
Sudoku Puzzle Recognition using OpenCV Library

Taufikurrahman Anwar
Informatics Engineering, Bandung Institute of Technology

13517074@std.stei.itb.ac.id

Abstract—Sudoku is a well-known and loved puzzle by all
ages, often appearing in daily newspapers. 'Sudoku' is a popular
Japanese puzzle game that trains our logical mind. The word
Sudoku means ‘the digits must remain single’. While this puzzle
is really amusing to solve, humans can only do so much compared
to the processing speed of a computer. Using the OpenCV
Library, we can detect a Sudoku Puzzle, take that puzzle,
recognize the numbers on the puzzle, and recreate it as a digital
copy of the puzzle.

Keywords—Sudoku, OpenCV, Detect, Recognize, Python.

I. BACKGROUND

Sudoku is a puzzle game created around the 19th century,
is a logic-based, combinatorial number-placement puzzle. The
objective is to fill a 9×9 grid with digits so that each column,
each row, and each of the nine 3×3 subgrids that compose the
grid (also called "boxes", "blocks", or "regions") contain all of
the digits from 1 to 9. The puzzle setter provides a partially
completed grid, which for a well-posed puzzle has a single
solution.

Sudoku was only published in the newspaper due to the
difficulty to create these puzzles, until Wayne Gould, a retired
Judge from Hong Kong created a computer program to mass
produce these puzzles for the world to enjoy. To this day, there
are still plenty of newspapers that publish sudoku puzzles in
their newspapers, but we want the convenience of having
those puzzles saved as a digital copy to be solved later without
having to bring the newspaper and a pen/pencil everywhere
we go.

Even though there’s already plenty of media that provides
these sudoku puzzles digitally, this project was made for
learning on how Image Processing and Computer Vision can
be made useful on everyday things. Hence this project will
mostly talk about the Computer Vision and Image Processing
methods and technology to discern a sudoku puzzle from a
picture of a newspaper page and turn it into a digital version of
the same puzzle.

II. PYTHON

Python is a general purpose programming language.
Python's main design point is to emphasize code readability
and simplicity that helps to maintain small and large scale
projects.

Python comes with plenty of useful libraries and modules,
even if the library that we need is not included on the main
python package, it is very likely that it is available on the
internet and can be very easily installed to the machine.

In this project we will be using Python as the main
programming language we use. The main reason for using
python is that there are a lot of available libraries that can be
used for our purposes. Python is also very easy to read and
lately has been a very popular language for anyone learning
programming to use.

III. OPENCV
OpenCV is the abbreviation for Open Source Computer

Vision is a library of programming functions mainly used for
real time computer vision.

OpenCV-Python is a wrapper from the original C/C++
OpenCV library, so it’s just as fast as it’s on C/C++ and it’s
also easy to use and read since we are programming in Python.

This library will be the main focus of this project, it will be
used to read the image from our machine, prepare our image
for processing, extract the sudoku grid from the newspaper
picture, and to extract the number from each cell on the puzzle
grid. In this project the OpenCV used is OpenCV version
4.5.2.52

IV. TENSORFLOW

TensorFlow is a free and open-source software library for
machine learning. It can be used across a range of tasks but
has a particular focus on training and inference of deep neural
networks.

Included in this machine learning library is a module
named Keras. Keras is a deep learning API written in Python,
running on top of the machine learning platform TensorFlow.
It was developed with a focus on enabling fast
experimentation.

This library will be used for developing a model for
recognizing the numbers on the puzzle and figuring out what
numbers are actually written on the paper. The Tensorflow
used on this project is Tensorflow 2.5.0.

V. MNIST DATABASE

The MNIST database (Modified National Institute of
Standards and Technology database) is a large database of
handwritten digits that is commonly used for training various
image processing systems.

The MNIST database contains 60,000 training images and
10,000 testing images. Half of the training set and half of the
test set were taken from NIST's training dataset, while the
other half of the training set and the other half of the test set
were taken from NIST's testing dataset.

Fig. 1 MNIST Database sample image

The MNIST database is used on this project to train our
Machine Learning model to recognize the numbers shown on
the puzzle.

VI. METHODS

In general, there are a few problems we need to solve to
make this project work.

A. Image Preprocessing

The first problem we have to tackle is to prepare our image
so that we can focus on the important things. There are a few
things we need to do to prepare our image, from denoising,
converting to grayscale image, and converting to binary
image.

a). Image Denoising

To do this task, we need to Blur the image using
gaussian blur to reduce noise obtained in the
thresholding algorithm (adaptive thresholding). When
we blur an image, we make the color transition from
one side of an edge in the image to another smooth
rather than sudden. The effect is to average out rapid
changes in pixel intensity. The blur, or smoothing, of
an image removes “outlier” pixels that may be noise
in the image.

Fig. 1 Sample image before and after denoising

As we can see the image on the right has slightly
more smooth and connected lines which will help
recognizing the line as one connected line.

b). Converting to Grayscale Image

To do this task, all we have to do is to use the
Convert Color function included in the OpenCV
library. As we only have interest in the puzzle which
is only about the position and the numbers on them,
we have no interest in the color of the image, of
course we can still process it as a colored picture, but
it will take more time and memory to do.

Fig. 2 Original image

Fig. 3 Original image after converted to grayscale

c). Converting to Binary Image

Here, the matter is straight-forward. For every pixel,
the same threshold value is applied. If the pixel value
is smaller than the threshold, it is set to 0, otherwise it
is set to a maximum value which practically converts
our image from grayscale to Binary as it only has 2

possible values for each pixel. The function
cv.threshold is used to apply the thresholding.

On this project we will use the Adaptive Gaussian
Thresholding as our Thresholding algorithm

Fig. 4 Sample image with a few of thresholding
algorithm

B. Grid Extraction

We will tackle this problem by using the function
findContours() and figuring out which out of all the found
contours is our puzzle grid. The function findContours()
will give us every shape that’s on the screen and we will find
external contours and then sort by area in descending order.
Thus, the largest polygon is stored in contours[0].

Fig. 5 Result given by the findContours() function is
marked with the blue lines

After knowing where the grid is, we can crop out all the
other elements on the picture as we have no interest in those

whatsoever. So, the next thing we will do is to crop out all
other elements beside the grid and warp the grid to be a
straight rectangle filling the whole image.

In order to crop the image, we need to know the
dimensions of the sudoku. Although sudoku is a square and
has equal dimensions, in order to ensure that we don't crop any
part of the image we will calculate the height and width. We
also need to construct dimensions for the cropped image.
Since the index starts from 0, we start from the points are (0,
0) , (width-1,0) ,(width-1, height-1), and (0, height-1). We will
then get the grid and warp the image.

Fig. 6 Code used to measure the grid and warp the image

Fig. 7 Sample Image after cropped and warped

C. Cell Extraction

As we all know, the playing grid consists of smaller boxes
which house the numbers we need. We will need to
differentiate for each of the cells to properly place the number
in the correct order.

Since we know that the playing grid consists of 9x9
smaller boxes, we can estimate the size of the smaller box as
the size of the large rectangle divided by 9. This is really
helpful as our picture only consists of the puzzle grid and even
though it does not always form a square we can always know
that the cells would have equal width and height all along the
board.

Thus we can know the position of the box corresponding to
it’s index by the offset to the image origin point.

Fig. 8 Each of the cells have uniform height and width

Fig. 9 A few cell after the grid divided into 81 equal parts

D. Character Recognition

For the Character recognition we have two major tasks to
do. First, we will have to prepare and train the machine
learning model to accurately predict the number seen on the
puzzle. Second, we will have to prepare our numbers to match
the model so it can be properly processed and predicted.

a). For the machine learning model, we use the MNIST
database as our dataset,

Fig. 5 Codes used to load the MNIST database

Then we need to train the model and then write the
model to a file so we won't have to do the training for
each time we run the code.

Fig. 5 Codes used to train and write the machine
learning model

Based on the test data provided by the MNIST
database, our model is at a very high accuracy level,
scoring higher than 0.98 on every test batch.

Fig. 6 Trained model accuracy values

b). To match our machine learning model, which accepts
28x28 pixels binary images, we will have to resize
each of our cell images to fit the model to be later
processed.

While cropping the image into a 28x28 pixels image
is easy enough, we want to only crop the unnecessary
part of the image and not the number itself, to do that
we need to know the location of our number inside
the cell as it is our Region of Interest and if no
number found inside the image we can skip those
image as we can assume those cells to be empty.

Fig. 5 Codes used to determine the Region of
Interest (ROI)

Fig. 5 Sample case when the grid lines is also
detected on the image

By using the code shown before, we can determine
which of the found contours meets our interest, in this
case we simply take the contour which has the most
area as it is most likely to be the number we were
looking for compared to the gridlines or even the
noise dots.

Fig. 5 Few sample cell image after cropped and
resized

E. Writing the grid into a 2D array

The last thing we need to do is to write the numbers we get
to a 2 Dimensional Array to represent the sudoku puzzle and
print it out to the screen as our output.

To do this we simply iterate through our initial grid which
is filled with zeros as a default value, and if on a specific
index we know there is a number from the character
recognition before, we will write what the model predicted
what the number would be.

Fig. 5 Codes used to load the model and predict the selected
number

After we iterate through the whole grid all that is left to do is
to print out the result on the terminal.

Fig. 5 Original image

Fig. 5 The output of the system on the sample image

VII. ANALYSIS

In this part we will show how the image recognition project
performs on a few different sample pictures.

Fig. 5 Sample image 1

Fig. 5 System’s output for Sample image 1

Fig. 5 Sample image 2

Fig. 5 System’s output for Sample image 2

Fig. 5 Sample image 3

Fig. 5 System’s output for Sample image 3

As we can see, the system is pretty accurate on determining
which cell has a number on them and separating the sudoku
grid from the rest of the image, but it is still very inaccurate on
determining the numbers inside each cell..

VIII. Conclusion
Based on implementation, and testing. We can conclude

that the system works quite well on determining where
everything is, but the flaws lie on the machine learning model
used on this project as it struggles to differentiate between ‘1’
and ‘7’, ‘5’ and ‘6’, ‘8’ and ‘9’.

The flaw probably comes from the dataset used, as it is a
dataset of human handwritings and not perfectly suited to
recognize uniform and robotic fonts used on newspapers.

On the other hand, OpenCV and TensorFlow are really
easy to use and to understand but the skill ceiling is still way
above our current skill point, as perhaps there are still a lot of
improvements to do on the computer vision side as well, as we
still face a lot of noise on the images, the image is not properly
cropped, and the likes.

Overall, while our purpose in the making of this project is
for our personal learning, this project is really entertaining and
challenging. This project makes us think more on how can
computer vision be more useful for our daily lives and how
amazing the current technology actually is.

REFERENCES

[1] "Welcome to OpenCV-Python Tutorials’s documentation! —
OpenCV-Python Tutorials 1 documentation",
Opencv-python-tutroals.readthedocs.io, 2020. [Online]. Available:
https://opencv-python-tutroals.readthedocs.io/en/latest/. [Accessed: 23-
Mar- 2020].

[2] "Image Processing with Python Blurring images", datacarpentry.org,
2021. [Online]. Available:
https://datacarpentry.org/image-processing/06-blurring/ [Accessed: 24-
Mar- 2021].

[3] Abbott, P. (Ed.). "In and Out: In-Flight Puzzle." Mathematica J. 9,
528-531, 2005.

[4] Boyer, C. "Sudoku's French Ancestors." Pour la Science. June 2006.

