δݕሻ being
valid. Function frc() will uses a recurcive procedure
rsb() that will use S-Box characteristics for every Δx
sub-block. Pseudocode of procedure rsb() is
described in Figure 5

Procedure rsb() is used to find characteristic for
every sub-block and works as follow: it first checks
whether all sub-block has been processed (this check
act as a base for the recursion), if yes, it then add the
characteristic to characs list. But if all sub-block has
not been processed, then it processed current sub-
block by checking all possible sub-block
characteristics, adding the sub-block output to Δy,
multiplying the probability, and then recurse for the
next sub-block.

Back to function frc(), after running rsb(), it
permutates all Δy in characs with PBox. After that,
characs can be returned as output.

3.3 Finding Cipher Characteristics

Our algorithm to find differential characteristics of
basic SPN Cipher will use an assumption that the best
characteristics will be found in plaintexts which
differ on only one sub-block. Thus, by our definition
of differential characteristics at overall cipher, we can
build 4x16 trees of differential characteristics and
start searching the best characteristic.

It must be noted that, if we transverse the trees using
bread-first search, we will need ܱሺ64 . 16ሻ space
and time at worst-case where ݊ is the number of
rounds. We can reduce this by using best-first search
where the heuristic function ݄ is defined by, ݄ሺ݊݁݀ሻ ൌ .݁݀ሺ݊ݔܾܵ .ݐ݊݁ݎܽ ݔ ՜ .݁݀݊ ሻ௦ሺௗ.௫ሻݔ
where ܾݏሺݔሻ is the number of sub-blocks affected if
we permutate ݔ. To reduce our search space even
further, we can prune every node where, ܿݔܾܵ . ܲݐ݊݁ݎݎݑሺ݊݁݀. .ݐ݊݁ݎܽ ݔ ՜ .݁݀݊ ܲݐݏܾ݁ ሻ ݔ

with ܿܲݐ݊݁ݎݎݑ is the probability of the node parent,
and ܾ݁ܲݐݏ is the best characteristics probability that
has been found. We can prune the tree safely
because, ܽ . ܾ ܽ

for 0 ܽ 1, 0 ܾ 1.

Figure 6 will describe the trees that will be
constructed. The pseudocode of function fcc() that
will be used to search that tree will be shown in
Figure 7. That function will search the best
characteristics of a given cipher.

Figure 6 Trees That will be Used to Search Characteristic

Function fcc() accepts cipher Cipher which is a
tupple of (SBox, PBox, NumberOfRound) as input
and will output best, the best characteristic of Cipher.
A characteristic is a tuple of (Δݔ, Δ݀݊ݑݎ, Δݕ, ,(
which means a differential characteristic ݔ߂ ՜ ݕ߂
that is valid with probability , and for every round i
has Δ݀݊ݑݎ as its input.

Function fcc() will uses a recursive procedure rr()
that will recurse searching characteristic for the

number of rounds. The pseudocode procedure rr() is
described in Figure 8.

Input: Cipher: a tupple of
 PBox : Permutation Box;
 SBox : Substitution Box;
 nr : Number of Rounds;

Variables:
pSBox : SBox Characteristics;
best : Best Characteristic, tupple of:
 best: tupple of:
 Δx : input difference
 Δround: round inputs
 Δy : output difference
 p : probability
Algoritm:
pSBox = fsbc(Cipher.SBox)
for i = 0 to 3 do :
 for x = 0 to F do
 Δx = 0 & (x << i*4)
 rr(Δx, 0x0, Cipher.nr, 1);

Output: best;

Figure 7 Pseudocode of Function fcc()

Procedure rr() is a recursive procedure to find
characteristic for every round and works as follow: it
first find all possible round characteristic of the input
using frc(), then it checks whether it has remaining
rounds (this check act as a base for the recursion), if
there is no remaining rounds, it find the best
probability from characs list and save it to rc. It then
compare whether rc probability is better than best, if
yes, it replace best with rc.

But if there is still exist remaining rounds, the
procedure will sort characs using heuristic function h
mentioned earlier. Then for every characteristics in
characs it checks whether the probability is still
better than best, if yes, it continues to recurse the
function to the next round with current round output
as the next round input, and with the product of
current probability and characteristic’s probability as
the next round probability.

The recursion is guaranteed to stop because it will
stop when there is remaining round and for every
recursive call the procedure will decrement the

remaining round. After recursion is done, the best
characteristic can be returned as fcc() output.

Input:
c : Current Characteristic
Δx : Round Input
i : Remaining Round;
p : Current Probability;

Variables:
rc : Characteristic
tempP: Probability

Algorithm:
characs = frc(Δx);

if (i = 0) then :
 rc = findBest(characs);
 p = rc.p * p
 if (p > best.p) then;
 c.Δy = rc.Δy;
 c.p = p;
 best = c.clone();

else :
 sort(characs);
 for each rc in characs do:
 temp = rc.p * p
 if (p > best.p) then:
 c. ΔRoundi=rc.Δy;
 rr(c, rc.ΔOutput, round-1, tempP)

Figure 8 Pseudocode of Procedure rr()

4 Related Works
Ali and Heys (2007) presented an algorithm to
analyze the resistance of block cipher to differential
and linear cryptanalysis. In their paper, they call their
algorithm Two Iterative Way. That algorithm uses
greedy based and intelligent pruning. Their algorithm
has been applied to 16-bit ciphers and some realistic
64-bit ciphers based on 8x8 and 4x4 S-Boxes that
possess good cryptographic properties.

Heys (2001) was described in block cipher design. In
his paper, he presented a detailed tutorial on linear
and differential cryptanalysis.

5 Experiments and Results
Our algorithm will be implemented as a Java
application. A Windows XP SP2 platform with JDK
1.6 on a 1.60 GHz Intel Centrino processor is used
for the experiments. The algorithm’s running time is
measured with Java’s System.nanotime(). We
conducted varied experiment based on round
numbers and block sizes. Figure 9 will show the
effect of round numbers and block sizes to running
time of our algorithm.

Figure 9 Effect of Algorithm Round Numbers and Block
Sizes to Algorithm Running Time

5.1 Variable Round Numbers

On this experiment, we will use ciphers with S-Box
and P-Box that is mentioned in Section 2 but with
variable round-number. Table 3 will show the result
of our experiments.

0

100

200

300

400

2 Rounds 4 Rounds 8 Rounds 16
Rounds

Variable Rounds

0
20
40
60
80

100
120
140

8 16 32

Variable Block Size

From the table it is shown that the running time of
our algorithm will increase more than quadratic when
the round number increased quadratically. The
sample of our cipher outputs will be shown in Figure
10.

Table 3 Running Time Algorithm in Varied Round
Numbers

Rounds Δx Δy p Time
(s)

2 0x0B00 0x0220 0.25 2.6
4 0x0B00 0xB2B2 0.0264 14.3
6 0x00B0 0x6255 0.0053 43.2
8 0x0400 0xB5F2 0.0018 134.2

16 0x0400 0xC06F 0.000023 325.5

> java DiffSearch sbox.txt pbox.txt 4
dx: B00
dx1: 40
dx2: 220
dx3: 550
dy: B2B2
time = 14385 ms

Figure 10 Output for 4-Round Cipher

5.2 Variable Block Size

On this experiment, we will use ciphers with S-Box
with 4 round. For every cipher, we will use
randomized P-Box. Table 3 will show the result of
this experiment. From the table it is shown that, like
our previous experiment, the running time of our
algorithm will increase more than quadratic when the
round number increased quadratically.

Table 4 Running Time Algorithm in Varied Block Sizes

Block Size Time(s)
8 4.7
16 14.3

32 121.3

6 Conclusions
We have presented an algorithm to search differential
characteristic of basic SPN Cipher. Best-First Search
is practical approach to search the search space of

differential characteristic. Although we cannot
mathematically or theoretically guarantee that our
algorithm will find the best characteristic, because of
our assumption that the best characteristic will be
found on inputs with plaintexts differs in exactly one
block.

Although it is predicted and acceptable, the running
time of our algorithm increases more than number of
rounds or block sizes.

7 References
Heys, Howard M. "A Tutorial on Linear and
Differential Cryptanalysis", 2001.

Ali, Kashiv and Heys, Howard M. "An Algorithm to
Analyze Block Cipher Resistance to Linear and
Differential Cryptanalysis", 2007.

Biham, E and Shamir A. "Differential Cryptanalysis
of DES-like Cryptosystems", 1991.

Feistel, H. "Cryptography and Computer Privacy",
1973.

