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Abstract— Astronomical images are invaluable for 

understanding celestial phenomena but are often corrupted 

by noise from atmospheric, sensor, and optical distortions, 

hindering effective analysis. To address this, denoising 

techniques using the Fourier Transform provide a robust 

solution. By transforming images into the frequency domain, 

high-frequency noise can be isolated and filtered, enhancing 

image clarity while preserving essential details. This study 

explores Fourier Transform-based denoising for 

astronomical images, utilizing the Fast Fourier Transform 

(FFT) for computational efficiency. Results demonstrate the 

effectiveness of noise removal, with varying frequency 

retention levels influencing the balance between noise 

reduction and image sharpness. The role of phase in image 

reconstruction is also emphasized, revealing its importance in 

maintaining structural integrity. These findings underscore 

the potential of Fourier Transform techniques in improving 

the quality of astronomical data for further scientific 

investigation. 

 

Keywords— Astronomical image, denoising, Fourier 

Transform, frequency domain.  

 

 

I.   INTRODUCTION 

Astronomical imaging plays a crucial role in 

understanding the universe, providing invaluable data for 

studying celestial bodies and phenomena. However, these 

images are often marred by noise due to various factors, 

including atmospheric turbulence, sensor limitations, and 

optical distortions. Such impairments can obscure critical 

details, complicating the extraction of meaningful insights 

from the data. 

To address these challenges, denoising technique has 

become essential tools in astrophysics and related fields. 

Among the various methods available, the Fourier 

Transform offers a powerful mathematical framework for 

analysing and processing images in the frequency domain. 

By decomposing an image into its frequency components, 

the Fourier Transform enables targeted manipulation of 

noise, facilitating the recovery of high-quality images with 

enhanced clarity and detail. 

This paper explores the application of Fourier 

Transform-based techniques for denoising astronomical 

images. We focus on leveraging its ability to isolate high-

frequency noise, presenting a systematic approach to 

restore the fidelity of astronomical data. Additionally, we 

evaluate the effectiveness of these techniques through 

visual and quantitative comparisons, highlighting their 

potential to improve the accuracy of subsequent scientific 

analysis.  

This paper is organized as follows: the introduction is 

followed by a theoretical basis, which explains the 

principles of complex number and the Fourier Transform. 

Next, the implementation section details the practical 

application of these principles, while the results section 

presents and analyzes the outcomes. Finally, the 

conclusion and recommendations section summarize the 

findings and provides suggestions for future improvements 

in astronomical image restoration. 

 

II.  THEORETICAL BASIS 

A. Complex Number 

A complex number is composed of two parts, real and 

imaginary parts. It can be written as  

𝑧 = 𝑥 + 𝑖𝑦 

where x and y are real and 𝑖 defined as 

𝑖2 = −1. 
Complex number can be written in the polar form as 

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

where 

𝑟 = √𝑥2 + 𝑦2 and 𝜃 = tan−1 𝑦

𝑥
. 

Euler’s formula also shows that 

𝑒𝑖𝜃 = cos 𝜃 + sin 𝜃. 
We can interpret Euler’s formula geometrically where 𝑒𝑖𝜃 

is a rotor that rotates z to z’ by an angle 𝜃 

counterclockwise. 

 

Why is this important to our discussion? Fourier 

transform that we are going to use decomposes wave into 

a sum of sinusoidal (sine and cosine) waves, so instead of 

calculating them separately, we can write it in the complex 

form of 

𝐴𝑒𝑖(2𝜋𝑣𝑡+𝜑). 

Writing it in complex form has nice properties when 

dealing with summation of sinusoidal waves. Summation 

can be done without any trigonometry identities. 

 

𝜑(𝑡) = 𝜑1(𝑡) + 𝜑2(𝑡) = 𝐴2𝑒𝑖(2𝜋𝑣𝑡+𝜑1) + 𝐴2𝑒𝑖(2𝜋𝑣𝑡+𝜑2). 

 

Complex form also preserves the information for both the 

magnitude and phase of wave. This is very important in 
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image reconstruction as taking only the magnitude (real 

part) will make the image unrecognizable.  

 

B. Fourier Transform 

The Fourier transform is a mathematical operation that 

converts data from the time or spatial domain into the 

frequency domain. It is defined as 

 

𝑌(𝜔) = ∫ 𝑦(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞

 

 

We can also write it as 

 

𝑌(𝜔) = ∫ 𝑦(𝑡) cos(𝜔𝑡) 𝑑𝑡
+∞

−∞

 −  𝑖 ∫ 𝑦(𝑡) sin(𝜔𝑡) 𝑑𝑡
+∞

−∞

 

 

As can be seen, it is more concise and easier to compute 

when written as a complex form. Therefore, we will use the 

complex form. 

 

When performing a Fourier Transform, a signal or image 

is represented in terms of its frequency components, which 

consist of two key elements: magnitude and phase. These 

components are derived from the complex representation 

of the transform and are essential for fully reconstructing 

the original data. 

 

The magnitude of a Fourier Transform represents the 

amplitude or intensity of each frequency component in the 

signal. In terms of images, the magnitude describes how 

much a particular frequency contributes to the image. It is 

calculated as: 

 

|𝐹(𝑢, 𝑣)| = √𝑅𝑒(𝐹(𝑢, 𝑣))2 + 𝐼𝑚(𝐹(𝑢, 𝑣))2 

 

The magnitude is what we usually visualize when creating 

a frequency spectrum, where low frequencies are near the 

center and higher frequencies radiate outward. 

 

The phase of a Fourier Transform encodes the spatial 

arrangement of frequency components, essentially 

determining where the structures or patterns appear in the 

image. The phase is given by: 

 

𝜑(𝑢, 𝑣) = tan−1 (
𝐼𝑚(𝐹(𝑢, 𝑣))

𝑅𝑒(𝐹(𝑢, 𝑣))
) 

 

While the magnitude tells us "how much" of each 

frequency exists, the phase tells us "where" these 

frequencies are located in the image. This makes the phase 

critical for reconstructing the structural details of the 

image. Without the phase, the reconstructed image would 

lose all recognizable features, appearing as an abstract blur. 

 

C. Discrete Fourier Transform (DFT) 

For applications in image processing, the Discrete 

Fourier Transform (DFT) is commonly used because 

digital images are represented as discrete pixel values. The 

DFT transforms a discrete spatial representation of an 

image into its frequency domain, making it suitable for 

computational manipulation. The DFT and its inverse are 

defined as  

 

𝑌𝑗 = ∑ 𝑦𝑘𝑒−2𝜋𝑖𝑗𝑘/𝑛

𝑛−1

𝑘=0

 

 

𝑦𝑘 =
1

𝑛
∑ 𝑦𝑘𝑒+2𝜋𝑖𝑗𝑘/𝑛

𝑛−1

𝑘=0

 

 

However, doing this calculation directly is expensive 

since it requires n2 calculations. To simplify the 

computation, the Fast Fourier Transform (FFT) is often 

used. FFT is an efficient algorithm to compute the DFT. It 

is widely used in image processing (and in everything) due 

to its computational efficiency, requiring only 𝑛 log2 𝑛. 

One of the algorithms to perform FFT is Cooley-Tukey 

algorithm. In short, the idea is to split DFT into its even 

and odd terms. We can write this as  

 

𝑌𝑗
𝑘 𝑒𝑣𝑒𝑛 + 𝑊𝑘𝑌𝑗

𝑘 𝑜𝑑𝑑  

 

where W = 𝑒−2𝜋𝑖/𝑛.  

We can do this recursively until we get a single point. 

 

Since we are dealing with 2D Images, the DFT can be 

extended into the 2D plane. The formula is given by 

 

𝐹[𝑘, 𝑙] =
1

𝑀𝑁
∑ ∑ 𝑓[𝑚, 𝑛]𝑒

−𝑗2𝜋(
𝑘
𝑀

𝑚+
𝑙
𝑁

𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 

and the inverse of it is 

 

𝑓[𝑘, 𝑙] = ∑ ∑ 𝑓[𝑚, 𝑛]𝑒
+𝑗2𝜋(

𝑘
𝑀

𝑚+
𝑙
𝑁

𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 

The Cooley-Tukey FFT can be applied as well by doing it 

separately for each dimension (rows and columns). 

 

D. Noise 

Noise in image processing refers to unwanted variations 

in pixel values that distort the true signal in an image. Noise 

can degrade the quality of an image, making it harder to 

extract meaningful information. Some types of noise 

commonly found are: 

1. Gaussian noise, characterized by random pixel 

intensity variations following a normal distribution. 

2. Salt-and-Pepper noise, appears as random white 

(salt) or black (pepper) pixels. 

3. Poisson noise, arises from the quantum nature of 

light and affects low-light or high-sensitivity 

imaging systems. 
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Noise can originate form various sources in astronomical 

images such as 

1. Sensor noise 

2. Photon shot noise 

3. Background light 

4. Atmospheric turbulence. 

 

E. Low-Pass Filtering 

A low-pass filter allows low-frequency components of a 

signal to pass through while removing higher-frequency 

components. The cutoff frequency determines the 

boundary between the low and high frequencies. 

Frequencies lower than the cutoff are preserved, while 

those higher are suppressed. 

 

For this implementation, we are using Ideal Low-Pass 

Filter. This type of filter is characterized by a sharp cutoff, 

where all frequencies higher than a certain threshold are 

completely removed, and all frequencies lower than this 

threshold are retained. We can write this as 

𝐹′(𝑢, 𝑣) = {
𝐹(𝑢, 𝑣), 𝑖𝑓 𝑢, 𝑣 ∈ 𝑙𝑜𝑤 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑛𝑔𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

 

III.   IMPLEMENTATION 

A. Image Denoising 

The following codes are modified from https://scipy-

lectures.org/intro/scipy/auto_examples/solutions/plot_fft_

image_denoise.html#read-and-plot-the-image 

To denoise the image, we first converted it to grayscale. 

 

 

 

 

 

 

 

Next, we perform a Fourier Transform on the grayscale 

image to convert it to the frequency domain. Figure 1 

displays the Fourier Transform spectrum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Fourier Transform Spectrum Before Denoising 

 

Then, we filter the noise by zeroing out the high-frequency 

components. We keep only k of the lowest frequencies in 

both the rows and columns.  Figure 2 displays the filtered 

spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fourier Transform Spectrum After Denoising 

 

Finally, we reconstruct the image using Inverse Fast 

Fourier Transform, only displaying the real part. 

 

im = plt.imread('moonlanding.jpg') 

im = np.dot(im[..., :3], [0.2989, 0.5870, 0.1140]) 

plt.figure() 

plt.imshow(im, plt.cm.gray) 

plt.title('Original Grayscale Image') 

im_fft = fftpack.fft2(im) 

 

def plot_spectrum(im_fft): 

    from matplotlib.colors import LogNorm 

    # A logarithmic colormap 

    plt.imshow(np.abs(im_fft), 

norm=LogNorm(vmin=5)) 

    plt.colorbar() 

 

plt.figure() 
plot_spectrum(im_fft) 

plt.title('Fourier transform') 

keep_fraction = 0.1 

 

im_fft2 = im_fft.copy() 

r, c = im_fft2.shape 

 

# Set to zero all rows with indices between 

#r*keep_fraction and r*(1-keep_fraction): 

 

im_fft2[int(r*keep_fraction):int(r*(1-
keep_fraction))] = 0 

 

# Similarly with the columns: 

im_fft2[:, int(c*keep_fraction):int(c*(1-

keep_fraction))] = 0 

 

plt.figure() 

plot_spectrum(im_fft2) 

plt.title('Filtered Spectrum') 

https://scipy-lectures.org/intro/scipy/auto_examples/solutions/plot_fft_image_denoise.html#read-and-plot-the-image
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To quantitatively compare the original image and the 

denoised image, we can evaluate the noise level in each 

image with the following code. 

 

Source: J. Immerkær, “Fast Noise Variance Estimation”, 

Computer Vision and Image Understanding, Vol. 64, No. 

2, pp. 300-302, Sep. 1996   

 

 

 

 

 

 

 

 

 

 

 

 

By isolating and reconstructing the images using only their 

phase or magnitude components from the Fourier 

Transform, we can also demonstrate the critical role of 

phase in preserving structural details during image 

restoration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

IV.   RESULT 

Based on the implementation, we use the image of the 

moon landing that contains salt-and-pepper noise, 

characterized by random black and white pixels distributed 

throughout the image. This type of noise is possibly caused 

by transmission errors or corruption during storage or 

retrieval. To denoise the image, low-pass filtering is 

applied with varying values of k, which represents the 

cutoff frequency. For each value of k, the noise level is 

estimated to evaluate its effect on the filtering process. The 

results display a comparison between the original noisy 

image and the denoised images. The original image 

exhibits significant visible noise, which hinders analysis by 

obscuring key details. In contrast, the denoised images 

show improvements in clarity, as high-frequency noise is 

effectively filtered out. However, as the parameter k 

decreases, the noise is further reduced, enhancing the 

overall smoothness of the image. Unfortunately, this comes 

at the cost of losing essential high-frequency details, 

causing the image to appear increasingly blurred. The 

trade-off between noise reduction and image sharpness 

emphasizes the importance of selecting an optimal value of 

k to balance minimizing noise while preserving important 

image details. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Image Before Denoising 

 

 

 

 

 

 

 

 

Figure 4. Image After Denoising (k = 0.05) 

 

 

 

 

 

 

 

Figure 5. Image After Denoising (k = 0.1) 

 

 

 

 

 

 

magnitude = np.abs(im_fft) 

im_magnitude = fftpack.ifft2(magnitude).real 
plt.figure() 

plt.imshow(im_magnitude, plt.cm.gray) 

plt.title('Image using only Magnitude') 

phase = np.angle(im_fft) 

average_magnitude = np.mean(magnitude) 

im_phase = fftpack.ifft2(average_magnitude * 

np.exp(1j * phase)).real 

plt.figure() 

plt.imshow(im_phase, plt.cm.gray) 

plt.title('Image using only Phase with Average 

Magnitude') 

plt.show() 
 

 

 

 

im_new = fftpack.ifft2(im_fft2).real 
plt.imsave('moonlanding_denoise.jpg', im_new, 

cmap='gray') 

def estimate_noise(I): 

    H, W = I.shape 
    M = [[1, -2, 1], 

         [-2, 4, -2], 

         [1, -2, 1]] 

    sigma = np.sum(np.sum(np.absolute(convolve2d(I, 

M)))) 

    sigma = sigma * math.sqrt(0.5 * math.pi) / (6 * 

(W-2) * (H-2)) 

    return sigma 
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Figure 6. Image After Denoising (k = 0.2) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Image After Denoising (k = 0.4) 

 

The value of the estimated noise for each image is shown 
in Table 1. 

 

Table 1. Estimated Noise for different k value 

 

k Estimated noise 

Original Image 53.47096 

0.4 11.79659 

0.2 0.41757 

0.1 0.03547 

0.05 0.01048 

 

Another important result that can be demonstrated is the 

critical role of phase in image restoration and 

reconstruction. By reconstructing the image using only the 

phase or only the magnitude components, we can clearly 

observe their differing contributions to the final image. 

When the reconstruction is performed using only the phase 

information, the resulting image retains most of the 

structural details and spatial features, showing that the 

phase carries the majority of the information required to 

reconstruct the image's geometry and outline. This 

highlights the phase's pivotal role in preserving the overall 

structure and details of the image, even after denoising. In 

contrast, reconstructing the image using only the 

magnitude component yields a vastly different result. The 

magnitude contains information primarily about the 

intensity of the frequency components, and without the 

corresponding phase information, the resulting image often 

appears very dark, featureless, or entirely black. This 

underscores the limited role of magnitude in retaining 

structural details. Therefore, in the context of image 

restoration and denoising, preserving phase information is 

critical to ensure the retention of essential details and the 

accuracy of the reconstructed image. 

 

 

 

 

 

 

 

 

 

Figure 8. Image Using Only Magnitude  

 

 

 

 

 

 

 

 

Figure 9. Image Using Only Phase with Average 

Magnitude  

 

V.   CONCLUSION 

In this paper, we explored the use of the Fourier 

Transform for denoising astronomical images, 

demonstrating its effectiveness in reducing noise and 

enhancing image clarity. By filtering out high-frequency 

components in the frequency domain, we successfully 

reduced noise levels while preserving essential image 

details. However, our findings highlight the trade-off 

between noise reduction and image sharpness, 

emphasizing the need to carefully select the frequency 

retention parameter, k, to achieve an optimal balance. 

Additionally, through the reconstruction of images using 

only phase or magnitude components, we showed that the 

phase plays a critical role in preserving structural 

information. The magnitude primarily contributes to the 

intensity, while the phase retains essential spatial details 

necessary for accurate image reconstruction. 

Future work can explore adaptive filtering techniques 

and more advanced algorithms to address the limitations of 

high-frequency detail loss while improving noise reduction 

efficiency. The Fourier Transform remains a powerful tool 

for astronomical image processing, offering insights into 

noise removal and the fundamental importance of 

frequency domain analysis. 
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VI.   APPENDIX 

To provide a clearer understanding of the concepts and 

methods discussed in this paper, a supplementary video 

has been prepared. Link: https://youtu.be/FnG_xncsA24  
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