
Fingerprint Verification using Image Processing

Naufal Alexander Suryasumirat / 13519135
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13519135@std.stei.itb.ac.id

Abstract—Fingerprint verification is a well-established
method of biometric identification that is widely used for security
purposes. In this paper, the author proposes an approach to
fingerprint verification using image processing techniques to
process the fingerprint image and extract unique features of
fingerprint images. The approach can be useful in a range of
fields, including access control, or forensic analysis.

Keywords—Fingerprint, biometrics, security, image processing,
access control;

I. INTRODUCTION

In this modern day and age, the topic of security has
become a more heated debate than ever before seen. Every
person has their own personal data they want to protect from
other people, for various reasons. The topic of security
involves many other domains or fields such as online security
or cyber security, telecommunication security or network
security, operations security, physical or environmental
security, and many other fields. One of the fields that have
been very well-researched and developed for many years is
biometrics or biometric security.

Biometrics are biological measurements of physical
characteristics that can be used directly to identify individuals.
Methods used to identify individuals with biometric
technology can vary, ranging from the standard methods that
most people already know such as fingerprint mappings, facial
recognition, and retina scans, to the lesser-known methods
such as the shape of a person's ear, the pattern of how a person
walks, and even the veins in a person's hand. All of these
methods have the same goal of identifying a person based on
their physical characteristics, on their physical body.

The well-known methods to identify someone based on
their biometrics mentioned above are so popular now in
everybody's lives, especially ones based on fingerprints, that it
would be very unusual if a person has a phone without a
fingerprint sensor function built-in. The technology used has
become so advanced that people start looking for
under-the-display fingerprint sensors on phones, a more
challenging feat than previously used technologies. People
also are starting to become very accustomed to biometrics
technology because of the convenience it provides. The
amount of time taken to unlock your phone using your
fingerprint, and the minute effort you use to put your finger on
the sensor to unlock your phone has become a necessity for
people.

Image 1. Under-display fingerprint sensor used in modern
phones.

Fingerprint recognition works by first learning the
characteristics of a person's fingerprint through feature
extraction and various image processing techniques. Then,
storing those characteristics, or in general, storing the
"fingerprints" of your fingerprint on the device itself or in a
remote server. The data stored would be encrypted for security
purposes before storing. Then, when a finger touches the
sensor on the device, it then would do the exact same process
to the fingerprint, except for the storing part. It would take the
characteristics of the fingerprint touching the sensor and try to
match it with the stored fingerprints.

As mentioned before, there are various image processing
techniques used in recognizing someone's fingerprint, mainly
scaling, filtering, segmenting, equalizing, and binarising just
to name a few for the pre-processing step of the process. There
is also a noise removal step in fingerprint recognition because
the image taken from the sensor would not always be ideal for
direct feature extraction. For feature extraction of the
fingerprint image, there are various algorithms used, focused
on morphological features of the fingerprint image.

Fingerprint recognition technology has become a necessity
for many people, which is all the more reason to understand
the underlying algorithm used to recognize a person's
fingerprint while making an attempt to improve it. The reasons
mentioned above are what's motivating this paper to be
written. The techniques used would be techniques related to
image processing, and the result would be an application to
identify a person's fingerprint. The results would then be
analyzed and evaluated to measure the performance of the
experiment done on the process of fingerprint recognition.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



II. THEORY

A. Digital Image
A digital image is a representation of a two-dimensional

image as a set of digital values or a representation of a
continuous image using sampling methods. This sampling can
be done in the context of space or space and time. If the
sampling is done in space only, the result would be a
two-dimensional still image, on the other hand, if it is also
done in space and time, it would be a digital video consisting
of multiple images called frames. A digital image is usually
rectangular in shape.

Commonly, there are two types of digital images, grayscale
images, and colored images. But, most digital images can be
represented with digital values of one or multiple
two-dimensional matrices. These matrices contain digital
values depending on the intensity value at a particular location
in the image. The digital values can represent the intensity of
the color or the gray level of a particular location in an image.

The digital values in a digital image, also commonly
known as pixels, are stored in a computer or other digital
device and can be processed and manipulated using image
processing algorithms or techniques. For grayscale images, a
pixel represents the gray level or intensity level of a particular
location in the image, whereas in colored images, commonly
RGB images, each pixel represents the intensity of the color it
represents, whether it be red, green, or blue. The combination
of these three main colors would make other colors such as
magenta, yellow, or other colors.

The pixel values or pixels of a digital image are typically
stored as integers or floating-point numbers, and the number
of bits used to represent each pixel value determines the color
depth or bit depth of the image. As an example, an 8-bit image
has a color depth of 8 bits per pixel and can represent up to
256 different colors, whereas a 24-bit image has a color depth
of 24 bits per pixel and can represent over 16 million colors.
In grayscale images, the bits per pixel would represent the
variance of gray level it could produce.

Image II.1. Pixel values of an 8-bit grayscale image

As can be seen in Image II.1, a grayscale image of Lena,
the representation of each pixel value is an integer with a
maximum of 255. The maximum value or intensity the image
could produce is determined by the depth of the image, which
in this case is an 8-bit image capable of producing 256
different intensities of a gray level value. In an 8-bit grayscale

image, a pixel value of 0 would output the location of the
image as black, whereas a pixel value of 255 would output the
location of the image as white. Values between white and
black in a grayscale image would represent different shades of
gray.

A special case of grayscale image would be a binary
image, being able to only represent white or black in an image,
which would be explained thoroughly later on. Grayscale
images could be converted to and from colored images using
image processing techniques. An advantage of having a
grayscale representation of a colored image would be in the
step of image processing. As grayscale images often simplify
the process of feature extraction while still maintaining the
quality of the features that would be extracted.

B. Image Histogram
Image histograms are a graphical representation of the

distribution of pixel intensity values in an image. For an 8-bit
image, the values would range from 0 or black to 255 or
white. An image histogram is a plot of the number of pixels in
an image for each intensity value. For plotting a grayscale
image, it would produce a single image histogram representing
the number of pixels for each gray level in the image. For a
colored image, the image histogram produced would be a plot
of color intensities for each color channel in an image,
commonly red, green, and blue.

Image histograms provide a quick and easy way to
visualize the overall intensity distribution of an image and can
be used to identify patterns in the image. It could also be
useful for identifying the overall tonal range and contrast of an
image. An image with high contrast would have a histogram
with a larger range of intensity values, whereas an image with
low contrast will have a histogram with a smaller range of
intensity values.

Image II.2. Image histogram of a low-contrast grayscale
image

Other than visualizing the intensity distribution of an
image, image histograms can be used to adjust the overall
contrast and tone of an image. Techniques such as histogram
equalization can be used to stretch the intensity range of an
image, making the overall image appear to have more contrast
because of the wider range of intensity values. Techniques
such as histogram matching can also be used to adjust the
contrast of an image to match a reference image.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



C. Image Enhancement
Image enhancement is the process of improving the

subjective visual quality of an image. Subjectivity is
mentioned because of the nature of image interpretation which
could be different depending on the observer. Enhancement of
an image could be done through a variety of techniques, such
as adjusting the contrast of an image, brightness, or color
balance of an image. Noise removal is also one of the
techniques in image enhancement which is used to reduce the
noise of an image for further processing that would otherwise
be badly affected by noise.

Depending on the domain of operations, whether it be
spatial or frequency, methods for image enhancement could be
categorized into spatial domain and frequency domain. Image
enhancement techniques in the spatial domain are done by
manipulating the pixels in a two-dimensional digital image
directly, whereas techniques in the frequency domain are done
by first converting the image into the frequency domain and
manipulating the results. Converting a spatial image into the
frequency domain is done through Discrete Cosine Transform
(DCT) or Fourier Transform (FT).

The goal of image enhancement is to improve the visual
quality of an image as previously mentioned, but sometimes
can be mistaken as image restoration which refers to the
process of repairing damaged or degraded images. The
techniques used in both processes are different depending on
the task or goal trying to be achieved.

Image II.3. Image enhancement of a low-contrast image

D. Histogram Equalization
Histogram equalization is one of the methods of enhancing

an image using the histogram of the image. The goal of
histogram equalization is to manipulate the pixel intensities in
an image to be uniformly distributed. There are variants of
histogram equalization, including the commonly used
histogram equalization and adaptive histogram equalization.

The first variant of histogram normalizations or the
normally used histogram equalization is a method of image
enhancement that adjusts the contrast of an image by
redistributing the pixel values. Histogram equalization is
based on the idea that the pixel values in an image should be
uniformly distributed across all available ranges of values. The
contrast of the image would be increased by applying this
method.

Histogram equalization is performed by first calculating
the histogram of the image, which is then converted into bins.
The next step is to calculate the cumulative histogram of the

image which is used to map the pixel values of the original
image to the new values which will result in a more uniformly
distributed histogram. Lastly, the pixel values of the original
image are replaced with the new values received from the
calculations.

Adaptive histogram equalization is an image enhancement
technique that is different from the normally used histogram
equalization. It differs by computing several histograms, with
each histogram corresponding to a section of the image, which
is then used to compute the new values for pixel intensities of
the image. It is designed to address the limitations of
traditional histogram equalization.

Adaptive histogram equalization is able to preserve the
global contrast of an image while still enhancing the local
contrast of distinct sections of said image. It is a particularly
useful technique for images with varying regions of contrast.
It also has many variants of implementations, one of which is
Contrast Limited Adaptive Histogram Equalization (CLAHE).
CLAHE takes care of over-amplification of the contrast and
operates on small regions in the image, or tiles.

Image II.4. Visualization of the Adaptive Histogram
Equalization process

E. Binary Image
Binary images are images that consist of only two intensity

levels, typically represented as 0 or black and 1 or white.
Binary images are used in many image processing techniques
such as image segmentation, object recognition, and pattern
recognition. It is particularly useful for images that have an
object of interest or foreground that is clearly distinct from the
background.

To generate a binary image, a threshold value is typically
chosen, and all pixels with intensity values greater than the
threshold are set to 1 or white, whereas all pixels with
intensity values below the threshold are set to 0 or black. The
process is often used to segment the foreground of an image
from the background of the image.

Image II.5. Binary representation of coins image

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



There are many methods to choose the threshold value for
an image to generate a binary image. One of the methods is
Otsu's method which is directly named after the inventor of
the method. As can be seen from Image II.5, the result of the
binarization of an image is only black or white. In the image, a
specific threshold value is chosen and the explained method is
applied using the specific threshold

F. Image Thinning
Image thinning is a binary image processing technique to

reduce regions of an image to its skeleton to approximate the
object's line. The goal of image thinning is to remove excess
or redundancy of the image and to take only the essence of the
image, while still preserving the quality of information for the
particular task being performed.

Image II.6. Result of using image thinning to obtain the
skeleton of a binary image

The result of the thinned image then could be used in the
step of pattern recognition or character recognition. The
thinning algorithm used must not shorten the skeleton of an
image and must preserve the pixels' relations and not
disconnect the object's line. Essentially, the algorithm must
preserve the topology and connectivity of the original object
or features.

The algorithms used in image thinning use iterative
processes to remove pixels from the objects in the image.
Image thinning is often used as a preprocessing step in image
analysis or recognition tasks and can simplify the processing
of an image by reducing the thickness of an object in the
image. It is used to make identifying and extracting an object's
unique characteristics easier.

G. Image Segmentation
Image segmentation is an image processing operation used

to partition a digital image into a collection of pixels in
relation to each other. The image is divided into regions,
usually separating the foreground image and the background
image. By segmenting the image into separate regions, the
produced image can be used to process only important parts of
the image rather than using the whole image.

The segmentation of an image is based on the brightness
intensity of an image, color, texture, or other aspects of an
image. Segmentation of an image could use one of those
aspects or a combination of multiple aspects of an image. This
operation is often used before doing image or object
recognition. There are several different approaches to image
segmentation, including thresholding, region-based,
edge-based, clustering, and deep learning.

The image segmentation approach using thresholding is a
simple technique that involves picking a threshold value for
pixel intensity and classifying all pixels above or below the
value as an object or foreground and the background. The
result of image segmentation using thresholding is a binary
image.

Image II.7. Image segmentation using thresholding on
fingerprint image

The method used to pick a threshold value is received
through histogram analysis and identifying the peak and valley
of the histogram. In Image II.7, it is shown that the optimal
threshold value is near 127 to completely separate the two
hills of the histogram, and the result of the thresholding is a
binary image that can be seen at the right part of the image. It
is seen that thresholding separates the fingerprint image from
the background, which can be used later for fingerprint
recognition.

Techniques used in thresholding are divided into three,
global thresholding, local thresholding, and adaptive
thresholding. One method of global thresholding is Otsu's
method, which is used to find the optimal value for the global
threshold. The goal of Otsu's method is to maximize the
variance between the foreground and the background. The
process of Otsu's method is as follows:

1. Calculate the histogram of an image.
2. Calculate the probability of each intensity level.
3. Calculate the mean intensity of the foreground and

background regions for every possible threshold
value.

4. Calculate the variance between the foreground and
background regions for each threshold value.

5. Choose the threshold that would maximize the
variance between the foreground and background
regions of the image.

H. Feature Extraction
Feature extraction is the process of identifying and

extracting important and unique features from an image. The
features can be used to further analyze or manipulate.There are
several different approaches for feature extraction, including
edge detection, corner detection, Scale-Invariant Feature
Transform (SIFT), Speeded-Up Robust Features (SURF), and
Histogram of Oriented Gradients (HOG).

SIFT is an algorithm used to detect and match local
features in an image. The algorithm first extracts SIFT
keypoints of objects in the image and individually compares
each feature of the reference image to a new image based on
the Euclidean Distance of the feature vectors. The feature

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



matching algorithm could also be done using Fast Library for
Approximate Nearest Neighbors (FLANN), which uses the
K-Nearest Neighbor (KNN) algorithm.

Image II.8. Keypoints generated by SIFT algorithm for
fingerprint matching

As can be seen in Image II.8, the key points generated by
SIFT algorithm are plotted on the thinned fingerprint image.
The key points would later then be used by the FLANN
matcher with a newly received fingerprint image.

III. IMPLEMENTATION

The fingerprint recognition algorithm used in this paper is
first done by preprocessing the image. The preprocessing of
the fingerprint image is first done by cropping the image to
remove unwanted artifacts of the fingerprint image that is
consistent throughout all the dataset [Number] used. The
cropped grayscale fingerprint image is then histogram
equalized using the CLAHE algorithm, an adaptive histogram
equalizing algorithm.

The equalized image is then binarized by picking a
threshold value using Otsu's method and separated into the
foreground and background. The foreground is the fingerprint
itself. The binary image is then thinned using the modified fast
thinning algorithm [Number], achieving a thinned image to
simplify the feature extraction process.

def imread(path: str) -> np.ndarray:
return cv.imread(path)[2:-4, 2:-4, 0]

def imequalize(img: np.ndarray) -> np.ndarray:
return cv.createCLAHE(clipLimit=2.0,

tileGridSize=(8,8)).apply(img)

def imbinarize(img: np.ndarray) -> np.ndarray:
_, img_bin = cv.threshold(img, 0, 255,

cv.THRESH_OTSU)
return img_bin

def fast_thin(img: np.ndarray) -> np.ndarray:
img = morphology(img)
img = clean_corners(img)
img = erase_two_by_twos(img)
img = erase_ladders(img)
return img

The thinned fingerprint image is then applied SIFT
algorithm to extract the key points and descriptors of the
fingerprint. The key points are then used to match with a new
fingerprint image received using the FLANN matching
algorithm.

def imkeypoints(img: np.ndarray,
keypoints: Tuple[cv.KeyPoint],
color: int=0xFF0000) -> np.ndarray:

return cv.drawKeypoints(img, keypoints,
outImage=None, color=color)

def match_fingerprint(ref: np.ndarray,
test: np.ndarray,
keyp_ref:

Tuple[cv.KeyPoint]=None, keyp_test:
Tuple[cv.KeyPoint]=None,

desc_ref: np.ndarray=None,
desc_test: np.ndarray=None,

thresh: float=0.90) ->
Tuple[bool, float, Optional[np.ndarray]]:
if keyp_ref is None or keyp_test is None:
keyp_ref, desc_ref = imextract(ref)
keyp_test, desc_test = imextract(test)

matches = cv.FlannBasedMatcher(dict(algorithm=1,
trees=10), dict())\

.knnMatch(desc_ref, desc_test, k=2)
match_points = [p for p, q in matches if p.distance

< q.distance * 0.1]
n_matchpoints = len(match_points)
n_keypoints = min(len(keyp_ref), len(keyp_test))
match_percentage = n_matchpoints / n_keypoints
bool_match = match_percentage >= thresh
match_img = gen_immatch(ref, test, keyp_ref,

keyp_test, match_points)
return bool_match, match_percentage, match_img

Image III.1. Preprocessing step of the image

Image III.2. Feature matching of a fingerprint with its
vertically-flipped image

As can be seen in Image III.2, the generated SIFT key
points are used to match with a new image. In this case, the
flipped version of the same fingerprint image. The algorithm
succeeds in matching the same fingerprint with a modified
image of the same fingerprint. The fingerprint matching
algorithm results in a percentage level of matched key points
between the two fingerprint images. A threshold is picked to
determine if the matching is successful or unsuccessful. In
most cases, a threshold value of 90 percent is used to match
two fingerprints.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023



IV. ANALYSIS

From the explanation of the implementation process above,
it is shown that the algorithm is successful in matching the
same fingerprints that are slightly transformed. The algorithm
also achieves 100% accuracy between all the datasets by
recognizing only the same fingerprint used as a reference. But,
the algorithm does not find the same success in the
heavily-altered fingerprint images in the dataset [Number].
The algorithm gives a very low confidence level when
matching with heavily-altered fingerprints, but gives a
satisfying confidence level for the lightly-altered fingerprints.

DATA_PATH = '../data/real/'
files = os.listdir(DATA_PATH)
verified = []
for file in files:
img_test = imread(DATA_PATH + file)
_, _, img_test_thin = improc(img_test)
keyp_test, desc_test = imextract(img_test_thin)
bool_match, percentage, img =

match_fingerprint(img_thin, img_test_thin, keyp,
keyp_test, desc, desc_test)

if bool_match: verified.append((file,
percentage*100, img))

print(f'Accuracy: {((len(files) + 1 - len(verified)) /
len(files) * 100):.2f}')

Accuracy: 100.00

Image IV.1. The algorithm recognizing the lightly-altered
fingerprint with 58% confidence

Image IV.2. The algorithm recognizing the heavily-altered
fingerprint with 1% confidence

V. CONCLUSION

Using image processing techniques including cropping,
adaptive histogram equalization, binarizing using Otsu's
method, and thinning algorithm [Number] to preprocess a
fingerprint image. Then applying the SIFT algorithm to extract
distinct or unique characteristics of the thinned fingerprint
image and matching with a new fingerprint image using a
FLANN-based matching algorithm produces satisfying results
for an ideal image and a lightly-altered image of a fingerprint.
But, for heavily-altered fingerprint images, the algorithm does
not produce a satisfactory result, only achieving a 1%
confidence level. While the algorithm is fast in recognizing
and identifying fingerprint images, the algorithm still has a lot
of vulnerabilities and still, has much room for improvement.
But, the algorithm might be a foundation for a better algorithm
for future implementations.

VIDEO LINK AT YOUTUBE

https://youtu.be/vk-QRwVh6SA

SOURCE CODE LINK

github.com/naufalsuryasumirat/if4073-makalah-13519135

ACKNOWLEDGMENT

The author would like to thank The One Almighty God.
While this paper is far from perfection and far from the
optimal quality of papers, the paper is written with the best
efforts possible from the author. This paper could not have
been written without the help of The One Almighty God, the
motivation from the author's family, friends, and the honorable
lecturer of Image Interpretation and Processing IF4073, Mr.
Rinaldi Munir. Many thanks to everyone who helped the
author directly or indirectly by motivating the author.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

https://youtu.be/vk-QRwVh6SA
https://github.com/naufalsuryasumirat/if4073-makalah-13519135


REFERENCES

[1] Sokoto Coventry Fingerprint Dataset (SOCOFing),
https://www.kaggle.com/datasets/ruizgara/socofing?datasetId=38300&so
rtBy=voteCount, accessed on December 15, 2022.

[2] Fast Thinning Algorithm for Fingerprint Library,
https://github.com/Schukuratsu/Python-cv2-fast-thinning-algorithm,
accessed on December 15, 2022.

[3] What is Biometrics? How is it Used in Security?
https://www.kaspersky.com/resource-center/definitions/biometrics,
accessed on December 17, 2022.

[4] Nilar H., Thet N. H. Image Processing Techniques for Fingerprint
Identification and Classification - A Review,
https://www.ijtsrd.com/papers/ijtsrd26761.pdf, accessed on December
17, 2022.

[5] CLAHE Histogram Equalization - OpenCV,
https://www.geeksforgeeks.org/clahe-histogram-eqalization-opencv/,
accessed on December 15, 2022.

[6] Feature Matching with FLANN documentation,
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html,
accessed on December 15, 2022.

[7] Rinaldi M. Pengantar Interpretasi dan Pengolahan Citra (Bagian 1).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/01-Peng
antar-Pengolahan-Citra-Bag1-2022.pdf, accessed on December 17, 2022.

[8] Rinaldi M. Pembentukan Citra dan Digitatlisasi Citra.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-Pem
bentukan-Citra-dan-Digitalisasi-Citra-2022.pdf, accessed on December
17, 2022.

[9] Rinaldi M. Histogram Citra.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/06-Imag
e-Histogram-2021.pdf, accessed on December 17, 2022.

[10] Rinaldi M. Image Enhancement.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/09-Imag
e-Enhancement-Bagian2-2022.pdf, accessed on December 17, 2022.

[11] Rinaldi M. Citra Biner.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra
-Biner-2021.pdf, accessed on December 17, 2022.

[12] Rinaldi M. Segmentasi Citra (Bagian 1).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra
-Biner-2021.pdf, accessed on December 17, 2022.

STATEMENT

I hereby declare that this paper is my original work, not an
adaptation or translation of someone else's paper, and not a
result of plagiarism.

Bandung, 17 December 2022

Naufal Alexander Suryasumriat
13519135

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2022/2023

https://www.kaggle.com/datasets/ruizgara/socofing?datasetId=38300&sortBy=voteCount
https://www.kaggle.com/datasets/ruizgara/socofing?datasetId=38300&sortBy=voteCount
https://github.com/Schukuratsu/Python-cv2-fast-thinning-algorithm
https://www.kaspersky.com/resource-center/definitions/biometrics
https://www.ijtsrd.com/papers/ijtsrd26761.pdf
https://www.geeksforgeeks.org/clahe-histogram-eqalization-opencv/
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/01-Pengantar-Pengolahan-Citra-Bag1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/01-Pengantar-Pengolahan-Citra-Bag1-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-Pembentukan-Citra-dan-Digitalisasi-Citra-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-Pembentukan-Citra-dan-Digitalisasi-Citra-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/06-Image-Histogram-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2020-2021/06-Image-Histogram-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/09-Image-Enhancement-Bagian2-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/09-Image-Enhancement-Bagian2-2022.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra-Biner-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra-Biner-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra-Biner-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2021-2022/20-Citra-Biner-2021.pdf

