20 - Image Warping dan Image Morphing

Bahan Kuliah IF4073 Interpretasi dan Pengolahan Citra

SUMBER (REFERENSI):

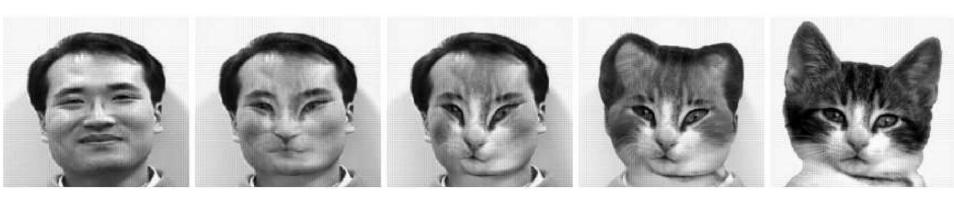
- 1. Alexei Efros, *Image Warping, 15-463: Computational Photography*, CMU, Fall 2008
- 2. Connelly Barnes, *Image Warping / Morphing, Computational Photography*.
- 3. Yao Wang, *EL512 Image Processing, Geometric Transformations: Warping, Registration, Morphing*, Polytchnic University, Brooklyn

Image Warping

http://www.jeffrey-martin.com

15-463: Computational Photography Alexei Efros, CMU, Fall 2008

Image Warping / Morphing



[Wolberg 1996, Recent Advances in Image Morphing]

Computational Photography Connelly Barnes

EL512 --- Image Processing

Geometric Transformations: Warping, Registration, Morphing

Yao Wang Polytechnic University, Brooklyn, NY 11201

With contribution from Zhu Liu, Onur Guleryuz, and Partly based on A. K. Jain, Fundamentals of Digital Image Processing

What is Geometric Transformation?

- So far, the image processing operations we have discussed modify the color values of pixels in a given image
- With geometric transformation, we modify the positions of pixels in a image, but keep their colors unchanged
 - To create special effects
 - To register two images taken of the same scene at different times
 - To morph one image to another

Image Transformations

image filtering: change range of image

$$g(x) = T(f(x))$$

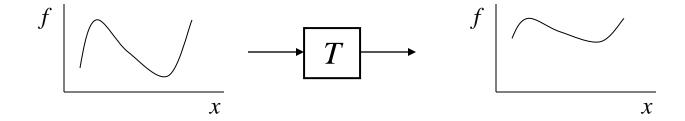


image warping: change domain of image

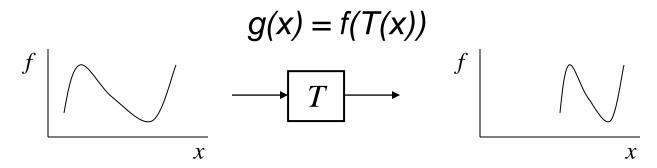


Image Transformations

image filtering: change range of image

$$g(x) = T(f(x))$$

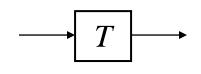


image warping: change domain of image

$$g(x) = f(T(x))$$

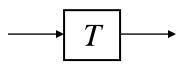
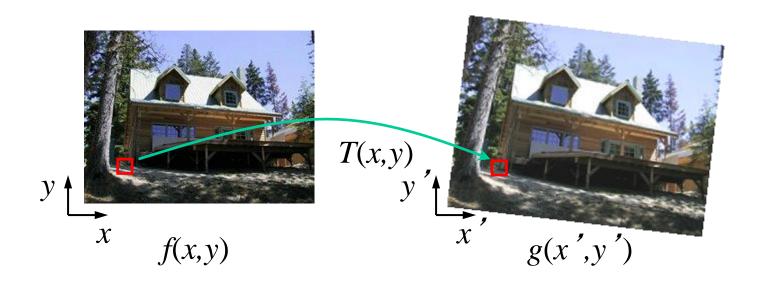


Image Warping

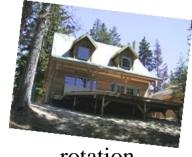


Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Parametric (global) warping

Examples of parametric warps:

translation



rotation

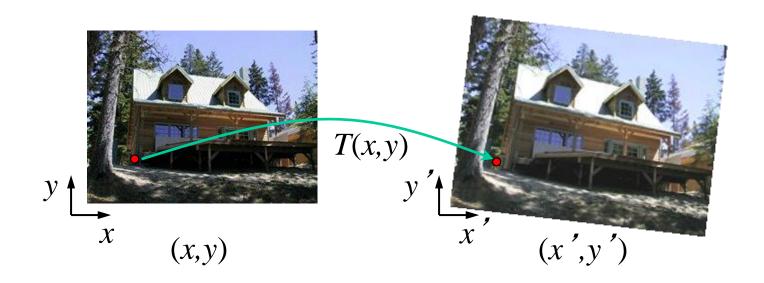
aspect

affine

perspective

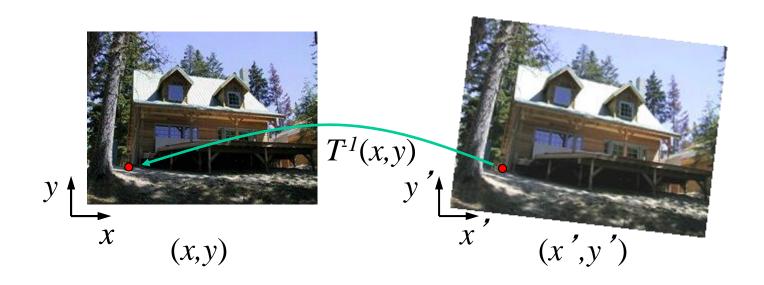
cylindrical

Forward warping



Send each pixel (x,y) to its corresponding location (x',y') = T(x,y) in the second image

Inverse warping



Get each pixel color g(x',y') from its corresponding location

 $(x,y) = T^{-1}(x',y')$ in the first image

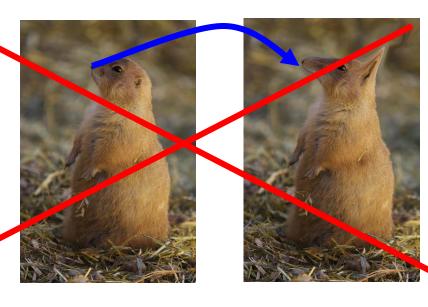
Applying a warp: use inverse

Forward warp:

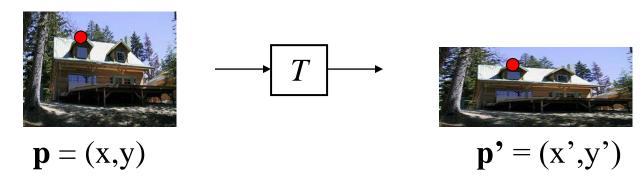
- For each pixel in input image
 - Paste color to warped location in output
- Problem: gaps

Inverse warp

- For each pixel in output image
 - Lookup color from inversewarped location



Parametric (global) warping



Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent *T* as a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

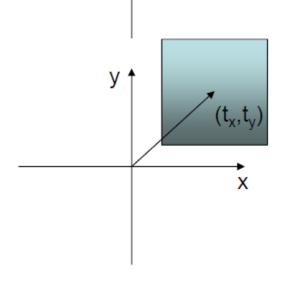
Translation

 Translation is defined by the following mapping functions:

$$\begin{cases} x = u + t_x \\ y = v + t_y \end{cases} \quad and \quad u = x - t_x \\ v = y - t_y \end{cases}$$

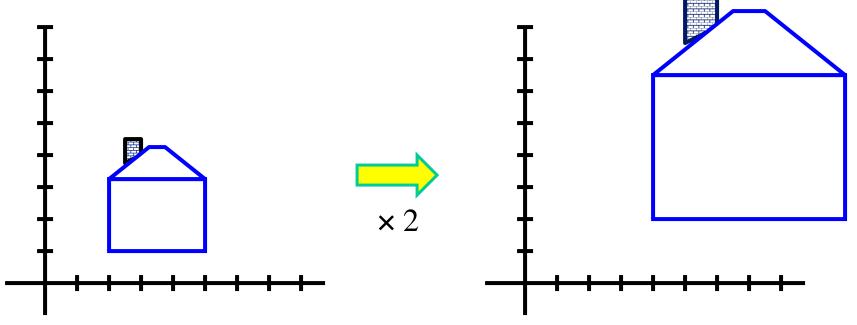
In matrix notation

$$\mathbf{x} = \mathbf{u} + \mathbf{t}, \quad \mathbf{u} = \mathbf{x} - \mathbf{t}$$
where
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}.$$

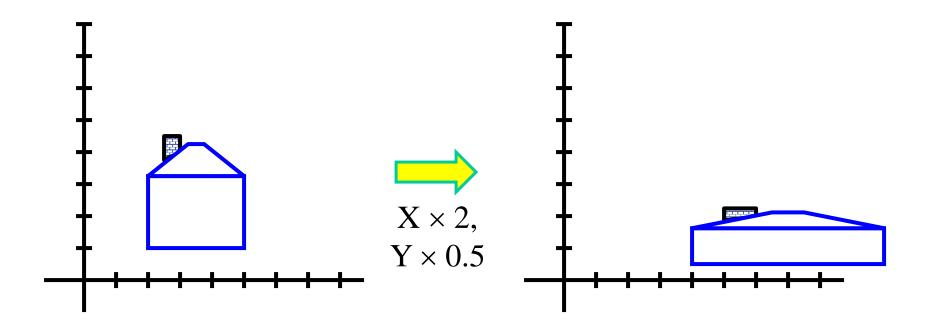


Scaling a coordinate means multiplying each of its components by a scalar

Uniform scaling means this scalar is the same for all components:



Non-uniform scaling: different scalars per component:

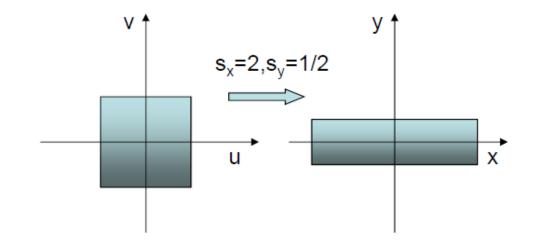


Scaling is defined by

$$\begin{cases} x = s_x u \\ y = s_y v \end{cases} \quad and \quad \begin{cases} u = x / s_x \\ v = y / s_y \end{cases}$$

Matrix notation

$$\mathbf{x} = \mathbf{S}\mathbf{u}, \quad \mathbf{u} = \mathbf{S}^{-1}\mathbf{x}$$
where
$$\mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$



 If s_x < 1 and s_y < 1, this represents a minification or shrinking, if s_x > 1 and s_y > 1, it represents a magnification or zoom.

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

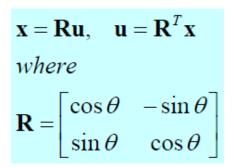
What's inverse of S?

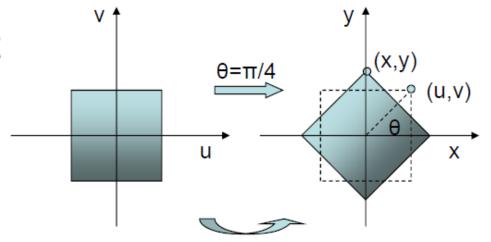
Rotation

Rotation by an angle of θ is defined by

$$\begin{cases} x = u\cos\theta - v\sin\theta \\ y = u\sin\theta + v\cos\theta \end{cases} \quad and \quad \begin{cases} u = x\cos\theta + y\sin\theta \\ v = -x\sin\theta + y\cos\theta \end{cases}$$

In matrix format





R is a unitary matrix: R⁻¹=R^T

B translation

B rotation

Translation: x(k, l) = k + 50; y(k, l) = l;

Rotation: $x(k,l) = (k-x_0)cos(\theta) + (l-y_0)sin(\theta) + x_0;$

 $y(k, l) = -(k - x_0)sin(\theta) + (l - y_0)cos(\theta) + y_0;$

 $x_0 = y_0 = 256.5$ the center of the image \mathbf{A} , $\theta = \pi/6$

By Onur Guleyuz

What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$

$$x' = s_x * x$$
 $y' = s_y * y$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$x' = \cos \Theta * x - \sin \Theta * y y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- · Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Geometric Transformation

 A geometric transformation refers to a combination of translation, scaling, and rotation, with a general form of

$$\mathbf{x} = \mathbf{R}\mathbf{S}(\mathbf{u} + \mathbf{t}) = \mathbf{A}\mathbf{u} + \mathbf{b},$$

 $\mathbf{u} = \mathbf{A}^{-1}(\mathbf{x} - \mathbf{b}) = \mathbf{A}^{-1}\mathbf{x} + \mathbf{c},$
with $\mathbf{A} = \mathbf{R}\mathbf{S}$, $\mathbf{b} = \mathbf{R}\mathbf{S}\mathbf{t}$, $\mathbf{c} = -\mathbf{t}$.

 Note that interchanging the order of operations will lead to different results.

Affine Mapping

 All possible geometric transformations are special cases of the Affine Mapping:

$$\begin{cases} x = a_0 + a_1 u + a_2 v \\ y = b_0 + b_1 u + b_2 v \end{cases} \quad or \quad \mathbf{x} = \mathbf{A}\mathbf{u} + \mathbf{b}$$

$$\mathbf{A} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$

 When A is a orthonormal matrix, it corresponds to a rotation matrix, and the corresponding affine mapping reduces to a geometric mapping.

Matlab Functions

T = MAKETFORM('affine',U,X) builds a TFORM struct for a two-dimensional affine transformation that maps each row of U to the corresponding row of X. U and X are each 3-by-2 and define the corners of input and output triangles. The corners may not be collinear. Example Create an affine transformation that maps the triangle with vertices (0,0), (6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4): u = [0 6 -2]'; $v = [0 \ 3 \ 5]';$ $x = [-1 \ 0 \ 4]';$ $y = [-1 - 10 \ 4]';$ tform = maketform('affine',[u v],[x y]);

G = MAKETFORM('affine',T) builds a TFORM struct G for an N-dimensional affine transformation. T defines a forward transformation such that TFORMFWD(U,T), where U is a 1-by-N vector, returns a 1-by-N vector X such that X = U * T(1:N,1:N) + T(N+1,1:N).T has both forward and inverse transformations. N=2 for 2D image transformation

In MATLAB notation
$$T = \begin{bmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ a_0 & b_0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A}^T & 0 \\ \mathbf{b}^T & 1 \end{bmatrix}$$

- B = IMTRANSFORM(A,TFORM, INTERP) transforms the image A according to the 2-D spatial transformation defined by TFORMB; INTERP specifies the interpolation filter
- Example 1
- -----
- Apply a horizontal shear to an intensity image.

•

- I = imread('cameraman.tif');
- tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
- J = imtransform(I,tform);
- figure, imshow(I), figure, imshow(J)
- Show in class

Horizontal Shear Example

tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]); In MATLAB, 'affine' transform is defined by: [a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note

$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note in this example, first coordinate indicates horizontal position, second coordinate indicate vertic

MATLAB function for image warping

- B = IMTRANSFORM(A,TFORM, INTERP) transforms the image A according to the 2-D spatial transformation defined by TFORM
- INTERP specifies the interpolation filter
- Example 1
- -----
- Apply a horizontal shear to an intensity image.
- •
- I = imread('cameraman.tif');
- tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
- J = imtransform(I,tform);
- figure, imshow(I), figure, imshow(J)

Horizontal Shear Example

tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]); In MATLAB, 'affine' transform is defined by: [a1,b1,0;a2,b2,0;a0,b0,1]

With notation used in this lecture note

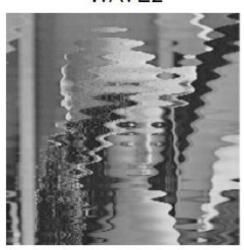
$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note in this example, x, u indicates vertical position, y, v indicate horizontal position

Example of Image Warping (1)

WAVE1

WAVE2



wave1:x(u,v)=u+20sin($2\pi v/128$);y(u,v)=v; wave2:x(u,v)=u+20sin($2\pi u/30$);y(u,v)=v.

By Onur Guleyuz

Example of Image Warping (2)

WARP

SWIRL

WARP

$$x(u,v) = sign(u-x_0)*(u-x_0)^2 / x_0 + x_0; y(u,v) = v$$

SWIRL

$$x(u,v) = (u - x_0)\cos(\theta) + (v - y_0)\sin(\theta) + x_0;$$

$$y(u,v) = -(u - x_0)\sin(\theta) + (v - y_0)\cos(\theta) + y_0;$$

$$r = ((u - x_0)^2 + (v - y_0)^2)^{1/2}, \theta = \pi r / 512.$$

By Onur Guleyuz

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$

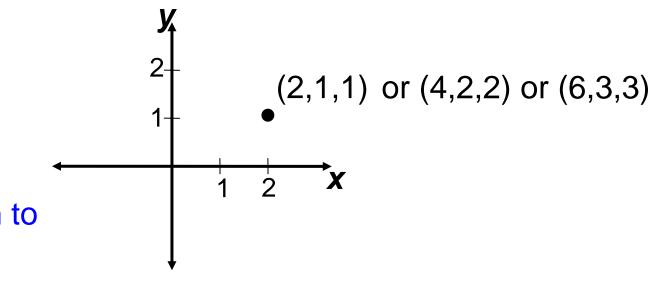
$$y' = y + t_y$$

Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed



Convenient coordinate system to represent many useful transformations

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

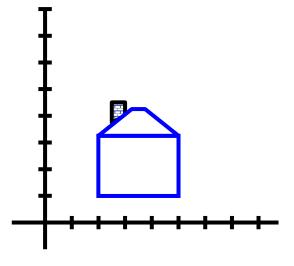
$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

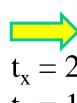
Translation

Example of translation

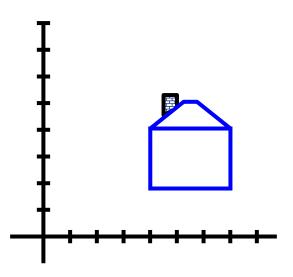
Homogeneous Coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$





$$t_x = 1$$



Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Affine Transformations

- Affine transformations are combinations of ... $\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$

 - Translations

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis

Will the last coordinate w always be 1?

Projective Transformations

Projective transformations ...

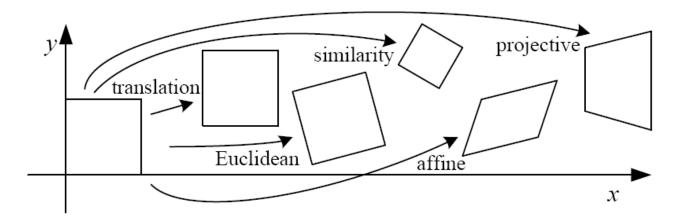
- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis

2D image transformations



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$		_	
rigid (Euclidean)	$egin{bmatrix} igg[m{R} m{m{t}} igg]_{2 imes 3} \end{split}$		_	
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$		_	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$		_	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$			

These transformations are a nested set of groups

Closed under composition and inverse is a member

Image Morphing

- Image morphing has been widely used in movies and commercials to create special visual effects. For example, changing a beauty gradually into a monster.
- The fundamental techniques behind image morphing is image warping.
- Let the original image be f(u) and the final image be g(x). In image warping, we create g(x) from f(u) by changing its shape. In image morphing, we use a combination of both f(u) and g(x) to create a series of intermediate images.

Examples of Image Morphing

Cross Dissolve I(t) = (1-t)*S+t*T

Mesh based

George Wolberg, "Recent Advances in Image Morphing", Computer Graphics Intl. '96, Pohang, Korea, June 1996.

Image Morphing Method

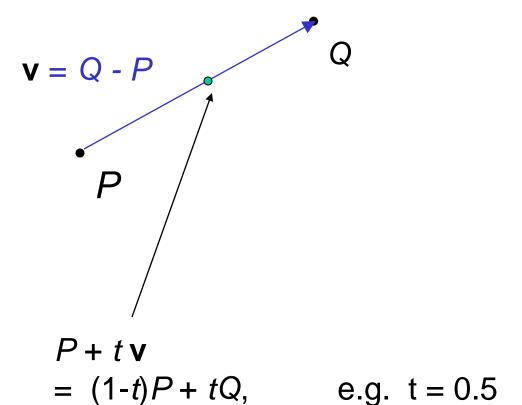
- Suppose the mapping function between the two end images is given as x=u+d(u). d(u) is the displacement between corresponding points in these two images.
- In image morphing, we create a series of images, starting with f(u) at k=0, and ending at g(x) at k=K. The intermediate images are a linear combination of the two end images:

$$h_k(\mathbf{u} + s_k \mathbf{d}) = (1 - s_k) f(\mathbf{u}) + s_k g(\mathbf{u} + \mathbf{d}(\mathbf{u})), \quad k = 0,1,...,K,$$

where $s_k = k / K$.

Linear Interpolation

How can we linearly transition between point *P* and point *Q*?



P and Q can be anything:

- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)... etc.

Idea #1: Cross-Dissolve

Interpolate whole images:

 $Image_{halfway} = (1-t)*Image_1 + t*image_2$

This is called **cross-dissolve** in film industry

But what if the images are not aligned?

Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

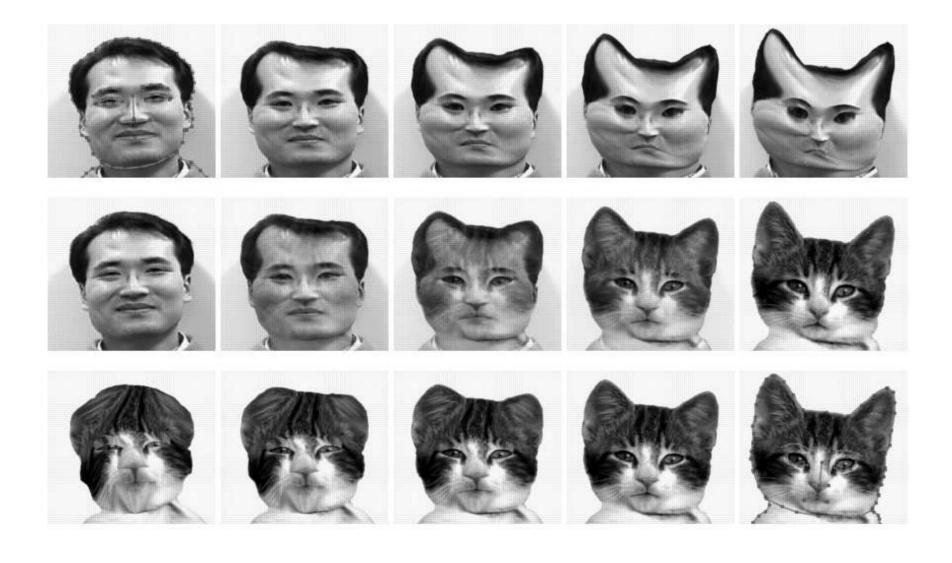
Alignment using global warp – picture still valid

Full Morphing

B

- What if there is no simple global function that aligns two images?
- User specifies corresponding feature points
- Construct warp animations A -> B and B -> A
- Cross dissolve these

Full Morphing

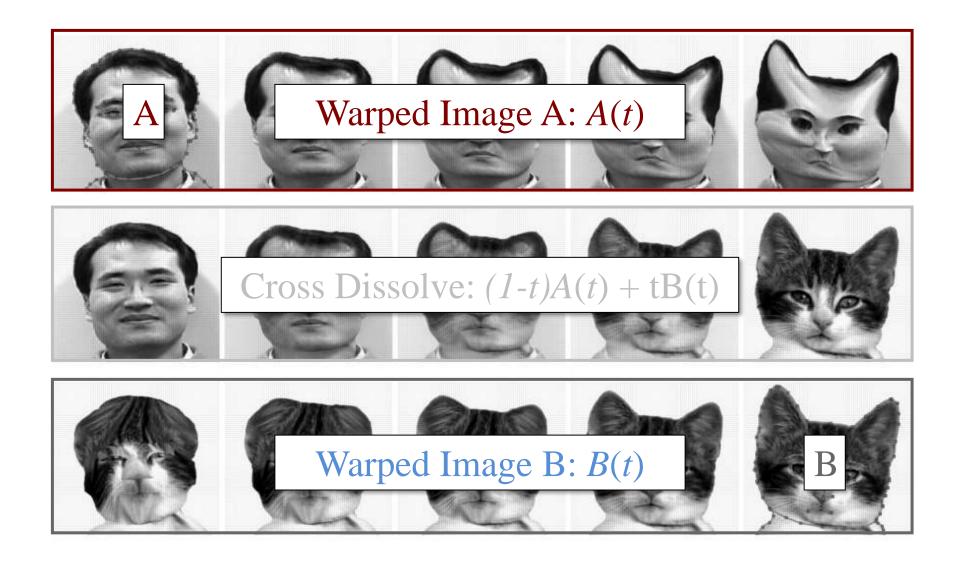


Full Morphing Image A



- 1. Find warping fields from user constraints (points or lines): Warp field $T_{AB}(x, y)$ that maps A pixel to B pixel Warp field $T_{BA}(x, y)$ that maps B pixel to A pixel
- 2. Make video A(t) that warps A over time to the shape of B Start warp field at identity and linearly interpolate to T_{BA} Construct video B(t) that warps B over time to shape of A
- 3. Cross dissolve these two videos.

Full Morphing



Catman!

Conclusion

Illustrates general principle in graphics:

First register, then blend

Avoids ghosting

Michael Jackson - Black or White