
Differential Characteristics Search for Basic SPN Cipher 
Gozali Harda Kumara (13502066) 

Teknik Informatika 
Sekolah Tinggi Elektro Informatika 

Institut Teknologi Bandung 

 

Abstract 

Finding the most probable differential 
characteristic for a block cipher is often a 
tedious task if one do it manually, while a brute 
force search will require ܱሺ2 .  2ሻ time, where ݊ is the cipher’s block size.  

In this paper, we will present an algorithm that 
will search for best differential characteristic of 
a given Substitution Permutation Network 
(SPN). This algorithm uses best-first search, 
and has been applied to 16-bit cipher with 8 
rounds. This algorithm uses an assumption that 
best characteristic will be found on plaintexts 
that differs exactly one sub-block. 

1 Introduction 
Differential cryptanalysis, introduced by Biham and 
Shamir (1991), is a chosen plaintext attack, which 
means that the attacker could choose a plaintext to 
encrypt. It exploits the high probability of certain 
constant differences of plaintext and the 
corresponding ciphertext in a block cipher.  

Let ܲᇱ ൌ ሾܲᇱଵ ܲᇱଶ  … ܲᇱሿ and  ܲ’’ ൌ ሾܲᇱᇱଵ ܲᇱᇱଶ  … ܲᇱᇱሿ 
be two plaintext of a certain block cipher which is 
encrypted to ܥᇱ ൌ ሺܲᇱሻܧ  ൌ  ሾܥԢଵܥԢଶ ᇱᇱܥ Ԣሿ andܥ …  ൌ ሺܲ’’ሻܧ  ൌ   ሾܥԢԢଵܥԢԢଶ  ԢԢሿ. Thus, the plaintextܥ … 
difference is defined by Δܲ ൌ ܲᇱ ⊕ ܲᇱᇱ, hence, ܲ߂ ൌ ሾܲᇱଵ ⊕ ܲᇱᇱଵ  ܲᇱଶ ⊕ ܲᇱᇱଶ   … ܲᇱ ⊕ ܲᇱᇱሿ 
similarly,  ܥ߂ ൌ ሾܥᇱଵ ⊕ ᇱଶܥ  ᇱᇱଵܥ ⊕ ᇱᇱଶܥ ᇱܥ …   ⊕  ᇱᇱሿܥ
To perform differential cryptanalysis, an attacker 
must be able to construct a differential characteristic ܲ߂ ՜  It must be . that is valid with probability ܥ߂
noted that to construct such differential characteristic, 
an attacker must try every possible ܲ߂ ՜  ,pairs ܥ߂
and then pick the most probable of them. This task 

needs to be done carefully with an enormous amount 
of time.  

This paper will present an algorithm that can be used 
as a tool to search the best differential characteristic 
of a basic Substitution Permutation Network cipher. 
The remaining five sections in the paper are 
organized as follow: In Section 2, a construction of a 
basic SPN cipher is introduced. The cipher is then 
used as a target of our search algorithm. In Section 3, 
we will describe the differential characteristic 
constructs of our cipher.  In Section 4, the algorithm 
result to search differential characteristic is presented. 
Section 5 will show our experimental result for the 
algorithm, and in Section 6, conclusions are drawn 
relevant to our work. 

2 Basic SPN Cipher 
Heys (2001) constructed a basic SPN cipher which 
use a structure proposed by Feistel (1973). His cipher 
has a fixed substitution and permutation table, and 
operates in 4 rounds. We will modify that cipher, so 
it will have a flexible substitution and permutation 
table, and a variable number of rounds. This cipher 
takes a 16 bit input block, and illustrated in Figure 1.  

2.1 Operations 

From Figure 1, we can see that our cipher consists of 
three basic operations: Substitution in 4-bits sub-
blocks., permutation of bit positions, and mixing with 
subkeys.  These three operations will be repeated for ݊ number of rounds. 

2.1.1 Substitution 
The substitution portion of our cipher breaks the 16-
bits block to four 4-bits sub-blocks. Each sub-block 
then substitutes its input by looking up to 4x4 S-box 
(i.e. an S-Box with 4-bits inputs and outputs). This S-
box can be easily implemented by an array which has 
sixteen 4-bits values, and indexed by an integer 



representing its input bits. Table 1 will shows an 
example of such S-Box. 

Table 1 Example of an S-Box 

0 1 2 3 4 5 6 7
E 4 D 1 2 F B 8
8 9 A B C D E F
3 A 6 C 5 9 0 7
 

Key Mixing

SBox SBox SBox SBox

Permutation

Key Mixing

SBox SBox SBox SBox

Permutation

Key Mixing

SBox SBox SBox SBox

Permutation

SubKey

SubKey

SubKey

 

Figure 1. Basic Substitution Permutation Network Cipher 

2.1.2 Permutation 
After substitutions of sub-blocks have been 
performed, our cipher combines all of the 4-bits sub-
blocks and permutates its bit positions by looking up 
to P-Box. Our P-Box will take a bit position as its 
input and outputs the bit’s position after permutation 
has been performed. This P-Box can be implemented 
by an array which has sixteen integer values 
representing output positions and indexed by input 
positions, where 0 corresponds to the left-most bit 

and 15 to the right-most bit. An example of this P-
Box implementation is given in Table 2. 

Table 2 Example of a P-Box 

0 1 2 3 4 5 6 7
0 4 8 12 1 5 9 13
8 9 10 11 12 13 14 15
2 6 10 14 3 7 11 15
 

2.1.3 Key Mixing 
To perform key mixing, our cipher will generate a 
subkey for each round, and do bit-wise exclusive-OR 
between subkey and input block of a round. To get a 
round-subkey, our cipher will circularly shift its 
previous round-subkey to the left by one bit. The 
subkey for the first round is the 16-bit key itself. 

2.2 Decryption 

In order to decrypt a previously encrypted block, data 
is passed backwards through the network. However, 
the decryption’s S-Box is the inverse of the 
encryption’s. Thus, in order to allow data to be 
decrypted, S-Box must be one-to-one mappings with 
the same number input and output bits. 

2.3 Differential Characteristics 

To construct a differential characteristic of our 
cipher, we must first construct differential 
characteristics for each round. And analyze every 
operation on them. 

2.3.1 Analyzing Substitution Portion 
Let ݔܤݏሺݔሻ ൌ  be a function which performs ݕ
substitution in our S-Box, and ݁ܿ݊݁ݎݎݑܿܿሺΔݔ ՜ Δݕሻ 

be the number of occurrence where two inputs with Δݔ ൌ Ԣݔ ⊕  ԢԢ difference is substituted by twoݔ
outputs with Δݕ ൌ Ԣݕ ⊕ ԢԢݕ ൌ Ԣሻݔሺݔܤݏ ⊕  ԢԢሻݔሺݔܤݏ
difference. Thus, the probability ݔܾܵሺΔݔ ՜ Δݕሻ  
where Δݔ ՜ Δݕ valid can be computed with,  

ݔሺΔݔܾܵ ՜ Δݕሻ ൌ ݔሺΔ݁ܿ݊݁ݎݎݑܿܿ ՜ Δݕሻ16  

 
We know that substations portion of our cipher is 
performed on four sub-blocks substitutions by S-Box. 
Thus, if ܾݑܵሺΔݔ ՜ Δݕሻ is the probability of  Δݔ 
substituted by Δݕ being valid, then, 



ݔሺΔܾݑܵ ՜ Δݕሻ ൌ .ݔሺΔݔܤܵ . Δݔଷ ՜ Δݕ. . Δݕଷሻ       .ସݔሺΔݔܤܵ . Δݔ ՜ Δݕସ. . Δݕሻ       .଼ݔሺΔݔܤܵ  . Δݔଵଵ ՜ Δ଼ݕ. . Δݕଵଵሻ       .ଵଶݔሺΔݔܤܵ  . Δݔଵହ ՜ Δݕଵଶ. . Δݕଵହሻ 

ൌ ෑ .ସାݔሺΔݔܾܵ . Δݔସାଷ ՜ Δݕସା. . Δݕସାଷሻଷ
ୀ  

2.3.2 Analyzing Key Mixing Portion 
In this section, we will prove that key mixing 
portions of our cipher is irrelevant to differential 
characteristics.  

Let ݓԢ ൌ ᇱݔ ۩ ԢԢݓ  andݕܾ݁݇ݑݏ ൌ ᇱݔ ۩   beݕܾ݁݇ݑݏ
two key-mixed blocks, thus, their difference ∆ݓ is 
defined by, ∆ݓ ൌ ᇱݓ ⊕ ᇱᇱ ൌݓ ൫ݔᇱ ⊕ ൯݅ݕܾ݁݇ݑݏ ⊕ ൫ݔᇱᇱ ⊕ ൯ ൌ݅ݕܾ݁݇ݑݏ ሺݔԢ ⊕ ԢԢሻݔ ⊕ ݕܾ݁݇ݑݏ ⊕  ൌݕܾ݁݇ݑݏ  ݔ∆

Hence, key-mixed input difference is equal to un-
mixed input difference. 

2.3.3 Analyzing Permutation Portion 
The last portion of our cipher round to analyze is 
permutation. Let we define ି݉ݎ݁ଵሺݕሻ ൌ  to be the ݔ
inverse function of permutation, thus, by deriving 
from all of our equation from previous subsection, a 
round differential characteristics ݀݊ݑܴ can be 
computed by, ݀݊ݑܴሺΔݔ ՜ Δݕሻ ൌ 

ෑ .ସାݔ൫Δݔܾܵ . Δݔସାଷ ՜ Δݕషభሺସାሻ. . Δݕషభሺସାሻ൯ଷ
ୀ  

 

2.3.4 Characteristics of Overall Cipher 
After knowing characteristics of every cipher’s 
round, we can combined them to construct overall 
cipher differential characteristic.  

The overall differential characteristic probability ݎ݄݁݅ܥ of our cipher that has ܴ݊ݏ݀݊ݑ number of 
round can be computed by, 

ݔሺΔݎ݄݁݅ܥ ՜ Δݕሻ 

ൌ ෑ ݎݔሺΔ݀݊ݑܴ ՜ Δݎݔାଵሻோ௨ௗ௦ିଵ
ୀ  

where Δݎݔ ൌ Δݔ, and Δݎݔோ௨ௗ௦ ൌ Δݕ.  

3 Search Algorithm 
This section will describe our algorithm to search 
differential characteristic. To construct the algorithm, 
we must first construct S-Box characteristic, find 
round characteristic, and finally find cipher 
characteristic. 

3.1 Constructing S-Box Characteristic 

Consider an S-Box with input ݔ ൌ  ሾݔଵ ݔଶ ݔଷ ݔସሿ and 
output ݕ ൌ  ሾݕଵ ݕଶ ݕଷ ݕସሿ. All its differential 
characteristics ݔܾܵሺΔݔ ՜ Δݕሻ with probability  
can be found by trying every possible input ݔ and ݔԢ. 
The pseudocode of function fsbc() in Figure 3 will 
describe a function that will construct differential 
characteristics of a given S-Box. 

Input: SBox: Arrays[0..15] of integer; 
Variables: pSBox: arrays [Δx][Δy] of  
           probability; 
           x, x’: 4-bit input; 
Initialization: pSBox[Δx][Δy] = 0; 
Algoritm: 
for (x = 0 to F) do: 
  for (x’ = 0 to F) do: 
    Δx = x ⊕ x’; 
    Δy = SBox[x] ⊕ Sbox[y’]; 
    pSBox[Δx][Δy]++; 
 
for each pSBox[Δx][Δy] do: 
   pSBox[Δx][Δy] = pSBox[Δx][Δy]/16; 
 
Output: pSBox; 

 
Figure 3 Pseudocode of Function fsbc()  

Function fsbc() accepts an S-Box SBox as input and 
will output pSBox, where pSBox[Δݔ][ Δݕ] is a 
probability that ܾܵݔሺΔݔ ՜ Δݕሻ  being valid. The 
function starts with trying to count occurrence of Δݔ ՜ Δݕ with ݔ from 0 to F and ݔԢ from 0 to F. It 
then divide the occurrences with 16. 

 



3.2 Finding Round Characteristics 

After constructing the S-Box characteristic, we can 
now find characteristics for a round that has Δݔ as its 
input difference. The pseudocode of function frc() in 
Figure 4 will describe a function that will output a list 
of differential characteristics of a given input 
difference for a round. 

Input: Δx: Input Difference;  

Variables:  
PBox   : Permutation Box; 
characs: List of (Δy, probability) 
         pairs; 
Algoritm: 
rsb(characs, Δx, 0, 1, 0); 
for each Δy in characs do: 
   Δy = permutate(PBox, Δy); 
 
Output: characs; 

 
Figure 4 Pseudocode of Function frc() 

 
Input:  
characs: List of (Δy, probability) 
         pairs; 
Δx, Δy : Input and output difference; 
p      : Current probability; 
i      : Current Round; 
 
Variables:  
SBox   : Substitution Box; 
pSBox  : SBox Characteristics; 
nr     : Number of Rounds 
 
Algorithm: 
if (i = nr) then : 
   characs.add(Δy,p x pSBox[Δxi][Δyi]); 
else : 
  if (Δxi = 0) then : 
    Δyi = Δxi; 
    rsb(characs, Δx, Δy, p, i+1); 
  else :   
    for (y = 0 to 15) do : 
      if (pSBox[Δxi][y] != 0) then : 
        Δyi = y; 
        rsb (characs, Δx, Δy 
             p*pSBox[x][y], i+1); 

 
Figure 5 Pseudocode of Procedure rsb() 

 

Function frc() accepts an input block difference Δx as 

input and will output characs, a list of (Δݕ,  pair (
where  p is probability that ܴ݀݊ݑሺΔݔ ՜ Δݕሻ  being 
valid. Function frc() will uses a recurcive procedure 
rsb() that will use S-Box characteristics for every Δx 
sub-block. Pseudocode of procedure rsb() is 
described in Figure 5 

Procedure rsb() is used to find characteristic for 
every sub-block and works as follow: it first checks 
whether all sub-block has been processed (this check 
act as a base for the recursion), if yes, it then add the 
characteristic to characs list. But if all sub-block has 
not been processed, then it processed current sub-
block by checking all possible sub-block 
characteristics, adding the sub-block output to Δy, 
multiplying the probability, and then recurse for the 
next sub-block. 

Back to function frc(), after running rsb(), it 
permutates all Δy in  characs with PBox.  After that, 
characs can be returned as output. 

3.3 Finding Cipher Characteristics 

Our algorithm to find differential characteristics of 
basic SPN Cipher will use an assumption that the best 
characteristics will be found in plaintexts which 
differ on only one sub-block. Thus, by our definition 
of differential characteristics at overall cipher, we can 
build 4x16 trees of differential characteristics and 
start searching the best characteristic.  

It must be noted that, if we transverse the trees using 
bread-first search, we will need ܱሺ64 . 16ሻ space 
and time at worst-case where ݊ is the number of 
rounds. We can reduce this by using best-first search 
where the heuristic function ݄ is defined by, ݄ሺ݊݁݀ሻ ൌ .݁݀ሺ݊ݔܾܵ .ݐ݊݁ݎܽ ݔ ՜ .݁݀݊  ሻ௦ሺௗ.௫ሻݔ
where ܾݏሺݔሻ is the number of sub-blocks affected if 
we permutate ݔ. To reduce our search space even 
further, we can prune every node where, ܿݔܾܵ  . ܲݐ݊݁ݎݎݑሺ݊݁݀. .ݐ݊݁ݎܽ ݔ ՜ .݁݀݊  ܲݐݏܾ݁ ሻ ݔ



with ܿܲݐ݊݁ݎݎݑ is the probability of the node parent, 
and ܾ݁ܲݐݏ is the best characteristics probability that 
has been found. We can prune the tree safely 
because,  ܽ .  ܾ  ܽ

for 0  ܽ  1, 0  ܾ  1. 

Figure 6 will describe the trees that will be 
constructed. The pseudocode of function fcc() that 
will be used to search that tree will be shown in 
Figure 7. That function will search the best 
characteristics of a given cipher. 

 

 

Figure 6 Trees That will be Used to Search Characteristic 

Function fcc() accepts cipher Cipher which is a 
tupple of (SBox, PBox, NumberOfRound) as input 
and will output best, the best characteristic of Cipher. 
A characteristic is a tuple of (Δݔ, Δ݀݊ݑݎ, Δݕ,  ,(
which means a differential characteristic ݔ߂ ՜  ݕ߂
that is valid with probability , and for every round i 
has Δ݀݊ݑݎ as its input. 

Function fcc() will uses a recursive procedure rr() 
that will recurse searching characteristic for the 

number of rounds. The pseudocode procedure rr() is 
described in Figure 8. 

Input: Cipher: a tupple of  
               PBox : Permutation Box; 
               SBox : Substitution Box; 
               nr   : Number of Rounds;   
 
Variables:  
pSBox : SBox Characteristics; 
best  : Best Characteristic, tupple of: 
        best: tupple of: 
              Δx : input difference  
              Δround: round inputs  
              Δy : output difference 
              p  : probability 
Algoritm: 
pSBox = fsbc(Cipher.SBox) 
for i = 0 to 3 do : 
  for x = 0 to F do 
    Δx = 0 & (x << i*4) 
    rr(Δx, 0x0, Cipher.nr, 1); 
 
Output: best; 

 
Figure 7 Pseudocode of Function fcc() 

Procedure rr() is a recursive procedure to find 
characteristic for every round and works as follow: it 
first find all possible round characteristic of the input 
using frc(), then it checks whether it has remaining 
rounds (this check act as a base for the recursion), if 
there is no remaining rounds, it find the best 
probability from characs list and save it to rc. It then 
compare whether rc probability is better than best, if 
yes, it replace best with rc. 

But if there is still exist remaining rounds, the 
procedure will sort characs using heuristic function h 
mentioned earlier. Then for every characteristics in 
characs it checks whether the probability is still 
better than best, if yes, it continues to recurse the 
function to the next round with current round output 
as the next round input, and with the product of 
current probability and characteristic’s probability as 
the next round probability. 

The recursion is guaranteed to stop because it will 
stop when there is remaining round and for every 
recursive call the procedure will decrement the 



remaining round. After recursion is done, the best 
characteristic can be returned as fcc() output. 

Input:  
c    : Current Characteristic 
Δx   : Round Input 
i    : Remaining Round; 
p    : Current Probability; 
 
Variables:  
rc   : Characteristic 
tempP: Probability 
 
Algorithm: 
characs = frc(Δx); 
 
if (i = 0) then : 
   rc = findBest(characs); 
   p = rc.p * p 
   if (p > best.p) then; 
     c.Δy = rc.Δy; 
     c.p = p; 
     best = c.clone(); 
 
else : 
  sort(characs); 
  for each rc in characs do: 
    temp = rc.p * p 
    if (p > best.p) then: 
     c. ΔRoundi=rc.Δy; 
     rr(c, rc.ΔOutput, round-1, tempP) 

 
Figure 8 Pseudocode of Procedure rr()  

4 Related Works 
Ali and Heys (2007) presented an algorithm to 
analyze the resistance of block cipher to differential 
and linear cryptanalysis. In their paper, they call their 
algorithm Two Iterative Way. That algorithm uses 
greedy based and intelligent pruning. Their algorithm 
has been applied to 16-bit ciphers and some realistic 
64-bit ciphers based on 8x8 and 4x4 S-Boxes that 
possess good cryptographic properties. 

Heys (2001) was described in block cipher design. In 
his paper, he presented a detailed tutorial on linear 
and differential cryptanalysis. 

5 Experiments and Results 
Our algorithm will be implemented as a Java 
application. A Windows XP SP2 platform with JDK 
1.6 on a 1.60 GHz Intel Centrino processor is used 
for the experiments. The algorithm’s running time is 
measured with Java’s System.nanotime(). We 
conducted varied experiment based on round 
numbers and block sizes. Figure 9 will show the 
effect of round numbers and block sizes to running 
time of our algorithm. 

 

 

 

Figure 9 Effect of Algorithm Round Numbers and Block 
Sizes to Algorithm Running Time 

 

5.1 Variable Round Numbers 

On this experiment, we will use ciphers with S-Box 
and P-Box that is mentioned in Section 2 but with 
variable round-number. Table 3 will show the result 
of our experiments. 
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From the table it is shown that the running time of 
our algorithm will increase more than quadratic when 
the round number increased quadratically. The 
sample of our cipher outputs will be shown in Figure 
10. 

Table 3 Running Time Algorithm in Varied  Round 
Numbers 

Rounds Δx Δy p Time
(s) 

2 0x0B00 0x0220 0.25 2.6
4 0x0B00 0xB2B2 0.0264 14.3
6 0x00B0 0x6255 0.0053 43.2
8 0x0400 0xB5F2 0.0018 134.2

16 0x0400 0xC06F 0.000023 325.5
 

> java DiffSearch sbox.txt pbox.txt 4 
dx: B00 
dx1: 40 
dx2: 220 
dx3: 550 
dy: B2B2 
time = 14385 ms 
 

Figure 10 Output for 4-Round Cipher 

5.2 Variable Block Size 

On this experiment, we will use ciphers with S-Box 
with 4 round. For every cipher, we will use 
randomized P-Box. Table 3 will show the result of 
this experiment. From the table it is shown that, like 
our previous experiment, the running time of our 
algorithm will increase more than quadratic when the 
round number increased quadratically. 

Table 4 Running Time Algorithm in Varied  Block Sizes 

Block Size Time(s) 
8 4.7 
16 14.3 

32 121.3 
 

6 Conclusions 
We have presented an algorithm to search differential 
characteristic of basic SPN Cipher. Best-First Search 
is practical approach to search the search space of 

differential characteristic. Although we cannot 
mathematically or theoretically guarantee that our 
algorithm will find the best characteristic, because of 
our assumption that the best characteristic will be 
found on inputs with plaintexts differs in exactly one 
block.  

Although it is predicted and acceptable, the running 
time of our algorithm increases more than number of 
rounds or block sizes. 
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