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Image Warping

15-463: Computational Photography

Alexei Efros, CMU, Fall 2008
Some slides from Steve Seitz

http://www.jeffrey-martin.com
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http://www.jeffrey-martin.com/


Image Warping / Morphing

Computational Photography

Connelly Barnes

[Wolberg 1996, Recent Advances in Image Morphing]

Some slides from Fredo Durand, Bill Freeman, James Hays
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Image Transformations

image filtering: change range of image

g(x) = T(f(x))
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image warping: change domain of image

g(x) = f(T(x))
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Image Transformations

T
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image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))
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Image Warping

Given a coordinate transform (x’,y’) = T(x,y) and a 

source image f(x,y), how do we compute a 

transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’



Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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(x,y) (x’,y’)

Forward warping

Send each pixel (x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

y y’



(x,y) (x’,y’)x

y

Inverse warping

Get each pixel color g(x’,y’) from its corresponding 

location 

(x,y) = T-1(x’,y’) in the first image

x x’

y’
T-1(x,y)



Applying a warp: use inverse
Forward warp: 

• For each pixel in input image

– Paste color to warped location in 

output

• Problem: gaps

Inverse warp

• For each pixel in output image

– Lookup color from inverse-

warped location 



Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Scaling

Scaling a coordinate means multiplying each of its components by 
a scalar

Uniform scaling means this scalar is the same for all components:

 2
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Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

17



18



Scaling

Scaling operation:

Or, in matrix form:
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scaling matrix S

What’s inverse of S?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Identity?
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2D Scale around (0,0)?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx
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2D Shear?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Mirror about Y axis?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Translation?

y
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Only linear 2D transformations 

can be represented with a 2x2 matrix

NO!
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All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Homogeneous Coordinates

Q: How can we represent translation as a 3x3 

matrix?
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Homogeneous Coordinates

Homogeneous coordinates

• represent coordinates in 2 

dimensions with a 3-vector
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Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (x, y, 0) represents a point at infinity

• (0, 0, 0) is not allowed

Convenient 

coordinate system to 

represent many 

useful 

transformations

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y
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Homogeneous Coordinates

Q: How can we represent translation as a 3x3 

matrix?

A: Using the rightmost column:
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Translation

Example of translation
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Basic 2D Transformations

Basic 2D transformations as 3x3 matrices



































−

=

















1100

0cossin

0sincos

1

'

'

y

x

y

x

































=

















1100

10

01

1

'

'

y

x

t

t

y

x

y

x

































=

















1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear

































=

















1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

42



Matrix Composition

Transformations can be combined by 

matrix multiplication
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Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

• Models change of basis

Will the last coordinate w always be 1?
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Projective Transformations

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis
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2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member46



47





49



50



P

Q
v = Q - P

P + t v

=  (1-t)P + tQ,          e.g.  t = 0.5

Linear Interpolation

P and Q can be anything:

• points on a plane (2D) or in space (3D)

• Colors in RGB or HSV (3D)

• Whole images (m-by-n D)… etc.

How can we linearly

transition between

point P and point Q?



Idea #1: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

But what if the images are not aligned?



Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid



Full Morphing

• What if there is no simple global function that 

aligns two images?

• User specifies corresponding feature points

• Construct warp animations A -> B and B -> A

• Cross dissolve these

A B



Full Morphing



Full Morphing
Image A Image B

1. Find warping fields from user constraints (points or lines):

Warp field TAB(x, y) that maps A pixel to B pixel

Warp field TBA(x, y) that maps B pixel to A pixel

2. Make video A(t) that warps A over time to the shape of B

Start warp field at identity and linearly interpolate to TBA

Construct video B(t) that warps B over time to shape of A

3. Cross dissolve these two videos.



Full Morphing

A

B

Warped Image A: A(t)

Warped Image B: B(t)

Cross Dissolve: (1-t)A(t) + tB(t)



Catman!



Conclusion

Illustrates general principle in 

graphics:

• First register, then blend

Avoids ghosting

Michael Jackson - Black or White

http://www.youtube.com/watch?v=F2AitTPI5U0

