
20 - Image Warping

dan Image Morphing
Bahan Kuliah IF4073 Interpretasi dan Pengolahan Citra

1

SUMBER (REFERENSI):

1. Alexei Efros, Image Warping, 15-463: Computational

Photography, CMU, Fall 2008

2. Connelly Barnes, Image Warping / Morphing,

Computational Photography.

3. Yao Wang, EL512 Image Processing, Geometric

Transformations: Warping, Registration, Morphing,

Polytchnic University, Brooklyn

2

Image Warping

15-463: Computational Photography

Alexei Efros, CMU, Fall 2008
Some slides from Steve Seitz

http://www.jeffrey-martin.com

3

http://www.jeffrey-martin.com/

Image Warping / Morphing

Computational Photography

Connelly Barnes

[Wolberg 1996, Recent Advances in Image Morphing]

Some slides from Fredo Durand, Bill Freeman, James Hays

5

6

Image Transformations

image filtering: change range of image

g(x) = T(f(x))

f

x

T

f

x

f

x

T

f

x

image warping: change domain of image

g(x) = f(T(x))

7

Image Transformations

T

T

f

f g

g

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))

8

Image Warping

Given a coordinate transform (x’,y’) = T(x,y) and a

source image f(x,y), how do we compute a

transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

10

(x,y) (x’,y’)

Forward warping

Send each pixel (x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’

(x,y) (x’,y’)x

y

Inverse warping

Get each pixel color g(x’,y’) from its corresponding

location

(x,y) = T-1(x’,y’) in the first image

x x’

y’
T-1(x,y)

Applying a warp: use inverse
Forward warp:

• For each pixel in input image

– Paste color to warped location in

output

• Problem: gaps

Inverse warp

• For each pixel in output image

– Lookup color from inverse-

warped location

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
M

'

'
14

15

Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

 2

16

Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

17

18

Scaling

Scaling operation:

Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

b

a

y

x

0

0

'

'

scaling matrix S

What’s inverse of S?
19

20

21

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'












=






y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

=

=

















=









y

x

s

s

y

x

y

x

0

0

'

'

22

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

+=
−=




















−
=









y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x

+=

+=

*'

*'

















=









y

x

sh

sh

y

x

y

x

1

1

'

'

23

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'












−=






y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'













−

−
=







y
x

y
x

10
01

'
'

24

2x2 Matrices

What types of transformations can be

represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx

+=

+=

'

'

Only linear 2D transformations

can be represented with a 2x2 matrix

NO!

25

All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

















=









y

x

dc

ba

y

x

'

'
























=






y
x

lk

ji

hg

fe
dc
ba

y
x
'
'

26

27

28

29

30

31

32

33

34

35

36

Homogeneous Coordinates

Q: How can we represent translation as a 3x3

matrix?

y

x

tyy

txx

+=

+=

'

'

37

Homogeneous Coordinates

Homogeneous coordinates

• represent coordinates in 2

dimensions with a 3-vector

















⎯⎯⎯⎯⎯ →⎯








1

coords shomogeneou y

x

y

x

38

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (x, y, 0) represents a point at infinity

• (0, 0, 0) is not allowed

Convenient

coordinate system to

represent many

useful

transformations

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y

39

Homogeneous Coordinates

Q: How can we represent translation as a 3x3

matrix?

A: Using the rightmost column:

















=

100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx

+=

+=

'

'

40

Translation

Example of translation

















+

+

=

































=

















11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

41

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices



































−

=

















1100

0cossin

0sincos

1

'

'

y

x

y

x

































=

















1100

10

01

1

'

'

y

x

t

t

y

x

y

x

































=

















1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear

































=

















1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

42

Matrix Composition

Transformations can be combined by

matrix multiplication

























































−














=















w

y
x

sy
sx

ty
tx

w

y
x

100

00
00

100
0cossin
0sincos

100

10
01

'

'
'

p’ = T(tx,ty) R() S(sx,sy) p

43

Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

• Models change of basis

Will the last coordinate w always be 1?




























=















w

y
x

fed
cba

w

y
x

100

'
'

44

Projective Transformations

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis




























=















w

y
x

ihg

fed
cba

w

y
x

'

'
'

45

2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member46

47

49

50

P

Q
v = Q - P

P + t v

= (1-t)P + tQ, e.g. t = 0.5

Linear Interpolation

P and Q can be anything:

• points on a plane (2D) or in space (3D)

• Colors in RGB or HSV (3D)

• Whole images (m-by-n D)… etc.

How can we linearly

transition between

point P and point Q?

Idea #1: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

But what if the images are not aligned?

Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid

Full Morphing

• What if there is no simple global function that

aligns two images?

• User specifies corresponding feature points

• Construct warp animations A -> B and B -> A

• Cross dissolve these

A B

Full Morphing

Full Morphing
Image A Image B

1. Find warping fields from user constraints (points or lines):

Warp field TAB(x, y) that maps A pixel to B pixel

Warp field TBA(x, y) that maps B pixel to A pixel

2. Make video A(t) that warps A over time to the shape of B

Start warp field at identity and linearly interpolate to TBA

Construct video B(t) that warps B over time to shape of A

3. Cross dissolve these two videos.

Full Morphing

A

B

Warped Image A: A(t)

Warped Image B: B(t)

Cross Dissolve: (1-t)A(t) + tB(t)

Catman!

Conclusion

Illustrates general principle in

graphics:

• First register, then blend

Avoids ghosting

Michael Jackson - Black or White

http://www.youtube.com/watch?v=F2AitTPI5U0

