
Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

Generic Color Theme Generation Based on Image

Reference

I Gede Govindabhakta 13519139 (Author)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13519139@std.stei.itb.ac.id

Abstract—Many applications now provide extensive

customizability options in terms of functionality and aesthetics.

Color customizations are widely available in a large assortment

of programs from text editors such as Visual Studio Code to

customizations on desktop environments such as GNOME

Desktop. In this paper, the author proposes an approach for

automatic generic theme generation consisting of main and

accent color candidates based on image references using image

processing techniques such as edge detection, object

segmentation, and histogram manipulation.

Keywords—theme generation, color, customization

I. INTRODUCTION (HEADING 1)

Customizability in programs has been increasing in
popularity with the emergence of open source programs being
widely available and proprietary software providers providing
extensible customization options to meet customer demands.
This customizability can be seen in the emergence of customer
maintained and populated marketplaces such as theme stores,
plugin sharing pages, and other sources. Programs such as
Visual Studio Code, among others, utilizes user editable files
such as Javascript Object Notation (JSON) files to expose
application configurations to tech savvy users intent to
personalize their applications to their personal likings.

Image 1. Color customization options available in Windows 10

Among the most basic of customization options is the
option to customize the user interface color of many
application and programs, particularly dark mode options being
the most widely used. Many color customization systems

mainly consist of a foreground or main color theme,
accompanied by an assortment of accent color customizations.
Examples include Windows 10 and 11 now allowing the user
to change from light to dark mode changing the foreground
color for most programs and accent color options to show
different coloring when highlighting actions or selected options
in menus.

Image processing includes the processes and tools used to
manipulate images, which are static collections of colors
commonly displayed in a 2 dimensional fashion. These
processes may include basic operations such as filters such as
blurring to advanced manipulations such as object detection
and segmentation which does not exclude the possibility of
incorporating other technologies such as artificial intelligence
and deep learning to further enhance the capabilities of image
processing.

Image processing has proven to be useful for interpreting
and finding key features in images such as recognizing people
in a crowd, finding and recognizing characters in a digital
image which can the be interpreted into text, and grouping
segments of an image together based on similarity between
neighboring regions. Tools such as histograms give insight into
the composition and distribution of colors in an image which
can give a rough estimation into how an image is well defined
between objects, the general brightness of the scene, and
possible cutoff values for removing unnecessary parts of an
image.

This paper will discuss an approach that utilizes image
processing methods that include color manipulation, edge
detection, object segmentation, and histogram manipulation, to
create a program capable of generating candidate colors,
categorized under foreground or main color and accent colors,
based off a provided reference image. The program is limited
to only providing a list of candidates and not applying the
colors to a customization scheme for any programs nor
deterministically deciding or grading the generated color
candidates

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

II. THEORY

A. Digital Image Processing

A digital image is a 2-dimensional collection of points

named pixels which contain values representing colors in

some form, possibly as a result of sampling from a continuous

image source or as a computer generated image. Digital

images can be traced from a the spatial and time domain,

where only observing the spatial domain results in a static

image which is often referred to as a picture, and including the

time domain results in a dynamic digital image which is often

referred to as a motion picture or video. This paper will not

discuss motion pictures.

Digital images are represented as a function of x and y

resulting in a matrix M x N where M and N denote the

horizontal and vertical dimensions of the image in pixels

known as an image’s resolution. A visualization of a digital

image represented as a function is presented in figure 2.

Figure 2. Function representation of a digital image

The matrix presented is a collection of values generated

from function f(x, y). The function returns a value, commonly

representing a gray value or level. In computers, this gray

value is often represented in 8 bits with values ranging from 0

to 255. Images with gray values represented with 1 bit, with

values ranging from 0 to 1 are referred to as binary images.

These matrices may also include other dimensions, such as

adding multiple layers to have a wider representation of colors

such as RGB, with each layer’s gray level representing a

certain value of either red, green, or blue in the specified pixel.

Images which only include one layer, which represent only on

type of gray level, often the color gray, is referred to as a

grayscale image.

B. Edge Detection

Edges are parts of objects which define a clear end to a

region or specify a segmentation. In images, edges are areas of

the image which show the boundaries of certain objects, often

but not always recognizable by steep color changes in

neighboring pixels. Image processing typically registers edges

by their respective axis, thus generating a vertical edge and

horizontal edge. Some methods use a diagonal edge in place of

the typical horizontal and vertical edge definitions.

Figure 3. Visualization of an edge in an image

Steep edges are edges which show a very sudden change in

gray levels. Around the defined edge, the gray levels are

typically more consistent, thus further defining the edge even

when used with a wider kernel function. Both humans and

computers often have no issue identifying these type of edges

as they are often clearly defined. Examples of matrices which

denote a steep edge are included in figure 4.

Figure 4. Change in gray level that occurs in a steep edge

Sloping edges show a more gradual change in gray levels.

Defining whether a certain rate of change is defined as an edge

is often accompanied by a certain threshold. Sloping edges are

often the type of edges easily identifiable by humans, but not

by computers. Examples of sloping edges are included in

figure 5.

Figure 5. Change in gray level in a sloping edge

Noisy edges, which often are present when taking image

samples from photos taken in real life instead of computer

generated images such as vector graphics, are edges which are

accompanied by noise such that identifying them often

requires preprocessing in forms such as smoothing or

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

thresholding. Examples of noisy edges are included in figure

5.

Figure 6. Change in gray level of a noisy edge

When detecting edges, a variety of methods from first

degree derivatives such as the Sobel operator and second

degree derivatives like a Laplacian are available with different

trade offs. First degree derivatives define an edge by the rate

of change of pixels, inline with common intuition, and is thus

commonly accompanied by a threshold. Second degree

derivatives, or Laplacians, define an edge by the rate of

sudden change in pixel gray levels. An edge defined by a

Laplacian operator is defined by zero-crossing, where second

degree derivatives cross the zero value when traversing

through the matrix or by interpolation when such occurrences

are infrequent.

C. Image Smoothing

Image smoothing is a process of reduces harder defined

edges in an image, often with the intent of reducing noise

present. Image smoothing works by selecting values that

reduce the maximum intensity of a pixel, relative to pixels

around it. A result of gaussian filtering is included in figure 7.

Figure 7. Result of a Gaussian filter being applied to an image

Kernels such as the Gaussian filter are often used among

others. The matrix or kernel used for convolution in a

Gaussian filter is included in figure 8.

Figure 8. Gaussian Mask

D. Object segmentation

Object segmentation is the process of separating or

segmenting an object from the larger foreground of an image.

This process may take several approaches such as identifying

the objects using various algorithms such as but not limited to

contour identification, edge detection, and machine learning

approaches such as convolutional neural networks.

A common approach used is to apply thresholding to a

gray scale image based on a low and upper bound, defining a

window where an object would be separated from the

foreground which is particularly effective when the object is

well defined against the foreground. The thresholded image is

then used as a mask to later segment the object away from the

foreground by applying a bitwise AND operation on the mask

and the original image. An example of the masking and

segmentation process is included in figure 9.

Figure 9. Masking process for object segmentation in image

processing

E. Color

Color is a spectrum, mostly the visible region, which
resides inside a perfect light (white light). This spectrum
consists of other colors with the ranges of wavelengths being
visible as different colors to the human eye.

Images contain information, previously mentioned as gray
levels, that show the intensity of a color. Multiple systems are
available for use when representing a color which may include
different approaches to defining the hue of a color, the
inclusion of transparency, and others.

The RGBA system (Red, Green, Blue, Alpha) represents
colors as a vector of 4 components, with RGB being primary
colors which can be used to reconstruct any other color
available and alpha being a value to represent the transparency
of the color. A visualization of the RGB spectrum is included
in figure 10.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

Figure 10. The RGB spectrum

III. IMPLEMENTATION

The program is implemented in python and utilizes
multiple common libraries used in image processing such as
OpenCV2 and PIL (pillow). The main steps taken during the
generation of the generic customization themes is described
below:

1. Segmenting the object away from the foreground

 Object segmentation is used to separate the main
object away from the foreground. This is to enable the
creation of main colors from the foreground image and
accent colors from the main object. The segmentation is
initiated by converting the image to grayscale, followed by
thresholding to generate the appropriate masks. The mask
and its inverse are used under a bitwise AND operation to
generate and write the object and main images. The code
used to implement this behavior is included below.

def get_object(img):

 img_gray = gray_image(img)

 th, im_th = cv2.threshold(img_gray, 220, 255,

cv2.THRESH_BINARY_INV)

 im_floodfill = im_th.copy()

 h, w = im_th.shape[:2]

 mask = np.zeros((h+2, w+2), np.uint8)

 cv2.floodFill(im_floodfill, mask, (0, 0), 255)

 im_floodfill_inv = cv2.bitwise_not(im_floodfill)

 mask = im_th | im_floodfill_inv

 inv_mask = cv2.bitwise_not(mask)

 mask = cv2.merge((mask.copy(), mask.copy(),

mask.copy(), mask.copy()))

 inv_mask = cv2.merge((inv_mask.copy(),

inv_mask.copy(), inv_mask.copy(), inv_mask.copy()))

 imga = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)

 masked = cv2.bitwise_and(mask, imga)

 unmasked = cv2.bitwise_and(inv_mask, imga)

 cv2.imwrite(OBJECT_FILENAME, masked)

 cv2.imwrite(FOREGROUND_FILENAME, unmasked)

 return masked

The resulting generated from the test samples are included
below.

Figure 11. Foreground image

Figure 12. Main object image

2. Generation of candidate colors

 Generation of candidate colors for the generic
customization schema is done by selecting the most
prominent colors from the histogram in each image and
taking the best 10, excluding transparent colors. The colors
are then converted from RGBA to HEX to be more
appropriate for use in most customization schemaas. The
implemented code and generated color palette from the test
image is included below.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

Figure 12. Generated candidate colors

Figure 13. Generated main color candidates

Figure 14. Generated accent color candidates

IV. ANALYSIS

The generated color palettes based on the test image were

sufficient and as expected. The program has issues when
separating the object from images with less well defined
boundaries between foreground and main object. This may be
related to the arbitrary value used as the threshold low and
upper bound. Further improvements can be made by using
algorithms such as the Otsu operator to determine an
appropriate threshold.

V. CONCLUSION

 Using image processing techniques such as object

segmentation, masking, and histogram analysis, the program

was able to successfully generate an appropriate main and

accent color palette suitable for generic customizations.

Further improvements can be made to the program to better

segmentate main objects and to integrate into existing

customization platforms.

SOURCE CODE

https://github.com/Govindabhakta/pengcit-makalah

REFERENCES

[1] https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/18-
Pendeteksian-Tepi-Bagian1-2022.pdf accessed on 19 December 2022

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/22-
Segmentasi-Citra-Bagian1-2022.pdf accessed on 19 December 2022

https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/07-
Konvolusi.pdf accessed on 19 December 2022

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2022

Ttd

I Gede Govindabhakta 13519139

https://github.com/Govindabhakta/pengcit-makalah
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/18-Pendeteksian-Tepi-Bagian1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/18-Pendeteksian-Tepi-Bagian1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/22-Segmentasi-Citra-Bagian1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/22-Segmentasi-Citra-Bagian1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/07-Konvolusi.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/07-Konvolusi.pdf

