# 26 - Image Warping dan Image Morphing

Bahan Kuliah IF4073 Interpretasi dan Pengolahan Citra

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB

# SUMBER (REFERENSI):

- 1. Alexei Efros, *Image Warping, 15-463: Computational Photography*, CMU, Fall 2008
- 2. Connelly Barnes, Image Warping / Morphing, Computational Photography.
- 3. Yao Wang, *EL512 Image Processing, Geometric Transformations: Warping, Registration, Morphing*, Polytchnic University, Brooklyn

# Image Warping



http://www.jeffrey-martin.com

15-463: Computational Photography Alexei Efros, CMU, Fall 2008

Some slides from Steve Seitz

# Image Warping / Morphing



[Wolberg 1996, Recent Advances in Image Morphing]

# Computational Photography Connelly Barnes

Some slides from Fredo Durand, Bill Freeman, James Hays

# EL512 --- Image Processing

### Geometric Transformations: Warping, Registration, Morphing

Yao Wang Polytechnic University, Brooklyn, NY 11201

With contribution from Zhu Liu, Onur Guleryuz, and Partly based on A. K. Jain, Fundamentals of Digital Image Processing

## What is Geometric Transformation?

- So far, the image processing operations we have discussed modify the color values of pixels in a given image
- With geometric transformation, we modify the positions of pixels in a image, but keep their colors unchanged
  - To create special effects
  - To register two images taken of the same scene at different times
  - To morph one image to another

# **Image Transformations**

image filtering: change *range* of image g(x) = T(f(x))

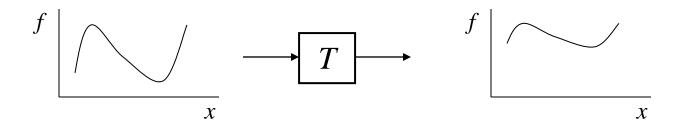


image warping: change *domain* of image

$$g(x) = f(T(x))$$

$$f \longrightarrow T \longrightarrow f \longrightarrow x$$

7

# Image Transformations

image filtering: change *range* of image

$$g(x) = T(f(x))$$

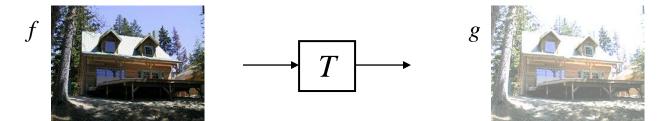


image warping: change *domain* of image

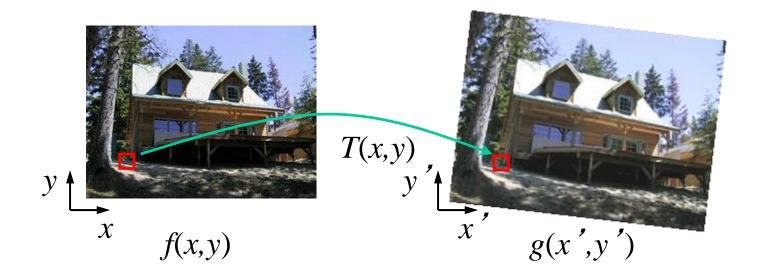


$$g(x) = f(T(x))$$

$$\rightarrow T$$



# Image Warping



Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

# Parametric (global) warping

Examples of parametric warps:



translation



rotation



aspect



affine

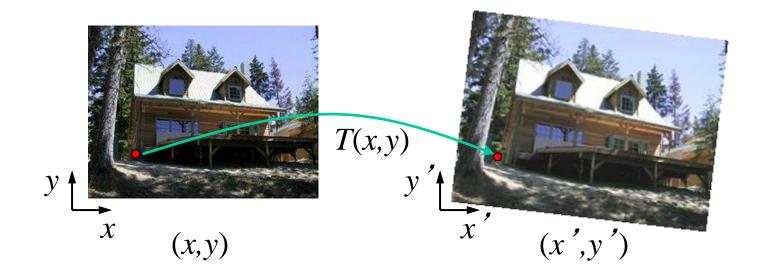


perspective



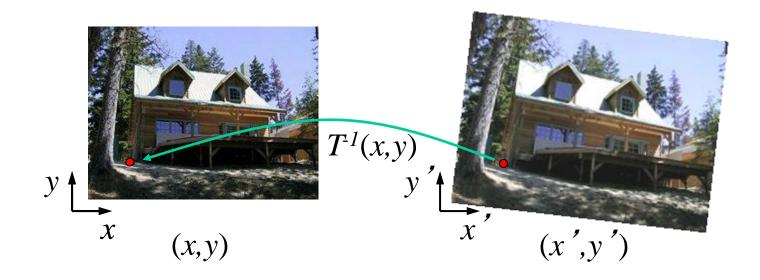
cylindrical

# Forward warping



Send each pixel (*x*,*y*) to its corresponding location (x',y') = T(x,y) in the second image

### Inverse warping



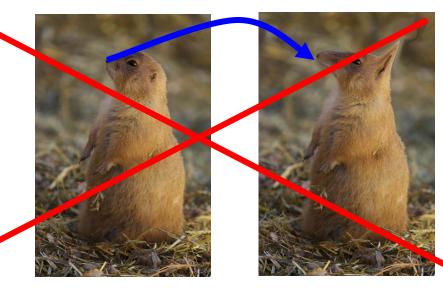
Get each pixel color g(x',y') from its corresponding location

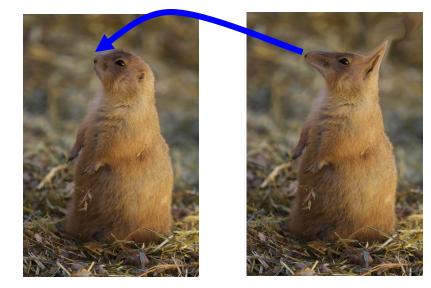
 $(x,y) = T^{-1}(x',y')$  in the first image

# Applying a warp: use inverse

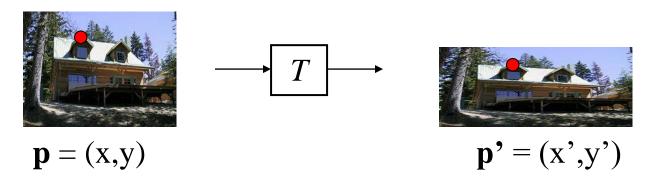
#### Forward warp:

- For each pixel in **input** image
  - Paste color to warped location in output
- Problem: gaps
- Inverse warp
  - For each pixel in output image
    - Lookup color from inversewarped location





# Parametric (global) warping

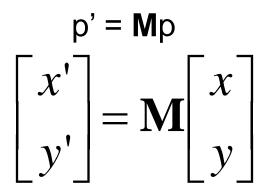


Transformation T is a coordinate-changing machine:

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent *T* as a matrix:



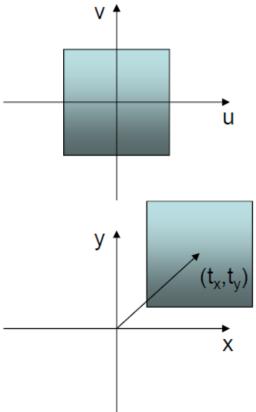
# **Translation**

 Translation is defined by the following mapping functions:

$$\begin{cases} x = u + t_x & u = x - t_x \\ y = v + t_y & and \\ v = y - t_y \end{cases}$$

In matrix notation

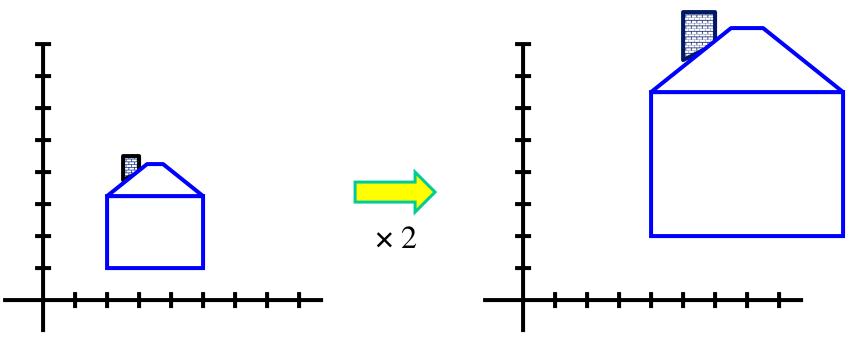
$$\mathbf{x} = \mathbf{u} + \mathbf{t}, \quad \mathbf{u} = \mathbf{x} - \mathbf{t}$$
where
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$



# Scaling

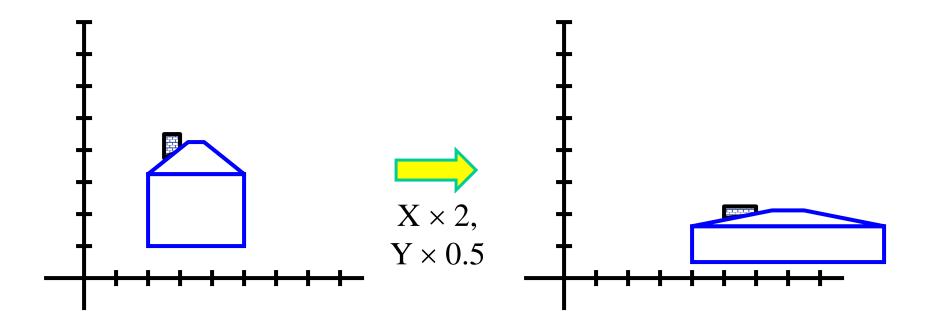
# Scaling a coordinate means multiplying each of its components by a scalar

*Uniform scaling* means this scalar is the same for all components:



# Scaling

*Non-uniform scaling*: different scalars per component:

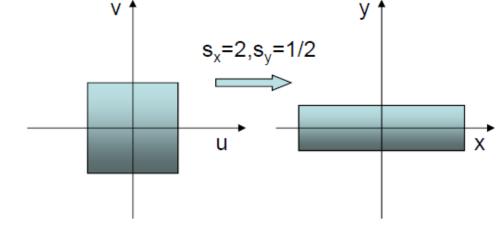


# Scaling

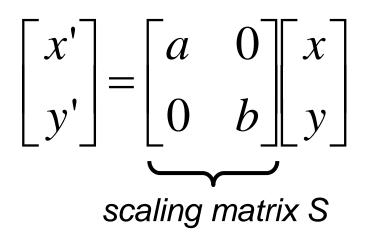
Scaling is defined by

$$\begin{cases} x = s_x u \\ y = s_y v \end{cases} and \begin{cases} u = x / s_x \\ v = y / s_y \end{cases}$$

• Matrix notation  $\mathbf{x} = \mathbf{S}\mathbf{u}, \quad \mathbf{u} = \mathbf{S}^{-1}\mathbf{x}$ where  $\mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$ 



 If s<sub>x</sub> < 1 and s<sub>y</sub> < 1, this represents a minification or shrinking, if s<sub>x</sub> >1 and s<sub>y</sub> > 1, it represents a magnification or zoom. Scaling operation: x' = axy' = byOr, in matrix form:

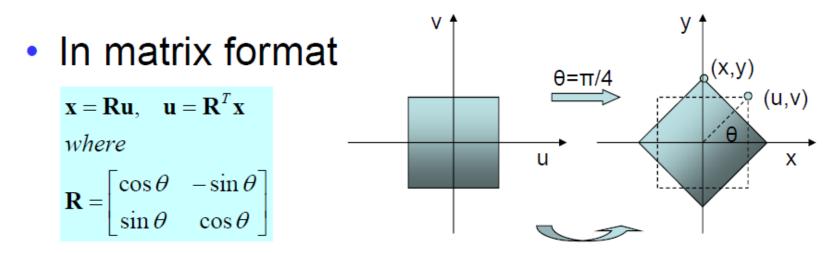


#### What's inverse of S?

# Rotation

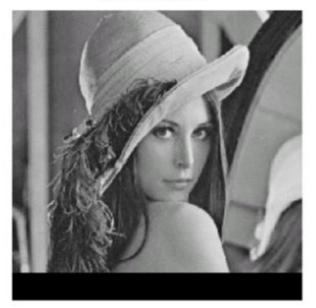
Rotation by an angle of θ is defined by

 $\begin{cases} x = u\cos\theta - v\sin\theta\\ y = u\sin\theta + v\cos\theta \end{cases} and \begin{cases} u = x\cos\theta + y\sin\theta\\ v = -x\sin\theta + y\cos\theta \end{cases}$ 



R is a unitary matrix: R<sup>-1</sup>=R<sup>T</sup>

B translation



B rotation



Translation:  $\begin{aligned} x(k,l) &= k + 50; y(k,l) = l; \\ \text{Rotation:} \quad x(k,l) &= (k-x_0)cos(\theta) + (l-y_0)sin(\theta) + x_0; \\ y(k,l) &= -(k-x_0)sin(\theta) + (l-y_0)cos(\theta) + y_0; \end{aligned}$ 

 $x_0 = y_0 = 256.5$  the center of the image  $\mathbf{A}, \ \theta = \pi/6$ 

By Onur Guleyuz

Geometric Transformation

EL512 Image Processing

What types of transformations can be represented with a 2x2 matrix?

### 2D Identity?

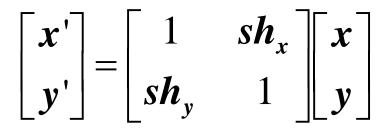
$$\begin{array}{c} x' = x \\ y' = y \end{array} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?  $x' = s_x * x$   $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ 

What types of transformations can be represented with a 2x2 matrix?

# 2D Rotate around (0,0)? $\begin{array}{l} x' = \cos \Theta * x - \sin \Theta * y \\ y' = \sin \Theta * x + \cos \Theta * y \end{array} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

2D Shear?  $x' = x + sh_x * y$  $y' = sh_y * x + y$ 



What types of transformations can be represented with a 2x2 matrix?

### 2D Mirror about Y axis?

$$\begin{array}{c} x' = -x \\ y' = y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

### 2D Mirror over (0,0)?

$$\begin{array}{c} x' = -x \\ y' = -y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
  
 $y' = y + t_y$  NO!

Only linear 2D transformations can be represented with a 2x2 matrix

# All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

| $\begin{bmatrix} x' \end{bmatrix}$ | <br>a | b | $\begin{bmatrix} x \end{bmatrix}$ |
|------------------------------------|-------|---|-----------------------------------|
| _y'_                               | C     | d | _ <b>y</b> _                      |

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

### **Geometric Transformation**

A geometric transformation refers to a combination of translation, scaling, and rotation, with a general form of
 x = RS(u + t) = Au + b,

$$\mathbf{u} = \mathbf{A}^{-1}(\mathbf{x} - \mathbf{b}) = \mathbf{A}^{-1}\mathbf{x} + \mathbf{c},$$

with 
$$\mathbf{A} = \mathbf{RS}$$
,  $\mathbf{b} = \mathbf{RSt}$ ,  $\mathbf{c} = -\mathbf{t}$ .

 Note that interchanging the order of operations will lead to different results.

## **Affine Mapping**

 All possible geometric transformations are special cases of the Affine Mapping:

$$\begin{cases} x = a_0 + a_1 u + a_2 v \\ y = b_0 + b_1 u + b_2 v \end{cases} \quad \text{or} \quad \mathbf{x} = \mathbf{A}\mathbf{u} + \mathbf{b}$$
$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$

 When A is a orthonormal matrix, it corresponds to a rotation matrix, and the corresponding affine mapping reduces to a geometric mapping.

### **Matlab Functions**

- T = MAKETFORM('affine',U,X) builds a TFORM struct for a
- two-dimensional affine transformation that maps each row of U
- to the corresponding row of X. U and X are each 3-by-2 and
- define the corners of input and output triangles. The corners
- may not be collinear.
- Example
- ------
- Create an affine transformation that maps the triangle with vertices
- (0,0), (6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10),
- (4,4):
- •
- u = [ 0 6 -2]';
- v = [ 0 3 5]';
- x = [-1 0 4]';
- y = [-1 -10 4]';
- tform = maketform('affine',[u v],[x y]);

 G = MAKETFORM('affine',T) builds a TFORM struct G for an Ndimensional affine transformation. T defines a forward transformation such that TFORMFWD(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X such that X = U \* T(1:N,1:N) + T(N+1,1:N).T has both forward and inverse transformations. N=2 for 2D image transformation

In MATLAB notation  

$$T = \begin{bmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ a_0 & b_0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A}^T & 0 \\ \mathbf{b}^T & 1 \end{bmatrix}$$

- B = IMTRANSFORM(A, TFORM, INTERP) transforms the image A according to the 2-D spatial transformation defined by TFORMB; INTERP specifies the interpolation filter
- Example 1
- ------
- Apply a horizontal shear to an intensity image.
- •
- I = imread('cameraman.tif');
- tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
- J = imtransform(I,tform);
- figure, imshow(I), figure, imshow(J)
- Show in class

### **Horizontal Shear Example**





tform = maketform('affine', $[1 \ 0 \ 0; .5 \ 1 \ 0; 0 \ 0 \ 1]$ ); In MATLAB, 'affine' transform is defined by: [a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note

$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note in this example, first coordinate indicates horizontal position, second coordinate indicate vertic

# **MATLAB** function for image warping

- B = IMTRANSFORM(A, TFORM, INTERP) transforms the image A according to the 2-D spatial transformation defined by TFORM
- INTERP specifies the interpolation filter
- Example 1
- ------
- Apply a horizontal shear to an intensity image.
- •
- I = imread('cameraman.tif');
- tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
- J = imtransform(I,tform);
- figure, imshow(I), figure, imshow(J)

### **Horizontal Shear Example**





tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]); In MATLAB, 'affine' transform is defined by: [a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note

$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note in this example, x, u indicates vertical position, y, v indicate horizontal position

# Example of Image Warping (1)

WAVE1



WAVE2



wave1:x(u,v)=u+20sin( $2\pi v/128$ );y(u,v)=v; wave2:x(u,v)=u+20sin( $2\pi u/30$ );y(u,v)=v.

By Onur Guleyuz

# **Example of Image Warping (2)**

WARP



SWIRL



WARP 
$$x(u,v) = sign(u - x_0)^* (u - x_0)^2 / x_0 + x_0; y(u,v) = v$$
  
SWIRL 
$$x(u,v) = (u - x_0) \cos(\theta) + (v - y_0) \sin(\theta) + x_0;$$
  

$$y(u,v) = -(u - x_0) \sin(\theta) + (v - y_0) \cos(\theta) + y_0;$$
  

$$r = ((u - x_0)^2 + (v - y_0)^2)^{1/2}, \theta = \pi r / 512.$$

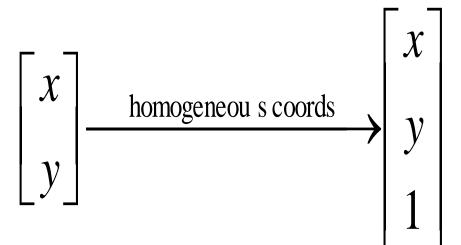
By Onur Guleyuz

# Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

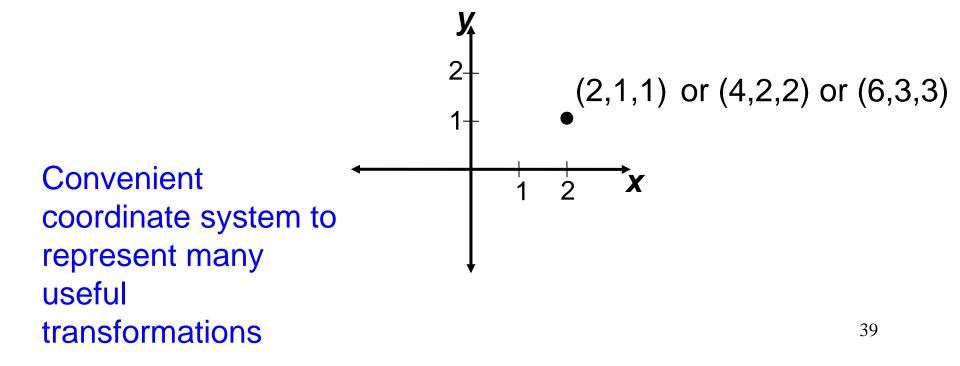
#### Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector



Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed



# Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

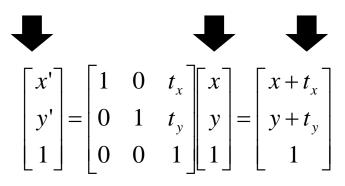
A: Using the rightmost column:

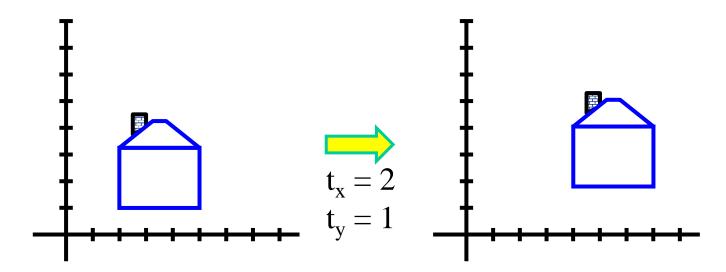
$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & \boldsymbol{t}_{x} \\ 0 & 1 & \boldsymbol{t}_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

#### Translation

#### Example of translation

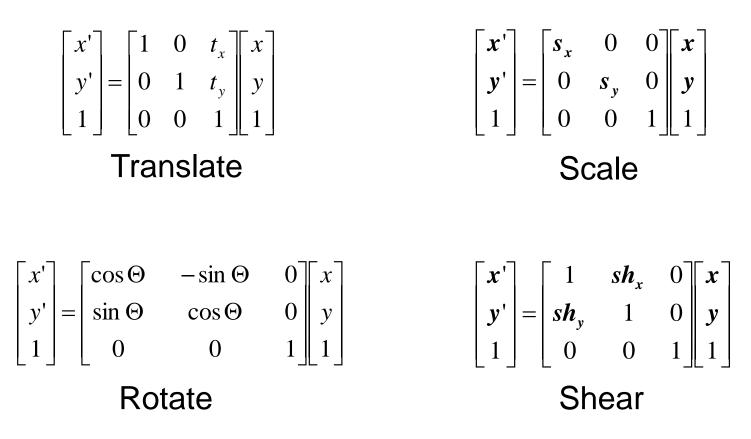
#### Homogeneous Coordinates





## **Basic 2D Transformations**

Basic 2D transformations as 3x3 matrices



## Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \left( \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$$
$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

## Affine Transformations

- Translations

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis •

Will the last coordinate w always be 1?

Affine transformations are combinations of ...  $\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$ 

# **Projective Transformations**

Projective transformations ...

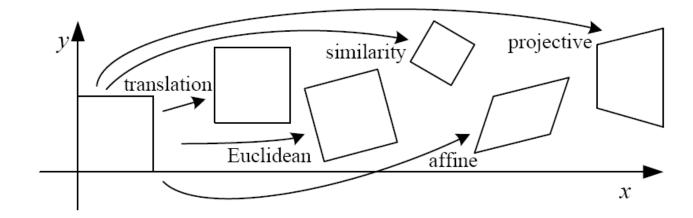
- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis

 $\begin{vmatrix} x' \\ y' \\ w' \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$ 

## 2D image transformations



| Name              | Matrix                                                                         | # D.O.F. | Preserves: | Icon       |
|-------------------|--------------------------------------------------------------------------------|----------|------------|------------|
| translation       | $igg[ egin{array}{c c c c c c c c c c c c c c c c c c c $                      |          |            |            |
| rigid (Euclidean) | $\left[ egin{array}{c c c c c c c c c c c c c c c c c c c $                    |          |            | $\bigcirc$ |
| similarity        | $\left[ \begin{array}{c c} s oldsymbol{R} & t \end{array} \right]_{2 	imes 3}$ | -        |            | $\bigcirc$ |
| affine            | $\left[egin{array}{c}ella{}\ A\end{array} ight]_{2	imes 3}$                    |          |            |            |
| projective        | $\left[ egin{array}{c} 	ilde{H} \end{array}  ight]_{3	imes 3}$                 |          |            |            |

These transformations are a nested set of groups

Closed under composition and inverse is a member

#### **Image Morphing**

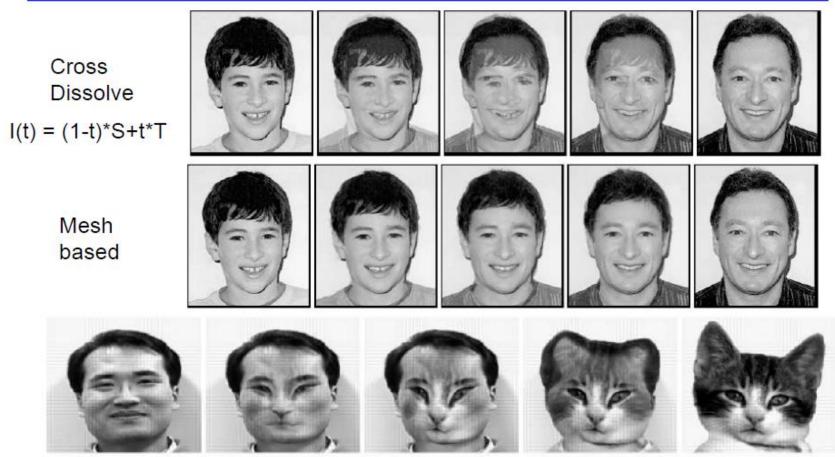
- Image morphing has been widely used in movies and commercials to create special visual effects. For example, changing a beauty gradually into a monster.
- The fundamental techniques behind image morphing is image warping.
- Let the original image be f(u) and the final image be g(x). In image warping, we create g(x) from f(u) by changing its shape. In image morphing, we use a combination of both f(u) and g(x) to create a series of intermediate images.







# **Examples of Image Morphing**



George Wolberg, "Recent Advances in Image Morphing", Computer Graphics Intl. '96, Pohang, Korea, June 1996.

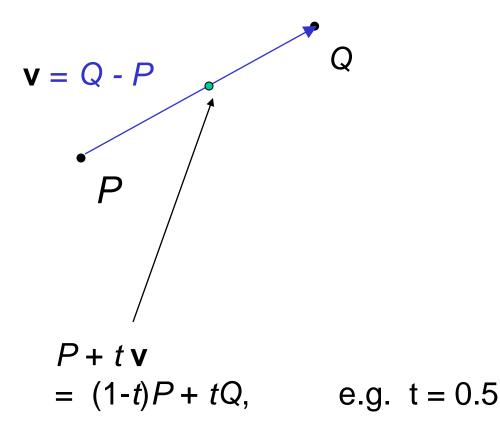
## **Image Morphing Method**

- Suppose the mapping function between the two end images is given as x=u+d(u). d(u) is the displacement between corresponding points in these two images.
- In image morphing, we create a series of images, starting with f(u) at k=0, and ending at g(x) at k=K. The intermediate images are a linear combination of the two end images:

 $h_k(\mathbf{u} + s_k \mathbf{d}) = (1 - s_k) f(\mathbf{u}) + s_k g(\mathbf{u} + \mathbf{d}(\mathbf{u})), \quad k = 0, 1, ..., K,$ where  $s_k = k / K$ .

#### Linear Interpolation

How can we linearly transition between point *P* and point *Q*?



P and Q can be anything:

- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)... etc.

#### Idea #1: Cross-Dissolve



Interpolate whole images:  $Image_{halfway} = (1-t)*Image_1 + t*image_2$ This is called **cross-dissolve** in film industry

But what if the images are not aligned?

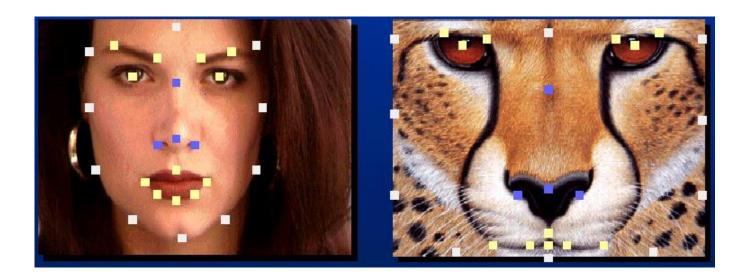
#### Idea #2: Align, then cross-disolve



Align first, then cross-dissolve

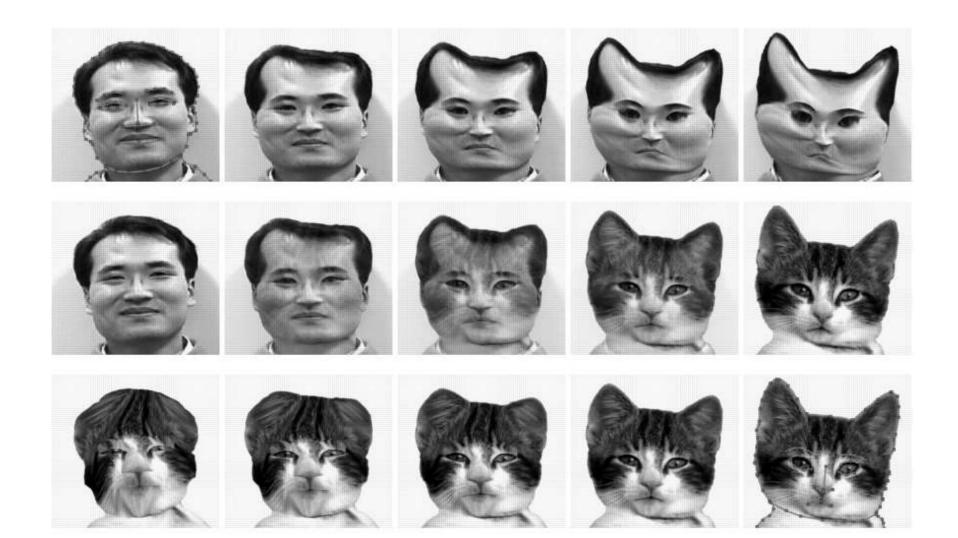
• Alignment using global warp – picture still valid





B

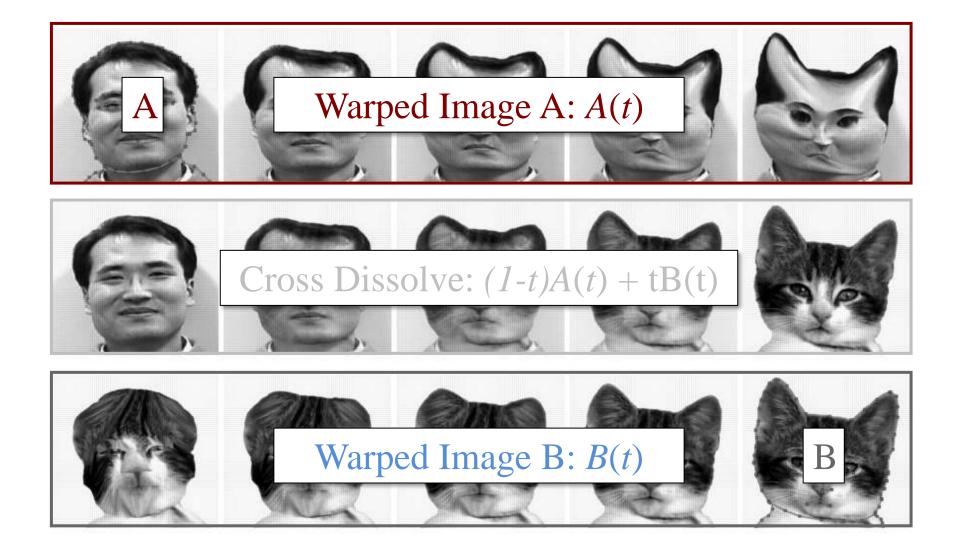
- What if there is no simple global function that aligns two images?
- User specifies corresponding feature points
- Construct warp animations A -> B and B -> A
- Cross dissolve these



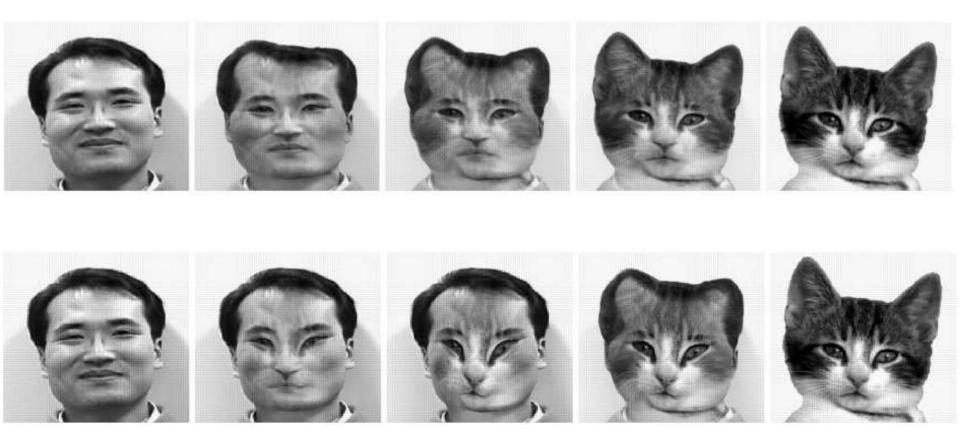




- 1. Find warping fields from user constraints (points or lines): Warp field  $T_{AB}(x, y)$  that maps A pixel to B pixel Warp field  $T_{BA}(x, y)$  that maps B pixel to A pixel
- 2. Make video A(t) that warps A over time to the shape of B Start warp field at identity and linearly interpolate to  $T_{BA}$ Construct video B(t) that warps B over time to shape of A
- 3. Cross dissolve these two videos.



#### Catman!



Illustrates general principle in graphics:

- First register, then blend
- Avoids ghosting

Michael Jackson - Black or White