Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung

Nama	:
NIM/Kelas	•
Γ.tangan	·

Kuis ke-2 IF2123 Aljabar Linier dan Geometri (3 SKS) – Vektor di ruang Euclidean, Ruang vektor umum Dosen: Rinaldi, Rila Mandala, Arrival Dwi Sentosa

Rabu 15 Oktober 2025

Rabu, 15 Oktober 2025 Waktu: 100 menit

- 1. **(Bobot 16)** Diketahui empat buah titik di ruang R³: P(1,0,1), Q(2,2,1), R(3,1,3), S(0,4,4). Jawablah pertanyaan pertanyaan berikut dengan menunjukkan langkah-langkah pengerjaannya:
 - (a) Tentukan persamaan bidang yang melalui titik P, Q, dan R.
 - (b) Hitunglah luas segitiga yang dibentuk oleh titik P, Q, dan R.
 - (c) Hitunglah volume dari parallelepiped yang dibentuk oleh vektor PQ, PR, dan PS.
 - (d) Hitunglah jarak dari titik S ke bidang yang telah Anda temukan pada soal (a).
- 2. **(Bobot 14)** Diberikan tiga buah vektor $\mathbf{v_1} = (4, -3, 12)$, $\mathbf{v_2} = (a, b, 0)$, dan $\mathbf{v_3} = (4, -3, 0)$ di ruang Euclidean R³. Diketahui luas parallelogram (jajar genjang) yang terbentuk antara vektor $\mathbf{v_1}$ dan $\mathbf{v_2}$ adalah 65 sementara luas parallelogram yang terbentuk antara vektor $\mathbf{v_2}$ dan $\mathbf{v_3}$ adalah 25. Tentukan volume paralelepipeda yang terbentuk oleh $\mathbf{v_1}$, $\mathbf{v_2}$, dan $\mathbf{v_3}$.
- 3. (Bobot 10) Bidang 3x + 2y 4z = 6 berpotongan dengan bidang x 3y 2z = 4 pada sebuah garis di R^3 .
 - (a) Tentukan persamaan parametrik garis perpotongan kedua bidang tersebut
 - (b) Tentukan sudut yang dibentuk oleh kedua bidang
- 4. **(Bobot 16)** Diberikan sebuah matriks $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 5 & 1 & 3 \\ 1 & 3 & 1 & 2 \end{bmatrix}$ dan sebuah transformasi linier T.

Transformasi linier T : $R^2 \rightarrow R^2$ didefinisikan sebagai rotasi sebesar 90° berlawanan arah jarum jam, diikuti oleh pencerminan (refleksi) terhadap garis y = x.

- (a) Tentukan basis dan dimensi untuk ruang baris, ruang kolom, dan ruang null dari matriks A
- (b) Tentukan rank(A) dan nullity(A)
- (c) Periksa apakah vektor **w** = (1,2,3) berada di dalam ruang kolom dari matriks A. Jika iya, nyatakan **w** sebagai kombinasi linier dari vektor-vektor basis ruang kolom A
- (d) Tentukan matriks standar untuk transformasi T. Kemudian, gunakan matriks standar tersebut untuk menemukan bayangan dari vektor $\mathbf{v} = (3,-2)$ setelah melalui transformasi T
- 5. (Total 14) Misalkan P₂ adalah ruang polinom dengan derajat paling tinggi 2. Diketahui empat buah polinom:

$$p_1 = 1 - x + 2x^2$$
; $p_2 = 3 + x$; $p_3 = 5 - x + 4x^2$; $p_4 = -2 - 2x + 4x^2$

- (a) Tunjukkan apakah $\{p_1, p_2, p_3, p_4\}$ membangun P_2 ?
- (b) Tunjukkan apakah $\{p_1, p_2, p_3, p_4\}$ bebas linier?
- (c) Apakah $\{p_1, p_2, p_3, p_4\}$ basis untuk P_2 ?
- 6. (Bobot 15) Misalkan V = P₂ adalah ruang vektor polinomial berderajat 2 dan W = R³ adalah ruang vector dimensi tiga.

Didefinisikan sebuah transformasi linear T: $P_2 \rightarrow R^3$ dengan aturan sebagai berikut $T(p(x) = \begin{pmatrix} p(0) \\ p(1) \\ p'(0) \end{pmatrix}$

(keterangan: p' menyatakan turunan fungs). Diberikan dua basis nonstandard:

Basis untuk P₂

$$B = \{\mathbf{u_1}(x) = 1 + x, \mathbf{u_2}(x) = x + x^2, \mathbf{u_3}(x) = x^2 - 1\}$$

Basis untuk R³

$$B' = \{v_1 = (1,1,0), v_2 = (0,1,1), v_3 = (1,0,1)\}$$

- (a) Tentukan representasi matriks untuk transformasi T relatif terhadap basis B dan B'
- (b) Diberikan sebuah polinomial $\mathbf{p}(\mathbf{x})$ yang memiliki vektor koordinat terhadap basis B adalah $[P]_B = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ Tentukan vector koordinat titik di atas relatif terhadap B'.
- 7. **(Bobot 15)** M₂₂ adalah ruang vektor yang berisi semua matriks berukuran 2 x 2. Tunjukkan bahwa vektor-vektor:

$$\begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \quad \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

adalah basis untuk M22.

8. (Bonus 10) Tentukan koordinat vektor A relatif terhadap basis $S = \{A1, A2, A3, A4\}$ di ruang vektor M_{22} :

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}; \qquad A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Total nilai = 110

Kerjakan pada bagian ksosong pada halaman dibaliknya, jika kurang pakai kertas sendiri