Bahan kuliah II4020 Kriptografi

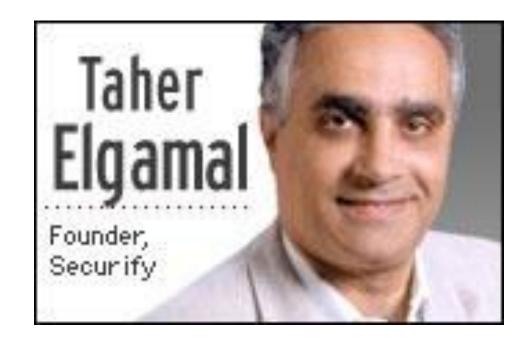
Algoritma ElGamal

Oleh: Rinaldi Munir

Program Studi Sistem dan Teknologi Informasi Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2025

Pendahuluan

 Algoritma Elgamal dibuat oleh Taher Elgamal (1985). Pertama kali dikemukakannya di dalam makalah berjudul "A public key cryptosystem and a signature scheme based on discrete logarithms", dimuat di dalam <u>IEEE</u> <u>Transactions on Information Theory</u> (Volume: 31, <u>Issue: 4</u>, July 1985)



A PUBLIC KEY CRYPTOSYSTEM AND A SIGNATURE SCHEME BASED ON DISCRETE LOGARITHMS

Taher El Gamal*

Hewlett-Packard Labs 1501 Page Mill Rd Palo Alto CA 94301

ABSTRACT

A new signature scheme is proposed together with an implementation of the Diffie - Hellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.

INTRODUCTION

In 1976, Diffie and Hellman [3] introduced the concept of public key cryptography. Since then, several attempts have been made to find practical public key systems (see for example [6,7,9]) depending on the difficulty of solving some problems. For example, the RSA system [9] depends on the difficulty of factoring large integers. This paper presents systems that rely on the difficulty of computing logarithms over finite fields.

Section 2 shows a way to implement the public key distribution scheme introduced by Diffie and Hellman [3] to encrypt and decrypt messages. The security of this system is equivalent to that of the distribution scheme. Section 3 introduces a new digital signature

 Keamanan algoritma ini terletak pada sulitnya menghitung logaritma diskrit.

 Persoalan logaritma diskrit: Jika p adalah bilangan prima dan g dan y adalah sembarang bilangan bulat, carilah x sedemikian sehingga

$$g^x \equiv y \pmod{p}$$

Contoh: $7^x \equiv 15 \pmod{41}$, berapakah nilai x?

 Sebelum membahas algoritma ElGamal lebih lanjut, maka kita perlu memahami terlebih dahulu tentang logaritma diskrit dan akar primitif dari sebuah bilangan prima.

Akar Primitif dan Logaritma Diskrit

• Jika n adalah bilangan bulat, maka a disebut **akar primitif** dari n jika perpangkatan $a, a^2, ..., a^{\phi(n)}$ (dalam sebuah modulus n)

menghasilkan nilai yang berbeda dan semuanya relatif prima dengan n.

• Secara khusus, jika p adalah bilangan prima, maka a disebut akar primitif dari p jika perpangkatan

 $a, a^2, ..., a^{p-1}$ (dalam modulus p)

menghasilkan nilai-nilai yang berbeda

(ingatlah dari fungsi toitient Euler, bahwa jika p prima maka $\phi(p) = p - 1$)

• Sebagai contoh, misalkan p = 7, maka a = 3 adalah akar primitif dari 7 karena

$$3^1 \pmod{7} = 3$$
; $3^2 \pmod{7} = 2$; $3^3 \pmod{7} = 6$

$$3^4 \pmod{7} = 4;$$
 $3^5 \pmod{7} = 5;$ $3^6 \pmod{7} = 1$

• Jadi, semua perpangkatan dari 3 menghasilkan nilai-nilai yang berbeda (3, 2, 6, 4, 5, 1), semua bilangan di dalam modulus 7 terjadi satu kali.

• Perpangkatan berikutnya, 3^7 (mod 7), 3^8 (mod 7), ..., akan kembali berulang menghasilkan nilai-nilai tersebut. Panjang satu siklus tidak lebih dari 7 – 1 = 6.

• Secara umum, untuk p bilangan prima, maka panjang siklus tidak lebih dari p-1.

• Perhatikan bahwa a = 2 bukan akar primitif dari 7 karena

$$2^1 \pmod{7} = 2$$
; $2^2 \pmod{7} = 4$; $2^3 \pmod{7} = 1$

$$2^4 \pmod{7} = 2$$
; $2^5 \pmod{7} = 4$; $2^6 \pmod{7} = 1$

• Nilai-nilai yang dihasilkan dari 2¹, 2², ..., 2⁶ tidak semuanya berbeda dan tidak mencakup semua nilai di dalam modulus 7.

• Untuk menemukan semua akar primitif dari p, kita harus mencoba semua bilangan bulat dari 2, 3, ...

 Jika a adalah akar primitif dari bilangan prima p, maka untuk bilangan bulat b kita dapat menemukan pangkat x sedemikian sehingga

$$b \equiv a^x \pmod{p}$$
, $0 \le x \le (p-1)$

• Pangkat x disebut **logaritma diskrit** dari b untuk basis a (mod p).

• Dalam **persoalan logaritma diskrit**, diberikan $b \equiv a^x$ (mod p), carilah x yang memenuhi kekongruenan tersebut.

• Sebagai contoh, 7 adalah akar primitif dari bilangan prima p = 41. Maka, carilah x sedemikian sehingga $15 \equiv 7^x \pmod{41}$, jawabannya adalah 3 karena

$$7^3 = 343 \equiv 15 \pmod{41}$$

Properti algoritma ElGamal:

- 1. Bilangan prima, p (tidak rahasia)
- 2. Bilangan acak, g (g < p, g adalah akar primitif dari p) (tidak rahasia)
- 3. Bilangan acak, x ($2 \le x \le p 2$) (rahasia, kunci privat)
- 4. $y = g^x \mod p$ (tidak rahasia, kunci publik)
- 5. *m* (plainteks) (rahasia)
- 6. a dan b (cipherteks) (tidak rahasia)

Prosedur Pembangkitan Kunci

- 1. Pilih sembarang bilangan prima *p* (*p* dapat di-*share* di antara anggota kelompok)
- 2. Pilih dua buah bilangan acak, g dan x, dengan syarat g < p, g akar primitif dari p, dan $2 \le x \le p 2$
- 3. Hitung $y = g^x \mod p$ (1)

Hasil dari algoritma ini:

- Kunci publik: tripel (y, g, p)
- Kunci privat: pasangan (x, p)

Prosedur Enkripsi

- 1. Susun plainteks menjadi blok-blok $m_1, m_2, ...,$ (nilai setiap blok harus berada di dalam selang [0, p-1].
- 2. Pilih bilangan acak k, yang dalam hal ini $1 \le k \le p-1$.
- 3. Setiap blok *m* dienkripsi dengan rumus

$$a = g^k \bmod p \tag{2}$$

$$b = y^k m \mod p \tag{3}$$

Pasangan (a, b) adalah cipherteks untuk blok pesan m. Jadi, ukuran cipherteks adalah dua kali ukuran plainteksnya.

Prosedur Dekripsi

1. Gunakan kunci privat x untuk menghitung $(a^x)^{-1} = a^{p-1-x} \mod p$

2. Hitung plainteks *m* dengan persamaan:

$$m = b/a^x \mod p = b(a^x)^{-1} \mod p$$

Bukti bahwa pesan m dapat diungkap kembali dari pasangan cipherteks a dan b:

Dari persamaan (2): $a = g^k \mod p \rightarrow g^k \equiv a \pmod p$

Pangkatkan kedua ruas dengan $x: g^{xk} \equiv a^x \pmod{p}$

Dari persamaan (3): $b = y^k m \mod p \rightarrow y^k m \equiv b \pmod p$

Dari persamaan (2): $y = g^x \mod p \rightarrow g^x \equiv y \pmod p$,

maka

$$b/a^{x} \equiv y^{k}m/a^{x} \pmod{p}$$
$$\equiv g^{xk}m/g^{xk} \pmod{p}$$
$$\equiv m \pmod{p}$$

yang berarti bahwa plainteks m dapat diungkap kembali dari cipherteks a dan b.

Contoh 1: Bob membangkitkan kunci publik dan kunci privatnya. Alice akan mengengkripsi pesan dengan menggunakan kunci publik Bob.

(a) Pembangkitan kunci (Oleh Bob)

syarat g < p, g akar primitif dari 2357 dan

Misal p = 2357, g = 2, dan x = 1751. $1 \le x \le p - 2$

Hitung: $y = g^x \mod p = 2^{1751} \mod 2357 = 1185$

Hasil: Kunci publik: (y = 1185, g = 2, p = 2357)

Kunci privat: (x = 1751, p = 2357).

Bob memberitahu kunci publik ini kepada Alice

(b) Enkripsi (Oleh Alice)

Misalkan pesan m = 2035 (nilai m masih berada di dalam selang [0, 2357 - 1]).

Alice memilih bilangan acak k = 1520 (nilai k berada di dalam selang [0, 2357 - 1]).

Alice melakukan enkripsi dengan kunci public Bob (y = 1185, g = 2, p = 2357):

$$a = g^k \mod p = 2^{1520} \mod 2357 = 1430$$

$$b = y^k m \mod p = 1185^{1520} \cdot 2035 \mod 2357 = 697$$

Jadi, cipherteks yang dihasilkan adalah (1430, 697).

Alice mengirim cipherteks ini kepada Bob.

(c) Dekripsi (Oleh Bob)

Bob melakukan dekripsi dengan kunci privatnya (x = 1751, p = 2357):

$$(a^x)^{-1} = a^{p-1-x} \mod p = 1430^{2357-1-1751} \mod 2357 = 1430^{605} \mod 2357 = 872$$

$$m = b/a^x \mod p = b \cdot (a^x)^{-1} \mod p = 697 \cdot 872 \mod 2357 = 2035$$

Bob mendapatkan kembali plainteks m = 2035 yang dikirim oleh Alice.

Contoh 2: Alice membangkitkan pasangan kuncinya. Bob akan mengirim pesan dengan menggunakan kunci publik Alice.

(a) Pembangkitan kunci (oleh Alice)

Alice memilih bilangan prima p = 2273, akar primitif dari p yaitu g = 3, dan x = 243.

Alice kemudian menghitung:

$$y = g^x \mod p = 3^{243} \mod 2273 = 461$$

Jadi,

kunci privat Alice: (x = 243, p = 2273)

kunci publik Alice: (y = 461, g = 3, p = 2273).

(b) Enkripsi (oleh Bob)

Misalkan Bob ingin mengirim plainteks 'HALO' kepada Alice.

Misalkan A = 00, B = 01, ..., Z = 25, maka pesan m dikodekan ke dalam integer adalah

$$m = 07001114$$

Bob memecah *m* menjadi blok yang lebih kecil, misalkan *m* dipecah menjadi blok-blok sepanjang 4 angka:

$$m_1 = 0700$$
 dan $m_2 = 1114$

Nilai-nilai m_i ini masih terletak di dalam selang [0, 2273 – 1] agar transformasi menjadi satu-ke-satu.

(i) Enkripsi $m_1 = 0700$

Bob memilih bilangan acak k = 1463 (nilai k masih berada di dalam selang [0, 2273 - 1]).

Bob mengenkripsi pesan dengan menggunakan kunci publik Alice (y = 461, g = 3, p = 2273):

$$a = g^k \mod p = 3^{1463} \mod 2273 = 1439$$

$$b = y^k m_1 \mod p = 461^{1463} \cdot 700 \mod 2273 = 74$$

Jadi, cipherteks yang dihasilkan untuk m_1 adalah c_1 = (1439, 74).

(ii) Enkripsi $m_2 = 1114$

Bob memilih bilangan acak k = 2001 (nilai k masih berada di dalam selang [0, 2273 - 1]).

Bob mengenkripsi pesan dengan menggunakan kunci publik Alice (y = 461, g = 3, p = 2273):

$$a = g^k \mod p = 3^{2001} \mod 2273 = 1220$$

$$b = y^k m_2 \mod p = 461^{2001} \cdot 1114 \mod 2273 = 1682$$

Jadi, cipherteks yang dihasilkan untuk m_2 adalah c_2 = (1220, 1682).

Bob mengirim cipherteks (1439, 74) dan (1220, 1682) kepada Alice.

(c) Dekripsi (oleh Alice)

Alice mendekripsi cipherteks dari Bob dengan kunci privatnya (x = 243, p = 2273):

(i) Dekripsi $c_1 = (1439, 74)$

$$(a^x)^{-1} = a^{p-1-x} \mod p = 1439^{2273-1-243} \mod 2273 = 1439^{2029} \mod 2273 = 1791$$

 $m_1 = b/a^x \mod p = b(a^x)^{-1} \mod p = 74 \cdot 1791 \mod 2273 = 700 = 0700$

(ii) Dekripsi c_2 = (1220, 1682)

$$(a^x)^{-1} = a^{p-1-x} \mod p = 1220^{2029} \mod 2273 = 1125$$

 $m_2 = b/a^x \mod p = 1682(a^x)^{-1} \mod p = 1682 \cdot 1125 \mod 2273 = 1114$

Plainteks yang didekripsi adalah m_1m_2 = 07001114, yang kalau dikodekan menjadi teks adalah empat digit adalah "HALO", sama dengan plainteks yang dikirim oleh Bob.

• Demo online enkripsi ElGamal: https://www.debjitbiswas.com/elgamal/

