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Image Warping

http://www.|effrey-martin.com

15-463: Computational Photography
Alexel Efros, CMU, Fall 3008

Some slides from Steve Seitz


http://www.jeffrey-martin.com/

Image Warping / Morphing

A = =5 | = A=

[Wolberg 1996, Recent Advances in Image Morphing]

Computational Photography
Connelly Barnes

Some slides from Fredo Durand, Bill Freeman, James Hays
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What is Geometric Transformation?

» So far, the image processing operations
we have discussed modify the color values
of pixels in a given image

» With geometric transformation, we modify
the positions of pixels in a image, but keep
their colors unchanged
— To create special effects

— To register two images taken of the same
scene at different times

— To morph one image to another

Geometric Transformation EL512 Image Processing



Image Transformations

Image filtering: change range of image
9(x) = T(f(x))
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Image warping: change domain of image
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Image Transformations

Image filtering: change range of image
g9(x) = T(f(x))

Image warping: change domain of image
g9(x) = (T(x))

—»T—»
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Image Warping

Given a coordinate transform (x ,y )) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x ",y ) = f(T(x,y))?



Parametric (global) warping

Examples of parametric warps:

perspective

cylindrical
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Forward warping

Send each pixel (x,y) to its corresponding location
(x,y) = T(x,y) in the second image



Inverse warping

Get each pixel color g(x’,y’) from its corresponding
location

(x,y) = TX(x’,y) in the first image



Applying a warp: use inverse

Forward warp:
« For each pixel in input image

— Paste color to warped location in
output

* Problem: gaps

Inverse warp

* For each pixel in output image

— Lookup color from invefSe-
warped location




Parametric (global) warping

p’=(x.y’)

Transformation T is a coordinate-changing machine:
p'=T(p)

What does it mean that T is global?

 Is the same for any point p
» can be described by just a few numbers (parameters)

Let’'s represent T as a matrix:
p'=Mp

M
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Translation

» Translation is defined by the following
mapping functions: v

and

X=u+i, u=x—rt,
y:v+g v:y—g

* |n matrix notation

cY

Xx=u+t, u=x-t

where




Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

X 2
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Scaling

Non-uniform scaling: different scalars per component:

XXZ, I‘@——\I
Y x 0.5
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Scaling

Scaling Is defined by

{x =5U {u =x/s_
and v 4 y 4
y=sy v=yls,
' ' $,=2,8,=1/2
Matrix notation —
x=Su, u=S7'x R .
where L] :

s 0
S{U 3}]
If s, <1ands, <1, this represents a minification

or shrinking, if s, >1 and s, > 1, it represents a
magnification or zoom.
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Scaling

Scaling operation:

Or, In matrix form:

What's inverse of S?

X'= ax
y'= by

a

0
H_J

scaling matrix S

0] x
b_
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Rotation

» Rotation by an angle of 8 is defined by

{x:ucosﬂ—vsinﬁ {u:x0055+ysin€
and

y=usinf+vcost v=—xsmé&+ ycost

V“ y]l

* |n matrix format

6=11/4
X:R“, u :RTX = /i“/"__‘;;i

where ' :
{cos 6 —sin 6’} F
R=| .
sinfé cosd @

* R is a unitary matrix: R-1=RT
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B translation B rotation

Translation: x(k,l) =k + 50; y(k, 1) = ;
Rotation:  x(k,l) = (k — xo)cos(8) + (I — yo)sin(8) + xo;
y(k,l) = —(k — xo)sin(f) + (I — yo)cos(8) + vo;

xp = Yo = 256.5 the center of the image A, # = 7 /6

By Onur Guleyuz

Geometric Transformation EL512 Image Processing



2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?
= DA
y'=y y

2D Scale around (O O)’?
X'=8§,%X e

y=s,*y y’
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2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=C0SO®@*X—-sSin®*y X'

y'=sIN®*X+CcosO*y v
2D Shear?

X'=X+sh *y X'

y'=sh, *X+y Y’

COsS®
Sin ®

sh

—sSin ®
COS®

sh

M




2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

= LIk

2D Mirror over (0,0)?

= B
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2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=X+1,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix
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All 2D Linear Transformations

Linear transformations are combinations of ...

Scale,
Rotation,
Shear, and
Mirror

Properties of linear transformations:
Origin maps to origin
Lines map to lines
Parallel lines remain parallel
Ratios are preserved
Closed under composition

|

a b
c d

;

|

e

e f
g h

|

k

X
y

|

|

X

|
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Geometric Transformation

A geometric transformation refers to a
combination of translation, scaling, and
rotation, with a general form of
X=RS(u+t)=Au+b,
u=A"(x-b)=A'x+c,
with A=RS,b=RSt, ¢ =—t.

Note that interchanging the order of
operations will lead to different results.

Geometric Transformation EL512 Image Processing
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Affine Mapping

« All possible geometric transformations are special cases
of the Affine Mapping:

or X=Au+b
y=by,+bu+by

bl bQ b[}

« When A is a orthonormal matrix, it corresponds to a
rotation matrix, and the corresponding affine mapping
reduces to a geometric mapping.

{I — dy + ay i + a,v

Geometric Transformation EL512 Image Processing
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Matlab Functions

&

L]

L]

L]

L]

L]

L]

]

]

T = MAKETFORM('affine',U,X) builds a TFORM struct for a
two-dimensional affine transformation that maps each row of U
to the corresponding row of X. U and X are each 3-by-2 and
define the corners of input and output triangles. The corners
may not be collinear.

Example
Create an affine transformation that maps the triangle with vertices
(0,0), (6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10),
(4,4):

u=[0 6 -2
v=[0 3 5]
x=[1 0 4]
y=[-1-10 4J;

tform = maketform(‘affine',Ju v],[x V]);

Geometric Transformation EL312 Image Processing

29



« G =MAKETFORM('affine',T) builds a TFORM struct G for an N-
dimensional affine transformation. T defines a forward
transformation such that TFORMFWD(U,T), where U is a 1-by-N
vector, returns a 1-by-N vector X such that X =U * T(1:N,1:N) +
T(N+1,1:N).T has both forward and inverse transformations. N=2 for
2D image transformation

In MATILAB notation
‘a. b 0
1 1 AT 0
I'=la, b, 0|=| |
| b 1
a, b, 1
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[ ]

B = IMTRANSFORM(A, TFORM, INTERP) transforms the image A
according to the 2-D spatial transformation defined by TFORMB;
INTERP specifies the interpolation filter

Example 1

Apply a horizontal shear to an intensity image.

| = Imread('cameraman.tif');

tform = maketform(‘affine’,[1 0 0; .51 0; 0 0 1]);
J = imtransform(l,tform);

figure, imshow(l), figure, imshow(J)

Show in class

Geometric Transformation EL512 Image Processing
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Horizontal Shear Example

tform = maketform(‘affine’,[1 00; .51 0; 0 0 1]);
In MATLAB, ‘affine’ transform is defined by:
[a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note
1 05

A= i
0 1

Note in this example, first coordinate indicates horizontal position, second coordinate indicate vertic
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MATLAB function for image warping

B = IMTRANSFORM(A, TFORM, INTERP) transforms the image A
according to the 2-D spatial transformation defined by TFORM

INTERP specifies the interpolation filter
Example 1

Apply a horizontal shear to an intensity image.

| = iImread('cameraman.tif');

tform = maketform(‘affine’ [100; .51 0; 00 1));
J = imtransform(l,tform);

figure, imshow(l), figure, imshow(J)

Geometric Transformation EL512 Image Processing
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Horizontal Shear Example

tform = maketform(‘affine’,[100; .51 0; 0 0 1]);
In MATLAB, ‘affine’ transform is defined by:
[a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note

N

Note in this example, X, u indicates vertical position, y, v indicate horizontal position

34



Example of Image Warping (1)

WAVE1 WAVE2

wave1:x(u,v)=u+20sin(21v/128);y(u,v)=yv;
wave2:X(u,v)=u+20sin(21u/30);y(u,v)=V.

By Onur Guleyuz
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Example of Image Warping (2)

WARP SWIRL

WARP  x(u,v) = sign(u —x,) * (u — xo)2 [ xq+X4; y(u,v)=v
SWIRL  x(u,v) = (1 — x,) cos(8) + (v — y,) sin(&) + x,:
y(,v) =—(u—xy)sin(0) + (v—y,) cos(8) + y,;

=y 0 ) B=m/512
By Onur Guleyuz
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Homogeneous Coordinates

Q: How can we represent translation as a 3x3
matrix?

X'=X+1,
y'=y+t,

37



Homogeneous Coordinates

Homogeneous coordinates

* represent coordinates in 2
dimensions with a 3-vector [ -

homogeneou s cooras

>




Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

* (X, Yy, W) represents a point at location (x/w, y/w)
* (X, Y, O) represents a point at infinity
* (0, 0, 0)is not allowed

(2,1,1) or (4,2,2) or (6,3,3)

Convenient
coordinate system to
represent many
useful
transformations 39

1 2 X




Homogeneous Coordinates

Q: How can we represent translation as a 3x3
matrix?
X'=X+1,

y'=y+t,

A: Using the rightmost column:

Translation =

o O -
o - O




Translation

Example of translation
Homogeneous Coordinates
[ X'] X [x+t, ]

=| y+t

o O -
o +— O

t
t, |y
11

)

X
y':
1

~ _—+
X
I
N

<
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Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

(1 0 t |
=0 1 t,
0 0 1

Translate

X] [cos® —sin®

sin ® Cos®
0 0

Rotate

42



Matrix Composition

Transformations can be combined by
matrix multiplication

p° =

O ok

tX

ty
1

o O

T(t,t)

 cOs®
Sin ®
0

—sin® O

cos® O

0 1
R(0)

sx 0
0 sy

0 O

S(Sx:Sy)

,
0
1_

S < X
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Affine Transformations

Affine transformations are combinations of ...
 Linear transformations, and
 Translations

Properties of affine transformations:
« Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines remain parallel
» Ratios are preserved
« Closed under composition
* Models change of basis

Will the last coordinate w always be 17

O Qo

O @ O

= —h O
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Projective Transformations

Projective transformations ... X, 3 b (]f X
« Affine transformations, and y| - € ) y
* Projective warps W L9 h JLW

Properties of projective transformations:
« Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratios are not preserved
« Closed under composition
* Models change of basis
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2D Image transformations

J, /;llﬂann Q P1O] eLm e
translation
_—y

I ¢
Euclidean A&

S~ x
Name Matrix | #D.O.F. [ Preserves: Icon
translation RiA I

rigid (Euclidean) | | R|¢ | O
similarity SRt O
oline Al L
e | [ 1], N

These transformations are a nested set of groups
» Closed under composition and inverse is a memlyér



Image Morphing

* Image morphing has been widely used in
movies and commercials to create special visual
effects. For example, changing a beauty
gradually into a monster.

* The fundamental techniques behind image
morphing is image warping.

» Let the original image be f(u) and the final image
be g(x). In Image warping, we create g(x) from
f(u) by changing its shape. In image morphing,
we use a combination of both f(u) and g(x) to
create a series of intermediate images.
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Examples of Image Morphing

Cross
Dissolve

I(t) = (1-t)*S+t*T

Mesh
based

Ppreey -

George Wolberg, “Recent Advances in Image Morphing”,
Computer Graphics Intl. '96, Pohang, Korea, June 1996.



Image Morphing Method

« Suppose the mapping function between the two
end images is given as x=u+d(u). d(u) is the
displacement between corresponding points in
these two images.

* In Image morphing, we create a series of images,
starting with f(u) at k=0, and ending at g(x) at
k=K. The intermediate images are a linear
combination of the two end images:

h(u+s,d)y=(1-s,)/(u)+s,g(u+d(m)), £=0lL1..K,
where s, =k / K.
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Linear Interpolation

How can we linearly
transition between
point P and point Q?

v=0Q-P Q
P
P+tv
= (1-t)P + tQ, e.qg. t=0.5

P and Q can be anything:
e points on a plane (2D) or in space (3D)
« Colorsin RGB or HSV (3D)
« Whole images (m-by-n D)... etc.



|ldea #1: Cross-Dissolve

Interpolate whole images:
Imagep ey = (1-t)*Image; + tXimage,
This is called cross-dissolve in film industry

But what if the images are not aligned?



ldea #2: Align, then cross-disolve

Align first, then cross-dissolve
« Alignment using global warp — picture still valid



Full Morphing

What If there i1s no simple global function that
aligns two images?

User specifies corresponding feature points
Construct warp animationsA->B and B -> A
Cross dissolve these



Full Morphing




Full Morphing

HrageA

1. Find warping fields from user constraints (points or lines):
Warp field T,g(X, y) that maps A pixel to B pixel
Warp field Tg,(X, y) that maps B pixel to A pixel

2. Make video A(t) that warps A over time to the shape of B
Start warp field at identity and linearly interpolate to Tg,
Construct video B(t) that warps B over time to shape of A

3. Cross dissolve these two videos.



Full Morphing

Ny
;. Warped Image A: A(t)

- e




Catman!




Conclusion

lllustrates general principle In
graphics:
* First register, then blend
Avolids ghosting

Michael Jackson - Black or White



http://www.youtube.com/watch?v=F2AitTPI5U0

