
Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

Utilizing Vector Spaces for Optimizing Pattern
Search in Wordle

Qodri Azkarayan – 135230101,2

Bachelor's Program in Informatics Engineering
School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Street No. 10, Bandung
113523010@mahasiswa.itb.ac.id, 2azkarayan05@gmail.com

Abstract—This paper explores the application of vector space
models and cosine similarity in optimizing the Wordle game. By
leveraging character-level features, we represent five-letter
words as multidimensional vectors and iteratively refine
candidate guesses based on feedback-driven elimination. The
methodology combines principles from natural language
processing and computational game theory, showcasing an
efficient strategy for solving Wordle puzzles by integrating
vectorized word representations and systematic elimination
processes. Experimental results demonstrate the algorithm’s
effectiveness, narrowing down the solution space with high
accuracy and minimal iterations. The findings highlight the
broader potential of these techniques for optimization tasks in
other word-based games and natural language processing
applications.

Keywords—Wordle Optimization, Vector Space Models, Cosine
Similarity, Natural Language Processing (NLP), Feedback-Driven
Elimination

I. INTRODUCTION
Wordle is a popular word puzzle game combining

simplicity with strategic complexity. Players are tasked with
guessing a hidden five-letter word within six attempts,
receiving feedback after each guess. Letters in the right
position are “green,” letters in the word but in the wrong
position are “yellow,” and letters not in the word are “grey.”
This feedback mechanism transforms Wordle into a
constrained optimization problem, where players iteratively
refine their guesses based on logical deductions and
probabilistic reasoning. Despite its simple mechanics, the
game's underlying complexity has drawn significant interest
from linguistics and game optimization researchers.

The fundamental problem of Wordle deals with
exploitation and exploration. Players must decide whether to
use new letters in their guesses or to use letters they know are
not in the solution but redirect them to better understand the
solution's form. The choice between these two strategies is not
random. Players use a kind of combinatorial reasoning to
decide when to switch between the two. This reasoning is
much easier for human players because they can use all sorts of
shortcuts, both mental and physical (like writing down
candidate letters), to get to the solution.

In this study, we proposed a new use of vector space
models to optimize the pattern search process in Wordle. Using

character-level features, we represent words as
multidimensional vectors and evaluate their closeness using
cosine similarity. This metric serves well when the aim is to
find good candidates among many options. Moreover, we
integrate elimination mechanisms based on the game's
feedback to convergently and efficiently narrow the options to
the target word.

This work draws from the literature on natural language
processing (NLP) and computational game theory. Vector
space representations and similarity metrics are used to model
linguistic and pattern-matching tasks. The proposed
methodology builds on these ideas to solve a particular
instance of a combinatorial problem—specifically, the problem
of creating a linguistically constrained version of Wordle. Our
approach demonstrates the power of mathematical modeling in
combinatorics and the potential for these projects to illuminate
the structure of games played with words.

This paper is structured as follows: Related research on the
optimization of Wordle and vector space modeling is reviewed
in Section 2. The methodology is addressed in Section 3, with
the construction of vector representations, feedback-based
elimination processes, and iterative optimization algorithms in
the limelight. Section 4 presents the experimental setup and
results, which evaluate the performance of the proposed
approach against baseline strategies. Section 5 discusses the
implications of the findings at length, with the conversation
centering on the potential applications to other word games and
natural language processing tasks. Finally, Section 6 serves as
the conclusion, summarising the contributions made and
looking forward to discussions of future research directions.

This study illustrates the practical utility of vector space
models, especially cosine similarities, in addressing complex
decision-making problems in a popular word game. Moreover,
the findings extend beyond Wordle, offering insights into
applying mathematical and computational techniques in fields
requiring iterative optimization and constrained problem-
solving.

II. LITERATURE REVIEW

A. Vector Space
A vector space is a mathematical structure consisting of

objects called vectors, which can be added together and scaled

mailto:13523010@mahasiswa.itb.ac.id
mailto:azkarayan05@gmail.com

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

by numbers known as scalars, typically real or complex
numbers, depending on the context. Formally, a vector space V
over a field F (e.g., the field of real numbers R) is defined by
two operations: vector addition, which combines two vectors to
produce a third vector.

Also, scalar multiplication which scales a vector by a scalar
from the field.

These operations are governed by specific axioms that

ensure the structural integrity of the vector space (Axler,
2015)[1].

To qualify as a vector space, a set V and a field F must
follow certain rules known as axioms. These include closure
under addition and scalar multiplication, meaning any two
vectors added or a vector scaled by a scalar result in another
vector in V. Addition must be commutative and associative,
and a zero vector in V must act as an identity for addition. Each
vector must have an additive inverse, ensuring the sum of a
vector and its inverse equals zero. Scalar multiplication must
also be distributed over vector addition and field addition, and
it must be associative. Lastly, there must be an identity scalar
in F such that multiplying a vector by this scalar leaves it
unchanged. These axioms ensure the consistent behavior of
vectors and scalars in a vector space.

B. Wordle
Wordle is a word-based puzzle game that has gained

widespread popularity for its simplicity and intellectual
challenge. Players aim to guess a hidden five-letter word within
six attempts, receiving feedback after each guess. This
feedback is provided through color-coded tiles: green indicates
a correct letter in the correct position, yellow signals a correct
letter in the wrong position, and gray signifies a letter not
present in the target word. The game is played on a 5x6 grid
where players input guesses row by row, refining their attempts
based on the feedback provided. The objective is to deduce the
target word as efficiently as possible using logical reasoning
and vocabulary knowledge.

Wordle can be analyzed as a constraint satisfaction problem
(CSP), where each guess introduces constraints that narrow the
solution space by eliminating invalid candidates. Players face
the challenge of balancing exploration, testing new letters,
exploitation, and refining knowledge based on feedback (Shi
& Chen, 2023)[2]. The game also lends itself to analysis
through information theory principles. Optimal guessing
strategies aim to maximize information gained from each
guess, thereby reducing the entropy of the solution space. Early
guesses, for instance, often target high-frequency letters and
diverse patterns to eliminate large subsets of possibilities.

Regarding computational complexity, Wordle’s design
maintains a manageable search space. Although a typical
English dictionary contains around 12,000 five-letter words,
the game reduces the number of valid target words to around
2,300 commonly used ones. This limited vocabulary ensures
the game is solvable within the six-guess constraint.

From a linguistic and cognitive perspective, Wordle
engages players’ vocabulary knowledge, pattern recognition,
and phonetic reasoning. It also involves cognitive strategies
such as hypothesis testing and deductive reasoning. These
elements make Wordle valuable for studying human problem-
solving and decision-making processes.

C. CountVectorizer
The CountVectorizer from the scikit-learn library is a tool

in natural language processing (NLP) that converts textual data
into a numerical format suitable for machine learning models
(ScikitLearn)[3]. Depending on the specified configuration, it
creates a "bag of words" representation by tokenizing the input
text into smaller units, such as characters or words. For
example, when configured with analyzer="char" and
ngram_range=(1, 1), the vectorizer tokenizes the text at the
character level, extracting individual characters as features.
This configuration is particularly useful for applications like
spelling correction, phonetic analysis, or games like Wordle,
where character-level patterns play a crucial role. The
`ngram_range` parameter further allows customization of token
sizes, enabling the analysis of sequences of one or more
characters. The output of `CountVectorizer` is a sparse matrix
where rows correspond to text samples, columns represent
tokens, and values denote the frequency of each token in the
respective text. This numerical representation provides a
foundation for applying machine learning or computational
techniques to textual data, making `CountVectorizer` an
essential preprocessing tool in NLP pipelines.

After processing the input text, the CountVectorizer
produces a sparse matrix that encodes the frequency of tokens
extracted from the text. Each row in the matrix corresponds to
an individual text sample, such as a word from the vocabulary,
while each column represents a unique token—in this case,
individual characters. The matrix values indicate each token's
frequency within the corresponding text sample. For instance,
given a vocabulary of ["pace", "space", “peace”], the resulting
matrix would be like this

s p a c e

pace 0 1 1 1 1

space 1 1 1 1 1

peace 0 1 1 1 2

Table 1. CountVectorizer Representation of Vocabulary Words

D. Cosine Simmilarity
Cosine Similarity is a metric that measures the similarity

between two vectors in a multidimensional space. It is often
applied in text analysis and natural language processing tasks.
In the context of a literature review, cosine similarity helps
identify relationships or thematic overlaps between academic
papers, books, or other textual resources. This is particularly
useful when comparing abstracts, keywords, or full texts of
documents. Mathematically, cosine similarity is defined as the
cosine of the angle between two vectors. Given two vectors, A
and B, the formula is:

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

One of its key features is its range, which spans from −1 to
1. A value of 1 indicates perfect similarity, where the vectors
are aligned in the same direction. A value of 0 signifies no
similarity, as the vectors are orthogonal, and −1 indicates that
the vectors are opposed. Another significant feature is that
cosine similarity is scale-invariant, meaning it is unaffected by
the magnitude of the vectors. This makes it particularly
valuable in applications like text analysis, where the focus is on
the direction and not the magnitude of document vectors.

In terms of applications, cosine similarity is widely used in
various domains. Text analysis measures the similarity between
documents or terms represented in high-dimensional spaces,
such as TF-IDF vectors. It is also instrumental in recommender
systems, where it helps identify items similar to a user's
preferences. Furthermore, cosine similarity serves as a distance
measure in clustering and classification algorithms, aiding in
grouping or categorizing data based on similarity.

Turney (2001)[4] demonstrated the efficacy of cosine
similarity in determining semantic relationships through Latent
Semantic Analysis (LSA) for synonym recognition and
analogy tasks. This work established cosine similarity as a
cornerstone for relational analysis in NLP.

Levy and Goldberg[5] (2014) extended the use of cosine
similarity to evaluate word embeddings produced by neural
models. They compared cosine similarity with other metrics,
reinforcing its robustness in tasks like analogy completion and
clustering.

E. NLTK words
The Natural Language Toolkit (NLTK) is a widely

recognized Python library for natural language processing
(NLP) tasks. It provides a comprehensive suite of tools for
tokenization, stemming, tagging, parsing, and more,
simplifying complex text processing workflows for
researchers, developers, and educators. Among its standout
features is the words module, which grants access to extensive
word lists and linguistic corpora. These resources are pivotal
for numerous NLP applications, including stopword removal,
stemming, spell-checking, and generating linguistic
annotations. The words module integrates seamlessly with
tools like WordNet, a lexical database of English, enabling
sophisticated semantic analyses such as measuring word
similarity and exploring hierarchical relationships like
synonyms, antonyms, and hypernyms. For instance, WordNet
organizes words into synsets (sets of synonyms) and provides
their definitions and contextual examples, enhancing the
analysis of semantic relationships in textual data (Perkins,
2014)[6].

NLTK’s capabilities have been extensively utilized in both
academic and industrial contexts. The words module and
NLTK’s tokenization and text parsing tools have been
employed in spell-checking systems, sentiment analysis, and
text classification. It is particularly valuable in tasks requiring

preprocessing, such as removing stopwords, identifying parts
of speech, and reducing words to their base forms via
stemming or lemmatization. Additionally, its integration with
WordNet enables advanced applications like question
answering, keyword extraction, and building semantically
aware models for chatbots and virtual assistants. As a result,
NLTK has become a cornerstone in NLP education and
practice, facilitating diverse applications in fields such as
information retrieval, sentiment analysis, and computational
linguistics.

F. Feedback-Based Optimization Strategies
Feedback-driven elimination algorithms play a crucial role

in optimizing Wordle gameplay, as they systematically narrow
down the set of possible solutions based on the feedback
provided for each guess. By leveraging the feedback, such
algorithms iteratively refine the set of valid candidate words,
improving the efficiency of future guesses.

Wang et al.[7] (2019) contributed significantly to this
domain by proposing integrating feedback-driven elimination
with advanced similarity metrics and visual optimization
techniques. Their approach involved tailoring Wordle-like
puzzles using shape-aware designs, which account for word
representations' visual and structural properties. This
framework improved the computational efficiency of solution
algorithms and introduced visual feedback mechanisms to aid
in understanding the elimination process. The method
effectively highlighted the interplay between algorithmic
optimization and user interaction by aligning visual cues with
computational decisions.

III. IMPLEMENTATION
A program was implemented using Python to develop a

more efficient solution for the Wordle puzzle game. The
program leverages natural language processing (NLP) libraries
to create a robust method for iteratively narrowing down
possible solutions based on feedback. It combines linguistic
resources, such as the NLTK words corpus, with machine
learning tools like cosine_similarity to evaluate and refine
guesses systematically.

The program begins by importing the necessary libraries,
including nltk, numpy, and Scikit-learn modules. The
nltk.corpus.words dataset is used to create a list of valid five-
letter words in English. After downloading the corpus, all
words are converted to lowercase, and those with lengths other
than five characters are filtered out. This ensures that the
vocabulary aligns with the constraints of the Wordle game.

To prepare these words for numerical analysis, the program
utilizes the CountVectorizer from Scikit-learn. Configured with
analyzer="char" and ngram_range=(1, 1), the vectorizer
tokenizes the words into individual characters, creating a
matrix where each row corresponds to a word, and each
column represents a character's frequency in that word. This
transformation converts the vocabulary into a format suitable
for similarity calculations. A dictionary, word_map, is then
created to map each word to its corresponding vector
representation, facilitating efficient access during subsequent
computations.

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

Figure 1. Implementation of Vocabulary Preparation

Source: https://github.com/qodriazka/Vector-Space-in-Wordle

To guide the guessing process, the program incorporates a
function called compute_similarity. This function calculates the
cosine similarity between a given word and a list of candidate
words. Cosine similarity measures the closeness of two vectors
by computing the cosine of the angle between them. It is
particularly useful in this context because it quantifies how
similar the letter composition of two words is, regardless of
their overall frequency or magnitude.

The function first checks if the given word exists in the
vocabulary. It then extracts the vector representation of the
word and compares it with the vectors of all candidate words.
The resulting similarity scores are returned as a dictionary,
where each candidate word is paired with its similarity score.
These scores are later used to rank the candidates, ensuring the
next guess is as informed as possible.

Figure 2. Implementation of Similarity Computation

Source: https://github.com/qodriazka/Vector-Space-in-Wordle

The program's decision-making process relies on its ability
to interpret Wordle feedback, handled by the
eliminate_candidates function. This function iterates through
the list of candidate words, filtering out those that do not
comply with feedback rules represented by a five-character
string: "G" (green) for correct letters in the correct position,
"Y" (yellow) for correct letters in the wrong position, and "X"
(grey) for letters not present in the word. For each candidate
word, the function ensures it meets these constraints,
discarding those that violate the rules. This process
progressively narrows the candidate pool, sharpening the
program’s focus for the next iteration.

Figure 3. Implementation of Candidate Elimination Based on

Feedback
Source: https://github.com/qodriazka/Vector-Space-in-Wordle

The main section of the program begins by initializing the
candidate pool to include all words from the prepared
vocabulary. The first guess is chosen randomly from this list,
and the user is prompted to enter feedback based on the game’s
response to this guess. Feedback validation ensures that the
input matches the expected format of five characters using only
X, Y, and G.

If the feedback indicates that the guess is correct (all G), the
program announces success and exits. Otherwise, it calls the
eliminate_candidates function to update the candidate list based
on the feedback. Next, the program uses the
compute_similarity function to rank the remaining candidates
by their similarity to the current guess. It selects the word with
the highest similarity score as the next guess.

This iterative process continues, with each step refining the
candidate pool and improving the guesses based on feedback
and similarity scores. The program also provides diagnostic
information, such as the number of remaining candidates and
the top five most similar words, allowing users to understand
the decision-making process.

Figure 4. Implementation of Main Algorithm (Iterative guess)
Source: https://github.com/qodriazka/Vector-Space-in-Wordle

The program includes safeguards to handle scenarios where
no valid candidates remain, which may occur due to incorrect
feedback or limitations in the vocabulary. In such cases, it
terminates gracefully with an error message, prompting the
user to review the feedback or input.

https://github.com/qodriazka/Vector-Space-in-Wordle
https://github.com/qodriazka/Vector-Space-in-Wordle
https://github.com/qodriazka/Vector-Space-in-Wordle
https://github.com/qodriazka/Vector-Space-in-Wordle

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

This implementation demonstrates how computational
methods can be applied to solve Wordle systematically. By
combining linguistic resources, vector-based similarity
measures, and feedback-driven elimination, the program
exemplifies the use of NLP and machine learning techniques to
address real-world problems in an efficient and interpretable
manner.

Figure 5. Implementation of Error Handling

Source: https://github.com/qodriazka/Vector-Space-in-Wordle

IV. EXPERIMENT

A. Test Case 1
 This test case illustrates the systematic and computationally
guided application of the Wordle-solving algorithm. The
algorithm utilizes feedback-driven elimination, cosine
similarity measures, and an iterative guessing approach to
identify the correct word efficiently. For this test, the correct
answer is “CLOUD.” Below is a scientific breakdown of the
process and its outcomes.

Figure 6. First Guess in Test Case

The program begins with an initial guess of "CABER,"

chosen randomly from the vocabulary. The feedback entered is
GXXXX, indicating that the first letter "c" is correct and
positioned correctly, while the other letters are not part of the
target word.

Following this, the candidate elimination process applies
feedback rules to exclude all words that do not start with "c" or
contain any of the letters "a," "b," "e," or "r" in any position,
reducing the pool of candidates to 141 possibilities.

To refine the selection further, cosine similarity is
calculated between the vector representation of "CABER" and
the remaining candidates. The top five words are identified
based on similarity scores, including "COCCI" with a score of
0.4045. Among these, "COCCI," the word with the highest
similarity score, is selected as the next guess.

Figure 7. Second Guess in Test Case

The second guess, "COCCI," receives feedback GYYYX,
indicating that the first letter "c" is correct and in the correct
position, the second and third letters "o" and "c" are correct but
not in the correct positions, and the fifth letter "i" is not part of
the target word. Following this feedback, candidate elimination
excludes words starting with "c" that do not contain "o" and "c"
in positions 2 and 3, as well as those containing "i," reducing
the candidate pool to 23 words. Cosine similarity is then
recalculated for the remaining candidates, and "cholo" is
identified as the next guess with a similarity score of 0.5698,
tied with several others. The selection of "CHOLO" reflects the
program's systematic prioritization of equally high-scoring
candidates.

Figure 8. Third Guess in Test Case

 The third guess, "CHOLO," receives feedback GXGYY,
indicating that the first letter "c" and the third letter "l" are
correct and in their correct positions, while the fourth and fifth
letters "o" are correct but mispositioned. Based on this
feedback, the candidate elimination process excludes words
that do not align with the updated rules, reducing the pool to 8
viable candidates. Cosine similarity is then computed for these
remaining words, with "cloof," "cloop," and "cloot" emerging
as the top candidates, each scoring 0.8571. Due to its high
similarity score, the algorithm selects "CLOOF" as the next
guess.

Figure 9. Third Guess in Test Case

The fourth guess, "CLOOF," yields feedback GGGYX,
indicating that the first three letters "c," "l," and "o" are correct
and in their correct positions, while the fifth letter "f" is not
part of the target word. Following this feedback, the candidate

https://github.com/qodriazka/Vector-Space-in-Wordle

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

elimination process removes words that do not meet the
updated constraints, narrowing the pool to four remaining
candidates: "CLOUD," "CLOUT," and "CLOWN." Cosine
similarity is then recalculated, and "cloud" is selected as the
next guess due to its highest similarity score of 0.6761.

Figure 10. Final Guess in Test Case

The fifth guess, "CLOUD," receives feedback GGGGG,
indicating that all letters are correct and in position. The
algorithm successfully identifies the target word in five
guesses.

The algorithm demonstrates significant efficiency by
systematically reducing the candidate pool with each iteration.
Starting with 141 candidates after the first feedback, it
efficiently narrows the possibilities, arriving at the correct word
in just four subsequent guesses. This process combines
linguistic constraints and similarity metrics to optimize the
guessing strategy.

Using cosine similarity provides a quantitative approach to
measure the alignment between vector representations of the
current guess and the remaining candidates. This method
allows the algorithm to prioritize words most likely to align
with the target, effectively balancing exploration and
exploitation during the guessing process.

Feedback-driven elimination translates the provided
feedback into precise rules that refine the solution space
dynamically. This ensures that all remaining candidates comply
with the game's constraints, leading to a more focused and
effective search.

Finally, the program exhibits robust performance by
gracefully managing ties in similarity scores and adapting
seamlessly to updated feedback. This resilience highlights its
capability to handle the task's inherent uncertainty and
complexity.

B. Test Case 2

Figure 11. Second Test Case

This test case illustrates how a Wordle-solving program
attempts to guess the target word based on feedback. It begins
with the guess "BELIS," and feedback of "XXXXX"
eliminates all words containing the letters b, e, l, i, or s,
reducing the candidate pool to 1663 words. With no further
information, it guesses "AARON," but feedback of "XXXXX"
again excludes words with a, r, o, or n, leaving 67 candidates.
The next guess, "CHUCK," also receives "XXXXX," further
shrinking the pool to 2 words. The program then guesses
"PYGMY," and feedback of "XXXXX" eliminates all
remaining candidates. At this point, the program stops,
reporting no valid candidates left, likely because the target
word is not in the vocabulary or the feedback provided was
inaccurate. This case proves that the Wordle-solving program
uses feedback to eliminate candidates iteratively but fails to
find the target word, likely due to incorrect feedback.

V. IMPLICATION
This code demonstrates a computational framework for

solving Wordle, utilizing vector representations, similarity
metrics, and feedback-driven elimination. Beyond Wordle, its
methodology lays a foundation for optimizing strategies in
other word-based games and natural language processing
(NLP) tasks.

The approach is versatile and can be adapted to games like
Scrabble and crosswords, where cosine similarity and
elimination techniques help identify optimal moves by
comparing word vectors to game constraints. Hangman's
feedback-driven elimination mechanism closely aligns with
Wordle’s iterative narrowing process, systematically reducing
candidate words. For Boggle or word search puzzles,

Makalah Tugas IF2123 Aljabar Linier & Geometri, Semester II Tahun 2024/2025

integrating vector representations could aid in identifying
high-scoring or hidden words by evaluating character
adjacency or predefined rules. Moreover, this method could
inform adaptive word-based learning tools, tailoring puzzles to
players' vocabulary levels for maximized engagement and
educational value.

In NLP, the techniques have broad applications in pattern
recognition, similarity analysis, and constrained search.
Cosine similarity is valuable for tasks such as text similarity
and query expansion in search engines, where algorithms
suggest semantically related queries or refine results. The
feedback-driven elimination algorithm could improve context-
aware spelling correction by iteratively narrowing down
suggestions based on valid dictionary matches. Similarly,
constrained next-word prediction models, such as
autocomplete systems or assistive writing tools, could benefit
from this method, enhancing accuracy in text generation.
Interactive systems like chatbots and virtual assistants can use
feedback mechanisms to refine responses for improved
conversational relevance.

Beyond games and NLP, this methodology has machine
learning and data analysis implications. Cosine similarity is
central to clustering algorithms, while iterative elimination can
be adapted for semi-supervised clustering with user-imposed
constraints. Recommender systems could employ feedback-
driven refinement to personalize movie, product, or content
suggestions effectively.

Expanding the implementation could involve integrating
pre-trained embeddings like Word2Vec or BERT for nuanced
semantic understanding or adapting the vocabulary for
multilingual applications. Optimization techniques would also
enhance scalability for larger datasets or complex rules.

From a scientific perspective, this framework mirrors
human problem-solving, providing insights into cognitive
psychology and human-computer interaction. It is also a
robust teaching tool in computational linguistics and AI,
illustrating fundamental concepts in vector spaces, similarity
metrics, and constraint-based algorithms.

VI. CONCLUSION
The study presents a novel computational approach to

solving Wordle by employing vector space models and cosine
similarity to reduce the solution space systematically. The
algorithm efficiently identifies target words through feedback-
driven elimination and iterative refinement, demonstrating the
robustness of mathematical and computational methods in
constrained decision-making tasks. Beyond Wordle, this
framework offers valuable insights for optimizing strategies in
various word-based puzzles and natural language processing
challenges. Future work could extend the methodology to
incorporate pre-trained embeddings, multi-language support,
and applications in interactive NLP systems, underscoring the
versatility of this approach in solving complex linguistic and
combinatorial problems.

ACKNOWLEDGMENT
I express my deepest gratitude to God Almighty for His

endless guidance, blessings, and strength throughout the
journey of completing this paper. I also thank Dr. Ir. Rinaldi
Munir, M.T., for his invaluable role as the IF2123 Linear and
Geometry Algebra lecturer. His guidance and comprehensive
explanations have significantly contributed to my
understanding of the subject matter, providing a strong
foundation for this work.

REFERENCES
[1] Sheldon Jay Axler, Linear algebra done right. Cham Etc.: Springer,

Cop, 2015.
[2] L. Shi, Y. Chen, J. Lin, X. Chen, and G. Dai, “A black-box model for

predicting difficulty of word puzzle games: a case study of Wordle,”
Knowledge and information systems, vol. 66, no. 3, pp. 1729–1750, Oct.
2023, doi: https://doi.org/10.1007/s10115-023-01992-6.

[3] “CountVectorizer,” scikit-learn, 2024. https://scikit-
learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVe
ctorizer.html accessed on 31 December 2024

[4] Luc De Raedt, P. Turney, and Springerlink (Online Service, Machine
Learning: ECML 2001: 12th European Conference on Machine
Learning, Freiburg, Germany, September 5-7, 2001. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[5] O. Levy and Y. Goldberg, "Neural word embedding as implicit matrix
factorization," in Advances in Neural Information Processing Systems
(NeurIPS), vol. 27, 2014. [Online]. Available:
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a801251
6bc3533958-Paper.pdf

[6] J. Perkins, Python 3 Text Processing with NLTK 3 Cookbook. Packt
Publishing Ltd, 2014.

[7] Y. Wang et al., “ShapeWordle: Tailoring Wordles using Shape-aware
Archimedean Spirals,” IEEE Transactions on Visualization and
Computer Graphics, vol. 26, no. 1, pp. 991–1000, Jan. 2020, doi:
https://doi.org/10.1109/TVCG.2019.2934783.

STATEMENT

Hereby, I declare that the paper I have written is my work, not
an adaptation or translation of someone else's paper, and is not
plagiarized.

Bandung, 1 January 2025

Qodri Azkarayan
13523010

https://doi.org/10.1007/s10115-023-01992-6
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://doi.org/10.1109/TVCG.2019.2934783

	I. Introduction
	II. Literature Review
	A. Vector Space
	B. Wordle
	C. CountVectorizer
	D. Cosine Simmilarity
	E. NLTK words
	F. Feedback-Based Optimization Strategies

	III. Implementation
	IV. Experiment
	A. Test Case 1
	B. Test Case 2

	V. Implication
	VI. Conclusion
	Acknowledgment
	References

