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Abstract—Linear algebra is a fundamental component of 

artificial intelligence (AI), enabling the mathematical 

representation and transformation of data, optimization of 

neural networks, and implementation of applications across 

diverse domains. This paper explores how linear algebra 

underpins AI workflows, beginning with data representations 

like vectors, matrices, and tensors, and extending to neural 

network training through forward and backward 

propagation. Additionally, we examine applications in 

natural language processing, computer vision, and 

recommendation systems, highlighting the indispensable role 

of linear algebra in extracting patterns and reducing 

dimensionality. Finally, we discuss the computational 

challenges and future prospects of integrating linear algebra 

with emerging AI technologies, underscoring its pivotal role 

in the advancement of intelligent systems. 
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I.   INTRODUCTION 

Artificial Intelligence has come a long way since its 

inception in the middle of the 20th century. The first AI 

systems were based on symbolic reasoning, using logical 

systems and rule-based approaches to mimic human 

thought. While these methods were groundbreaking in 

their time, they suffered from limitations due to their 

reliance on structured data and inability to handle complex 

or unstructured information, such as images and natural 

language. In its evolution, AI made a strong turn from 

symbolic reasoning toward data-driven methodologies, 

including machine learning and deep learning. Central to 

this transformation has been an increasing reliance on 

linear algebra, now the mathematical backbone of modern 

AI. 

Linear algebra provides the tools to represent, process, 

and analyze data in ways that were previously unattainable. 

In the early days of machine learning, only a few 

algorithms—basically relying on simple vector and matrix 

operations for recognizing patterns in datasets, including 

linear regression and support vector machines—were in 

vogue. However, with the rise of neural networks and deep 

learning, the importance of linear algebra has grown 

tremendously; it is heavily used to enable the large 

computations that are needed to train complex models. 

Current artificial intelligence frameworks, encompassing 

convolutional neural networks (CNNs) utilized for image 

recognition and transformers employed in natural language 

processing, fundamentally rely on sophisticated linear 

algebra methodologies to interpret extensive datasets and 

reveal complex relationships among them. 

The foundational artificial intelligence and its 

contemporary equivalents diverge significantly in both the 

scope and sophistication of their application of linear 

algebra. Previous systems used linear algebra in a very 

limited way, constrained by both computational power and 

the type of problems they were designed to solve. 

However, powerful hardware makes linear algebra 

operations—like matrix multiplication, computation of 

eigenvectors, or Singular Value Decomposition (SVD)—

possible on an enormously large scale. Such technological 

advances have enabled artificial intelligence to make sense 

of unstructured data, optimize the extraction of features, 

and represent complicated relationships in high-

dimensional spaces. 

This paper discusses the mechanisms by which linear 

algebra boosts artificial intelligence, tracing its impact 

from the very first steps of the development of machine-

learning techniques up to the contemporary epoch of deep 

learning. Showing the critical mathematical underpinnings 

of huge leaps in AI, this discussion indicates the immense 

importance of linear algebra in framing the operations and 

applications of contemporary AI technologies. 

 

 

II.   DATA REPRESENTATION AND TRANSFORMATIONS 

A. Data Representation  

Data features are represented as vectors. Each data point 

is transformed into a vector in a high-dimensional space, 

and each dimension of the vector corresponds to a specific 

attribute or feature of the data. For instance, in image 

recognition, an n x n pixels of grayscale image is 

represented as (p1,1, p1,2, p1,3, …, pn,n-2, pn,n-1, pn,n), where  pi,j 

denotes the value of the pixel at row i, column j. 

Feature vectors allow data to be processed 

mathematically and enable algorithms to analyze patterns 

and relationships between data points.  

Datasets are represented as matrices. Each row 

corresponds to a data point, and each column corresponds 

to the vector feature. For example, a dataset with m 

samples and n features can be written as:  
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Fig. 2.1 Dataset representation as matrix. (Source: [1]) 

In higher dimensions, data are represented as tensors. A 

common example is video data, represented as a 5D tensor 

with dimensions (batch size, frames, height, width, color 

channels). 

 
Fig. 2.2 Different types of tensors. (Source: 

https://www.analyticsvidhya.com/blog/2022/07/data-representation-in-

neural-networks-tensor/) 

 

In Natural Language Processing (NLP), words are also 

represented as vectors. One traditional way to represent 

words is by one-hot encoding. In this approach, the features 

correspond to all the words in the vocabulary, and each 

word is represented as a vector of zeros, except for a single 

‘1’ that marks the presence of the word, ensuring that each 

word has a unique representation. Another similar 

approach is with integer-encoding, encode each word using 

a unique number. 

 
Fig. 2.4 One-hot encoding. (Source: 

https://www.tensorflow.org/text/guide/word_embeddings) 

The problem with this approach is the dimensions of the 

vector. When dealing with large datasets of vocabulary, it 

creates vectors with as many dimensions as there are 

unique words in the vocabulary, resulting in extremely 

high-dimensional, sparse vectors that are computationally 

inefficient to store and process. Moreover, it doesn’t 

capture the relationship between words, it lacks the 

context.  Word embeddings will be discussed later below. 
 

B. Linear Transformation 

To prepare the data for analysis, it undergoes linear 

transformation, such as scaling, rotation, shearing, and 

projection to manipulate and simplify its structure. Linear 

transformations are mathematically represented as matrix 

multiplication, where a transformation matrix A is applied 

to the input data x, transforming its vector space from one 

to another.  

T(x) = Ax   (1) 

 

C. Dimensionality Reduction 

Beyond basic transformations, advanced techniques like 

Singular Value Decomposition (SVD) and Principal 

Component Analysis (PCA) leverage linear 

transformations to extract features and reduce 

dimensionality. SVD factorizes an m x n matrix M into 

matrices U, , and T such that:  

 
Fig. 2.3 Singular Value Decomposition. (Source:[2]) 

where: 

U: An orthogonal matrix whose columns are the left 

singular vectors of M. 

Σ: A diagonal matrix containing the singular values of 

M. 

V: An orthogonal matrix whose rows are the right 

singular vectors of M. 

By truncating the matrix Σ, taking only r highest singular 

value, SVD reduces the dimension of matrix M, allowing 

for more efficient storage and computation.  

 

 

III.   OPTIMIZATION AND MODEL TRAINING 

Optimization and model training is a very crucial part in 

building powerful AI. The aim of the optimization and 

model training is to minimize loss, i.e., the error between 

the predictions and the real values. This section will be 

more focused on optimization and model training for 

neural networks. 

 

A. Neural Network 

Neural networks consist of layers of interconnected 

nodes or neurons that process data to produce predictions. 

Neural networks typically consist of input layer, hidden 

layers, and output layer. Each connection between neurons 

is associated with a weight, which determines the strength 

of the connection, and a bias, which adjusts the output of 

the neuron. Each neuron calculates its output based on the 

weighted input it receives, a bias term, and a nonlinear 

activation function:  

𝑦 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏)    (2) 

with: 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏: input features, 

𝒘𝟏, 𝒘𝟐, … , 𝒘𝒏: weights for each input feature. 

b: bias. 

f: activation function (e.g., ReLU, sigmoid) 
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B. Loss Function 

As mentioned earlier, the aim of the optimization and 

model training is to minimize the difference between the 

network's predictions and the actual target values. This 

discrepancy is measured using a loss function. For 

example, in regression tasks, a common choice is the mean 

squared error (MSE):  

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1     (3) 

where: 

𝒚̂𝒊: Predicted value for the i-th sample, 

𝒚𝒊: Actual value for the i-th sample 

N: number of samples 

 

C. Forward Propagation 

Forward propagation is the process of passing input data 

through the network to calculate predictions and, 

subsequently, the loss. The value of a neuron is calculated 

with equation (2). At first iteration, the weight for each 

features is assigned randomly. The output of one layer 

would then become the input to the next layer, and so on, 

until the output layer. The loss then calculated using the 

loss function, summarizing how well the network is 

performing in its current state. The lower the value, the 

better the performance of the network.  

 

D. Backward Propagation 

To improve the model, we need to calculate how each 

parameter (weights and biases) affects the overall loss 

function. This could be achieved through backward 

propagation, a method that uses the chain rule of calculus 

to compute gradients efficiently. Gradients are propagated 

backward through the network, layer by layer.  

What we want to compute is how sensitive the loss to 

these weights variables, represented as the derivative of the 

loss, with respect to each of the weights. Using the chain 

rule, gradients at hidden layers are calculated recursively. 

Let the loss be L. The gradient with respect to 𝑦̂𝑖 is: 
𝜕𝐿

𝜕𝑦̂𝑖
=  2(𝑦𝑖 − 𝑦̂𝑖)     (4) 

The network's output 𝑦̂ depends on the weights, biases, 

and activations in the preceding layer. For simplicity, 

consider a neuron with the output: 

𝑧 = 𝑤1𝑎1 + 𝑤2𝑎2 + ⋯ + 𝑤𝑛𝑎𝑛 + 𝑏 

where z is the weighted sum, 𝑎𝑖 are the activations from the 

previous layer, and b is the bias. The neuron’s activation is 

𝑦̂ = 𝑔(𝑧), where g is the activation function. 

The chain rule computes how the loss L changes with 

respect to each weight 𝑤𝑖:  
𝜕𝐿

𝜕𝑤𝑖
=  

𝜕𝑧

𝜕𝑤𝑖
⋅

𝜕𝑦̂

𝜕𝑧
⋅

𝜕𝐿

𝜕𝑦̂
     (5) 

where 
𝜕𝑧

𝜕𝑤𝑖
= 𝑎𝑖, the input to the neuron.  

Thus, for each weight 𝑤𝑖: 
𝜕𝐿

𝜕𝑤𝑖
=  2(𝑦𝑖 − 𝑦̂𝑖) ⋅ 𝑔′(𝑧) ⋅  𝑎𝑖      (6) 

These gradients are stored in a vector called the gradient 

vector, which contains the partial derivatives of the loss 

with respect to every parameter.  

 

D. Gradient Descent 

Once the gradients are computed, the weights and biases 

are updated: 

𝑤𝑖
′ =  𝑤𝑖 −  𝜂 ⋅

𝜕𝐿

𝜕𝑤𝑖
    (7) 

where: 

𝜼: learning rate 

𝒘𝒊
′: new weight for the i-th feature. 

 

These process above, forward propagation, backward 

propagation, followed by parameter updates, constitutes 

one iteration. This iterative process involves repeating the 

following steps: 

1. Forward propagation to compute the loss. 

2. Backward propagation to calculate gradients. 

3. Updating parameters based on the gradients. 

 

 

IV. OTHER APPLICATION OF LINEAR ALGEBRA IN AI 

A. Natural Language Processing (NLP) 

In NLP, linear algebra facilitates the transformation of 

language data into numerical representations. Word 

embeddings such as Word2Vec and GloVe utilize vector 

spaces to encode the semantic similarity between words. 

These embeddings are created by training on co-

occurrence statistics of words in large corpora. Operations 

like matrix multiplication and singular value 

decomposition (SVD) help to optimize these 

representations. Moreover, in attention mechanisms like 

those in Transformers, matrix multiplications compute 

query, key, and value scores, enabling sophisticated 

context understanding. 

 

B. Computer Vision 

In computer vision, images are treated as matrices where 

pixel values are elements. Convolutional neural networks 

(CNNs), a staple in this field, perform operations such as 

convolution (sliding filters across images) and pooling to 

extract features. Linear transformations like scaling and 

rotation are used to preprocess images, while matrix 

factorizations enable efficient computations in image 

compression and recognition tasks. 

 

C. Recommendation Systems 

Recommendation systems use linear algebra to model 

user-item interactions. Matrix factorization techniques like 

singular value decomposition (SVD) decompose a large 

user-item matrix into latent factors that capture user 

preferences and item attributes. These decompositions 

enable accurate predictions of unseen interactions, 

powering recommendation engines in platforms like 

Netflix and Amazon. 

 

D. Autonomous Systems 

Linear algebra also powers autonomous systems, such 

as self-driving cars and robotics, through transformations 
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of sensor data. For example, rotation matrices and 

quaternions are used to process lidar and camera inputs, 

enabling accurate positioning and navigation. 

 

E. Reinforcement Learning 

In reinforcement learning, linear algebra is central to 

optimizing policies and value functions. Operations such 

as solving linear systems and eigenvalue computations are 

used to evaluate Markov decision processes (MDPs) and 

approximate optimal solutions. 

By applying these mathematical tools, AI systems 

extract insights, recognize patterns, and provide actionable 

outcomes across diverse fields. 

 

 

V. CHALLENGES AND FUTURE OF LINEAR ALGEBRA 

As AI models scale and diversify, new challenges 

emerge in applying linear algebra effectively. 

 

A. Computational Challenges 

The growing size of datasets and models necessitates 

efficient linear algebra operations. Issues like high memory 

usage, computational overhead, and numerical stability are 

pressing concerns. 

 

B. Algorithm Innovations 

Emerging techniques aim to reduce the computational 

burden of linear algebra in AI. For instance, randomized 

linear algebra methods approximate matrix decomposition 

faster and with less memory. Sparse matrix operations, 

which ignore zero elements, also provide efficiency gains. 

 

C. Hardware Acceleration 

Modern hardware, such as graphics processing units 

(GPUs), tensor processing units (TPUs), and quantum 

computers, is designed to accelerate linear algebra 

computations. These technologies enable AI to scale to 

massive datasets and complex models, unlocking new 

possibilities. 

 

D. Future Prospects 

Quantum computing holds promise for revolutionizing 

linear algebra computations, offering exponential speed-

ups for matrix operations. This could significantly enhance 

AI’s ability to handle high-dimensional data and complex 

models. 

 

 

V.   CONCLUSION 

Linear Algebra is the foundation of Artificial 

Intelligence, providing the mathematical tools needed for 

data representation, model training, and real-world 

applications. From tensors and embeddings to the iterative 

optimization of neural networks, linear algebra enables AI 

systems to analyze patterns, make predictions, and 

continuously improve. As AI continues to evolve, the role 

of linear algebra will remain central, driving advancements 

in efficiency and capability. By learning the foundations of 

AI in terms of linear algebra, it helps understanding the 

concepts of AI at a basic level, especially in the fields of 

Machine Learning, Deep Learning, and Neural Networks.  
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