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Abstract—Matrix is often used as a tool to analyze astronomical 

data, including spectrum data obtained from telescope. The 

received data contains information that is needed to be extracted; 

thus, the desired insights are able to be analyzed. In order to 

perform the extraction of spectral data composition, matrix 

decomposition needs to be performed. There are several methods 

that can be used in matrix decomposition. However, every method 

has its own pros and cons in extracting the components. This paper 

will compare three matrix decomposition techniques: Singular 

Value Decomposition, Non-negative Matrix Factorization, and 

Independent Component Analysis to decompose spectral data from 

Sloan Digital Sky Survey (SDSS). 

  

Keywords—Matrix Decomposition, Spectral Data, Data 

Composition. 

 

 

I.   INTRODUCTION 

Mathematics, as the fundamental science of the universe, 

have led human to a more advanced civilization. For instance, 

the computers are developed from the principals in mathematics. 

These technologies have helped human to gain faster 

development of science. 

One of the applications are in the field of physics and 

astronomy. The integration of physics, mathematics, and 

computers has given more opportunities in exploring the outer 

space and the origin of the universe. Since most objects in the 

outer space are unreachable by human, instruments such as 

telescope become a big help. Moreover, the invention of space 

telescopes, such as Hubble Space Telescope and James Webb 

Space Telescope, as well as the feasibility of performing 

multiwavelength observation expand the probability to discover 

more insights from further objects. 

 

 
Figure 1. James Webb Space Telescope (retrieved from 

www.jwst.nasa.gov) 

These telescopes would provide images to be processed and 

analyzed by human. The images are processed through a series 

of methods. As image is a matrix of pixels, the matrix concept 

in mathematics plays an important role here. With the 

technology of computers, image processing, which basically is 

a matrix processing, becomes more accurate and faster. 

Data taken from images through telescope are raw data. The 

images could have noises or signals from the earth atmosphere, 

interstellar dust, or natural phenomenon such as syzygy. It might 

not show the targeted insight. In order to solve this, processing 

the matrix of pixels is really important. 

A matrix of pixels could be extracted to get the meaningful 

features from the complex signals. However, there are numerous 

methods in matrix decomposition which needs to be compared. 

The program in computer could make this process faster. 

Therefore, experiment using program is also conducted. 

 

II.  MATRIX 

A. Matrices 

Reference [1] defined matrix as a rectangular array of 

numbers which called the entries. The size of matrix is declared 

in terms of m × 𝑛 with 𝑚 shows the number of rows (horizontal 

lines) and 𝑛 shows the number of columns (vertical lines). 

The entry that is located in row 𝑖 and column 𝑗 of matrix 𝐴 is 

donated by 𝑎𝑖𝑗 . Therefore, the general 𝑚 × 𝑛 matrix 𝐴 is written 

as following. 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] 

 

A matrix 𝐴 which has 𝑛 × 𝑛 size is called a square matrix of 

order 𝑛. The entries 𝑎11, 𝑎22, … , 𝑎𝑛𝑛 are on the main diagonal of 

𝐴.  

Two matrices are equal if they have the same size and the 

corresponding entries are equal. That means, 𝐴 and 𝐵 are equal 

if and only if the number of rows of 𝐴 is the same with the 

number of rows of 𝐵 and the number of columns of 𝐴 is the same 

with the number of columns of 𝐵. In all corresponding values of 

𝑖 and 𝑗, the below expression must also be true. 

 

𝑎𝑖𝑗 = 𝑏𝑖𝑗  

 

If 𝐴 and 𝐵 are matrices with the same size, then the sum and 
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the difference of 𝐴 and 𝐵 is obtained by adding or subtracting 

the entries, such as below. 

 

(𝐴 ± 𝐵)𝑖𝑗 = 𝑎𝑖𝑗 ± 𝑏𝑖𝑗 

 

To get the product of matrix 𝐴 with the scalar 𝑐, all entries in 

𝐴 will be multiplied by  𝑐. Meanwhile, the product of two 

matrices 𝐴 and 𝐵 is only valid if the size of 𝐴 is 𝑚 × 𝑘 and the 

size of 𝐵 is 𝑘 × 𝑛. This product will result in a matrix 𝐶 with 

size 𝑚 × 𝑛. The entries in 𝐶 can be calculated from the equation 

below. 

 

𝐶𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑘𝑏𝑘𝑗 

 

Matrices also often declared as a linear combination. If 𝐴1,
𝐴2, … , 𝐴𝑛 are matrices of the same size and 𝑐1, 𝑐2, … , 𝑐𝑛 are 

scalars, then 𝑐1𝐴1 + 𝑐2𝐴2 + ⋯ + 𝑐𝑛𝐴𝑛 is the linear combination 

of 𝐴1, 𝐴2, … , 𝐴𝑛 with coefficient 𝑐1, 𝑐2, … , 𝑐𝑟 . This also works 

for matrix product with linear combinations. If 𝐴 is 𝑚 × 𝑛 

matrix and  𝑥⃗ an 𝑛 × 1 column vector as below, 

 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] and 𝑥⃗ = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 

then the product of 𝐴 and 𝑥⃗ is a matrix 𝐶 with size 𝑚 × 1 as 

following. 

 

𝐶 = 𝑥1 [

𝑎11

𝑎21

⋮
𝑎𝑚1

] + 𝑥2 [

𝑎12

𝑎22

⋮
𝑎𝑚2

] + ⋯ + 𝑥𝑛 [

𝑎1𝑛

𝑎2𝑛

⋮
𝑎𝑚𝑛

] 

 

If 𝐴 is an 𝑚 × 𝑛 matrix, then the matrix 𝐴𝑇 is the transpose of 

𝐴 and has a size of 𝑛 × 𝑚. The entries in 𝐴𝑇 corresponds to the 

entries in 𝐴 by interchanging the rows and columns of 𝐴. 

Suppose 𝐵 = 𝐴𝑇, the entry 𝑏𝑖𝑗  equals to the entry 𝑎𝑗𝑖  in matrix 

𝐴. 

A zero matrix is a matrix whose entries are all zeros. In 

another hand, the identity matrix 𝐼 is a square matrix with all 1’s 

on the main diagonal and zeroes elsewhere. Any matrix 𝐴 if 

multiplied by 𝐼 will results in the matrix 𝐴 itself. Below is the 

example of an identity matrix with size 3 × 3. 

 

𝐼 = [
1 0 0
0 1 0
0 0 1

] 

 

If 𝐴 and 𝐵 are square matrices with same size and they satisfy 

𝐴𝐵 = 𝐵𝐴 = 𝐼, then 𝐵 is the inverse of 𝐴 and 𝐴 is nonsingular 

(invertible). 𝐵 can be written as 𝐴−1. If there is no 𝐵 that 

satisfies the expression, then 𝐴 is singular.  

For matrix 𝐴 with size 2 × 2,  

 

𝐴 = [
𝑎 𝑏
𝑐 𝑑

] 

 

the inverse of 𝐴 exists if only if the determinant is not zero 

(det (𝐴) = 𝑎𝑑 − 𝑏𝑐 ≠ 0). The inverse of 𝐴−1 is declared as 

below. 

 

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐
[

𝑑 −𝑏
−𝑐 𝑎

] 

 

In general, for any matrix 𝐴 with the determinant not equals 

to zero, the inverse is calculated as 

 

𝐴−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴) 

 

with 𝑎𝑑𝑗(𝐴) is the adjoin of 𝐴, which is the transpose of 

cofactor matrix of 𝐴. A cofactor matrix is the matrix generated 

from the cofactor of each entry in A. The cofactor at row 𝑖 and 

column 𝑗 is 𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗, with 𝑀𝑖𝑗 is the minor of the 

corresponding entry. The minor 𝑀𝑖𝑗 is the determinant of the 

submatrix that exclude the 𝑖-th row and the 𝑗-th column. 

A diagonal matrix is a square matrix in which all the entries 

off the main diagonal is zero. Below is the example of diagonal 

matrices. 

[
0 0
0 0

] , [
3 0
0 −10

] , [
8 0 0
0 1 0
0 0 2

]   

 

A square matrix which all entries above the main diagonal are 

zero is called lower triangular matrix. If all entries below the 

main diagonal are zero, it is called an upper triangular matrix. 

Here, 𝐴 is a lower triangular matrix and 𝐵 is an upper triangular 

matrix. 

 

𝐴 =   [

𝑎11 0 0 0
𝑎21 𝑎22 0 0
𝑎31 𝑎32 𝑎33 0
𝑎41 𝑎42 𝑎43 𝑎44

] , 𝐵 =  [

𝑎11 𝑎12 𝑎13 𝑎14

0 𝑎22 𝑎23 𝑎24

0 0 𝑎33 𝑎34

0 0 0 𝑎44

] 

 

B. Eigen Value and Eigen Vector 

An eigen vector of 𝐴 (𝑛 × 𝑛) is a nonzero vector 𝑥⃗ in 𝑅𝑛 if 

𝐴𝑥⃗ is a scalar multiple of 𝑥⃗. This could be denoted as below with 

𝜆 is any scalar. The 𝜆 is called the eigen value of 𝐴 and 𝑥⃗ is the 

eigen vector to 𝜆. 

 

𝐴𝑥⃗ = 𝜆𝑥⃗ 

 

This shows that the equation above compresses or stretches 

eigen vector 𝑥⃗ by a factor of 𝜆.  

 

 
Figure 2. The eigen value 𝜆 compresses or stretches 𝑥⃗ based 

on the range of value (retrieved from [1]). 

 

The eigen values of matrix 𝐴 can be computed from the 

equation below which must have a nonzero solution for 𝑥⃗. In 

order to satisfy that, the coefficient matrix must have a zero 
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determinant. The equation below is called the characteristic 

equation of 𝐴. 

det(𝜆𝐼 − 𝐴) 𝑥⃗ = 0 

 

III.   MATRIX DECOMPOSITION 

There are several methods to decompose a matrix. In this 

section, four different methods will be discussed. 

 

A. Singular Value Decomposition 

A symmetric matrix 𝐴 can be expressed as 𝐴 = 𝑃𝐷𝑃𝑇  with 𝑃 

is an orthogonal matrix of eigen vectors of 𝐴 and 𝐷 is the 

diagonal matrix which entries the eigen values of 𝐴. If 𝑛 × 𝑛 is 

not symmetric, it has Hessenberg decomposition 𝐴 = 𝑃𝐻𝑃𝑇  and 

if 𝐴 has real eigen values, then it has Schur decomposition 𝐴 =

𝑃𝑆𝑃𝑇 . In another hand, a general square matrix decomposition 

form is 𝐴 = 𝑃𝐷𝑃−1 or one might be in the form of 𝐴 = 𝑈Σ𝑉𝑇 

[1]. 

In singular value decomposition, the target factorization is the 

second one, which is 

 

𝐴 = 𝑈Σ𝑉𝑇 

 

where Σ is a diagonal matrix with entries of singular value (𝜎) 

of 𝐴, which value is 𝜎𝑛 = √𝜆𝑛 and 𝜆 is the eigen value of 𝐴𝑇𝐴. 

Here, the 𝑉 matrix consist of normalized eigen vectors (𝑣⃗𝑛) of 

𝐴𝑇𝐴 as its column vectors and 𝑈 consists of  𝑢𝑛⃗⃗ ⃗⃗⃗ =
1

𝜎𝑛
𝐴𝑣𝑛⃗⃗⃗⃗⃗  as its 

column vectors. Vectors in 𝑈 can also be computed from the 

eigen vectors of 𝐴𝐴𝑇. 

 

B. Non-Negative Matrix Factorization 

Non-Negative Matrix Factorization only create positive 

factors from the original matrix. Since it only creates positive 

factors, it creates a constraint in certain applications such as in 

pixels and probability that cannot be negative [3]. This method 

usually be used in image processing, transcription process, 

cryptic encoding and decoding, music and videos 

decomposition, and text mining [4]. 

The goal of NMF is to decompose a matrix 𝑋 into two 

matrices as below with all values are positive [5]. 

 

𝑋 ≈ 𝑊𝐻 

 

Here, 𝑋 has dimension 𝑑 × 𝑛 with 𝑑 dimensional data and 𝑛 

individual data vectors. 𝑊 has the size of 𝑑 × 𝑞 and 𝐻 has the 

size of 𝑞 × 𝑛. The 𝑞 is the desired number of templates to fit. 

The decomposition started by setting random positive number 

in 𝑊 and 𝐻. 

In order to find the best corresponding entry, a new approach 

to update the entries is introduced to minimize the error as 

follows [6]. 

𝐻 ← 𝐻 ∙  
𝑊𝑇𝑋

𝑊𝑇𝑊𝐻
 

𝑊 ← 𝑊 ∙  
𝑋𝐻𝑇

𝑊𝐻𝐻𝑇
 

 

C. Independent Component Analysis 

Independent Component Analysis (ICA) is a technique to 

separate independent sources from mixed signals. It assumes 

that hidden independent components in a mixed signal are 

independent and are non-Gaussian [7]. 

ICA process consists of preprocessing, ICA estimation, and 

extracting independent components. Preprocessing includes 

data centering and whitening to decorrelates the variables and 

ensures they have unit variance. ICA estimation includes 

initializing a matrix, supposed 𝑊, the maximization of Non-

Gaussianity using FastICA. Extracting independent components 

is denoted as below with 𝑆 is the matrix with independent 

components once the 𝑊 converges. 

 

𝑆 = 𝑊𝑋𝑤ℎ𝑖𝑡𝑒𝑛𝑒𝑑  

 

D. Principal Component Analysis 

Principal Component Analysis (PCA) is not a matrix 

decomposition method itself, yet a method to find the most 

significant features in a matrix. Matrix decomposition technique 

such as SVD is used in one of the processes of finding PCA. It 

is a statistical technique for identifying data by linear mapping. 

It transforms a number of correlated variables into principal 

components that consist of a smaller number of uncorrelated 

variables. The transformed data has most of the variation in the 

first few components, the remaining components can be ignored. 

The steps to transform the data using PCA consists of five steps 

as following [2]. 

1. Subtracting the mean from each data dimension that 

creates the centered data set with mean zero (𝐴𝜇). 

2. Calculating the covariance matrix of the centered data. 

3. Calculating the eigen vectors and the eigen values of the 

covariance matrix. Here, the eigen value will represent 

the variance within a given component. 

4. Ordering the eigen vector based on the eigen values 

decrementally (from highest to lowest). 

5. Forming feature vector by taking the retained eigen 

vectors which are arranged column wise. The feature 

vectors would be as below. 

 

𝐹𝑉 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 = (𝑒𝑣1  𝑒𝑣2  …   𝑒𝑣𝑛) 

 

6. Transposing feature vector and subtracting its mean from 

the original centered data. This results in obtaining the 

PCA data. Thus, the PCA data is calculated as follows: 

 

𝑃𝐶𝐴𝑑𝑎𝑡𝑎 = 𝐹𝑉𝑇 × 𝐴𝜇 

 

IV.   SPECTRAL DATA 

Spectral data are data that is related to spectrum of 

frequencies. It refers to information that is obtained from diverse 

spectroscopic techniques [8]. In this paper, the spectral data will 

focus on astronomical data. 

In observational astronomy, spectroscopy is bringing huge 

impact and importance. It is the major key of understanding the 

physics and chemical properties of cosmic objects, including 

galaxies, stars, nebulae, and others. The concept of spectroscopy 
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originated from the theory of diffractive element by Isaac 

Newton, saying that light can be decomposed into contributions 

of different wavelength [9].  

 
Figure 3. Example of spectral data: Spiral Galaxy S7 

spectrum (Retrieved from [9]). 

 

The spectral data received directly from observational 

instruments contains many noises and signals that come from 

the earth atmosphere, interstellar dust, the movement of the 

cosmic object such as redshift, and its interaction with other 

object near them.  The data can also contain lots of information 

that is influenced by several features that is dominant to the data. 

Decomposing the data has always been one step in data 

processing to get the significance of certain variance that most 

influenced the data. This will be giving insights about more 

information to be analyzed. 

 

 
Figure 4. Redshifted star spectra data of MOSDEF galaxy 

(retrieved from https://mosdef.astro.berkeley.edu) 

 

V.   PROPOSED METHOD 

Determining spectral data composition in astronomy requires 

mathematics fundamental concept related to matrices. In this 

paper, the four methods of matrix decomposition using PCA, 

SVD, NMF, and ICA is conducted to perform spectral data 

decomposition of an astronomical data. These four methods will 

be compared to each other. 

The astronomical spectra data used for experiment is taken 

from Sloan Digital Sky Survey (SDSS) repository, focusing on 

photometric and spectroscopic observations from bright objects. 

The data is retrieved using SQL query as follows. 

 
SELECT TOP 10 

p.objid,p.ra,p.dec,p.u,p.g,p.r,p.i,p.z 

,p.run, p.rerun, p.camcol, p.field, 

s.specobjid, s.class, s.z as redshift, 

s.plate, s.mjd, s.fiberid 

FROM PhotoObj AS p 

JOIN SpecObj AS s ON s.bestobjid = p.objid 

WHERE  

  p.u BETWEEN 0 AND 19.6 

  AND g BETWEEN 0 AND 20 

 

The data used in the experiment is one of the results of the 

query. The experiment is conducted using libraries in python. 

The libraries used in the experiment are numpy, astropy, 

matplotlib, and scikit learn. Astropy is used to load the .fits 

data from the SDSS repository. Matplotlib is used to plot the 

data into images. Meanwhile, numpy and scikit learn are used to 

perform the matrix decomposition. 

 

VI.   PROGRAM EXPERIMENT 

The data processed in the experiment is an unknown and 

unclassified object located at right ascension 𝑅𝐴 (309.88°) and 

declination 𝛿 (−5.89°). The object was observed on MJD 

52164 or 12 September 2001. It was observed on telescope 

SDSS 2.5-M. Below is the flux vs. wavelength plot of the object. 

 

 
Figure 5. The plot of flux vs. wavelength of the object. 

 

The experiment is carried out in python with four extracted 

components. The number four is chosen refers to the previous 

study which used four eigen spectra in research of quasars 

spectrum from SDSS dataset [10]. The program is constructed 

as follows. 

 

1. Importing libraries 
import numpy as np 

from astropy.io import fits 

from sklearn.decomposition import PCA, NMF, 

FastICA, TruncatedSVD 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import 

StandardScaler 

 

2. Loading data 
def load_fits_data(file_path): 

    with fits.open(file_path) as hdul: 

        data = hdul[1].data 

        flux_data = data['flux'] 

        return flux_data.astype(np.float64) 

 

3. Creating sliding windows to create matrix from data 
def create_sliding_window_matrix(data, 

window_size=50): 

    n_samples = len(data) - window_size + 1 

    matrix = np.zeros((n_samples, 

window_size)) 

    for i in range(n_samples): 

        matrix[i] = data[i:i + window_size] 

    return matrix 
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4. Applying matrix decomposition 
def apply_decompositions(data, 

n_components=4): 

    window_size = 50 

    data_matrix = 

create_sliding_window_matrix(data, 

window_size) 

     

    scaler = StandardScaler() 

data_scaled = 

scaler.fit_transform(data_matrix) 

     

    decomposition_methods = { 

'PCA': PCA(n_components = 

n_components), 

'SVD': TruncatedSVD(n_components = 

n_components), 

'NMF': NMF(n_components = 

n_components, init='random', 

random_state=0), 

'ICA': FastICA(n_components = 

n_components, random_state=0) 

} 

     

    results = {} 

    for name, method in 

decomposition_methods.items(): 

        if name == 'NMF': 

data_nmf = data_scaled - 

data_scaled.min() 

transformed = 

method.fit_transform(data_nmf) 

else: 

transformed = 

method.fit_transform(data_scaled

) 

         

results[name] = { 

'transformed': transformed, 

'components': method.components_ 

if hasattr(method, 

'components_') else None, 

'explained_variance': 

method.explained_variance_ratio_ 

if hasattr(method, 

'explained_variance_ratio_') 

else None 

        } 

     

    return results 

 

5. Plotting components 
def plot_components(results, 

n_components=4): 

fig, axes = plt.subplots(len(results), 

1, figsize=(12, 3*len(results))) 

axes = np.array([axes]) if len(results) 

== 1 else axes 

     

for idx, (method_name, result) in 

enumerate(results.items()): 

        components = result['components'] 

        if components is not None: 

for i in range min(n_components, 

len(components))): 

axes[idx].plot(components[i], 

label=f'Component {i+1}') 

axes[idx].set_title(f'{method_n

ame} Components') 

            axes[idx].legend() 

            axes[idx].grid(True) 

    plt.tight_layout() 

    plt.show() 

 

6. Main program 
def main(): 

file_path = '1-spec-0634-52164-

0256.fits' 

    data = load_fits_data(file_path) 

    results = apply_decompositions(data) 

    plot_components(results) 

     

main() 

 

Below is the result of the plotting of each component 

extracted from the data. 

 
Figure 6. Matrix decomposition result using SVD, PCA 

(implementation of SVD), NMF, and ICA. 𝑥 axis represent 

window size/position and 𝑦 axis represent component 

coefficient. 

 

Based on the result, it is seen that PCA and SVD has the same 

plot since they are mathematically relevant. They provide a 

smooth periodic component (2-4) and a stable baseline of 

component 1. The first component might represent the mean 

spectrum, which explains the largest variance. The smooth 

oscillations indicate structured patterns in the data. Each 

component is uncorrelated (orthogonal) to each other. 

The NMF component has more erratic pattern due to non-

negativity constraint. It has higher amplitude on range 0-2.5. 

The less smooth components shows that it captures local 

features. The component variation suggests different emission 

or absorption features. 
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In another hand, ICA focuses on statistical independence 

rather than orthogonality. It gives more emphasis on 

independence between components and captures statistically 

independent spectral features. 

From the analysis, it can be concluded that PCA and SVD 

method is best for overall variance (matrix) decomposition. 

Meanwhile, NMF is useful for identifying physical spectral 

features since it has positive value constraints. The ICA method 

is better at separating independent sources in the spectrum. 

 

VII.   CONCLUSION 

Matrix decomposition is a method that can be used in 

extracting features of spectral data in astronomy. However, in 

order to find the best and most relevant result, not every method 

can be applied. PCA and SVD is optimal for data variance 

maximization. In another hand, NMF components match 

physical spectral features since it only processes positive values 

which match real spectral intensities and has more irregular 

pattern. Meanwhile, ICA focuses on statistical independence 

and good for separating mixed signals. 

Further research that examines more sample data can be 

carried out to get a more comprehensive result. Other matrix 

decomposition method also can be experimented and compared 

to the one that has been experimented in this paper. 

 

IX.   ACKNOWLEDGMENT 

The author would like to thank to God for the guidance 

throughout the process of learning and writing this paper. The 

author would also like to deliver biggest gratitude to IF2123 

Linear Geometry and Algebra lecturers for sharing and guiding 

the student in learning the materials throughout the semester. 

The author would also like to thank to family and friends who 

have accompanied the journey of joy and sorrow since the start 

of the author’s university journey. 

 

REFERENCES 

[1] Anton, H. (1994) Elementary Linear Algebra. 7th Edition, John Wiley & 

Sons, Hoboken. 

[2] Gandhi, Vaibhav. (2015). Brain-Computer Interfacing for Assistive 
Robotics. 

[3] Theodoridis, Sergios. (2020). Machine Learning: A Bayesian and 

Optimization Perspective (Second Edition). 
[4] Belyadi, H., Haghighat, A. (2021). Machine Learning Guide for Oil and 

Gas Using Python. 

[5] Green, D., Bailey, S. (2024). Algorithms for Non-Negative Matrix 
Factorization on Noisy Data With Negative Values. 

[6] Lee, D., Seung, H.S. (2000). “Algorithms for Non-negative Matrix  

Factorization,” in Advances in Neural Information Processing Systems. 
[7] Choudhury A. D.,  Pal, Arpan. (2022). “Sensor Signal Analytics,” in New 

Frontiers of Cardiovascular Screening Using Unobtrusive Sensors, AI, and 

IoT. 

[8] Significance of Spectral data. Retrieved from 

https://www.wisdomlib.org/concept/spectral-data. 

[9] Kaminski, A., Heidt, J., Pfeifer, V. (2021). Spectroscopy - Data Reduction 
and Interpretation. 

[10] Yip, C. W., Connolly, A. J., Berk, D. E. V., Ma, Z., Frieman, J. A., 

Subbarao, M., Szalay, A. S., Richards, G. T., Hall, P. B., Schneider, D. P., 
Hopkinds, A. M., Trump, J., Brinkmann, J. (2004). Spectral Classification 

of Quasars in The Sloan Digital Sky Survey: Eigenspectra, Redshift, And 

Luminosity Effects. 

STATEMENT 

I hereby declare that the paper I wrote is my own writing, not 

an adaptation, or translation of someone else's paper, and not 

plagiarized. 

 

Bandung, 31 Desember 2024    

 

 
 

Najwa Kahani Fatima - 13523043 

https://www.sciencedirect.com/book/9780128015438/brain-computer-interfacing-for-assistive-robotics
https://www.sciencedirect.com/book/9780128015438/brain-computer-interfacing-for-assistive-robotics

