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Abstract—Touchscreen gesture recognition is an integral 

component of modern human-computer interaction, providing an 

intuitive mechanism for executing commands on devices. This study 

evaluates the feasibility of using a lightweight gesture recognition 

system based on cosine similarity, offering an alternative to 

computationally intensive machine learning models. The proposed 

system preprocesses gesture images into binary grids, extracts feature 

vectors by analyzing grid densities, and classifies gestures by 

comparing feature vectors with template gestures using cosine 

similarity. Extensive experimentation on varying grid sizes reveals 

that mid-range configurations, such as 30 × 20, achieve optimal 

accuracy of 78.57%. Despite the simplicity and computational 

efficiency of the approach, the recognition accuracy remains 

suboptimal for practical deployment. 
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I.   INTRODUCTION 

The rapid development of touchscreen technology has 

transformed how users interact with devices. Early touchscreen 

systems, first seen in the 1960s and 1970s, were limited in 

precision and responsiveness, primarily relying on resistive 

touch technology. E. A. Johnson invented the first finger-driven 

touchscreen in 1965 at the Royal Radar Establishment in 

Malvern, United Kingdom. Johnson's work laid the foundation 

for capacitive touchscreens, commonly used today in high-end 

smartphones and tablets [1].  

With advancements in capacitive touchscreens during the late 

2000s, popularized by devices like the Apple iPhone, touch 

interfaces became faster, more accurate, and capable of 

supporting multi-touch gestures. This evolution paved the way 

for the widespread adoption of touchscreen devices, making 

gestures an indispensable tool for interaction across consumer, 

industrial, and medical applications. As the technology matured, 

the demand for efficient gesture recognition systems grew, 

especially in areas requiring real-time performance and 

adaptability to diverse user inputs. 

Touchscreen gestures have become a fundamental component 

of human-computer interaction, providing users with an 

intuitive and efficient way to navigate systems and execute 

commands. From swipes and taps to intricate gesture patterns, 

this modality has become essential in devices such as 

smartphones, tablets, and embedded systems. Despite the 

widespread use of gesture-based interfaces, creating an effective 

and reliable gesture recognition system remains a challenging 

task. Variability in user input, environmental noise, and 

differences in device sensitivity all contribute to the complexity 

of the problem. 

Many modern gesture recognition systems leverage machine 

learning, particularly deep learning models, to achieve high 

accuracy. While these methods excel in handling complex and 

diverse input, they often come with significant computational 

requirements and the need for extensive training datasets. This 

makes them impractical for resource-constrained environments, 

such as low-power embedded systems or real-time applications 

with limited computational budgets. Consequently, there is a 

need to explore simpler, more efficient methods that can balance 

accuracy and computational cost. 

In this paper, we explore the possibility of using a lightweight 

gesture recognition system based on cosine similarity, a 

straightforward measure of similarity between two vectors. Our 

focus is not on introducing a novel algorithm but rather on 

evaluating whether a simple, feature-based approach can serve 

as an effective alternative to more complex machine learning 

models. The goal is to understand how well such methods 

perform under various conditions and to assess their potential 

for real-world applications. 

By focusing on simplicity, interpretability, and efficiency, 

this study aims to provide insights into the trade-offs between 

computational complexity and recognition accuracy. It seeks to 

highlight the potential of classical methods for solving practical 

problems, especially in scenarios where high computational 

resources are unavailable or unnecessary. 

 

II.  THEORETICAL BASIS 

A. Gestures 

Gesture refers to a physical movement or position that 

conveys meaning or intent. In the context of touchscreen 

devices, gestures are intentional finger movements, such as 

swipes, taps, pinches, and complex patterns, used to perform 

specific commands or actions. These gestures act as a bridge 

between human intent and machine interpretation, enabling 

seamless interaction with digital interfaces [2]. 

Gesture recognition is the process of identifying and 

interpreting gestures from input data. In touchscreen systems, 

this typically involves analyzing the trajectory of finger 

movements or shapes drawn on the screen. The process often 
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consists of two stages: 

1. Feature Extraction 

Converting raw input (e.g., images or coordinates) into a 

mathematical representation. 

2. Classification 

Comparing the extracted features against predefined 

gesture templates to determine the best match. 

 

B. Matrix 

A matrix is a two-dimensional array of numbers arranged in 

rows and columns. Formally, a matrix 𝑀 with 𝑚 rows and 𝑛 

columns is represented as: 

 

𝑀 = [

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛

𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚,1 𝑎𝑚,2 ⋯ 𝑎𝑚,𝑛

] (1) 

 

Matrix can be manipulated by operations similar to algebra. 

One of the operation relevant to this paper is scalar 

multiplication. Matrix scalar multiplication involves 

multiplying each element of the matrix by a scalar value. Given 

a matrix 𝑀 and a scalar 𝑘, the resulting matrix is: 

 

𝑘 ∙ 𝑀 =

[
 
 
 
𝑘 ∙ 𝑎1,1 𝑘 ∙ 𝑎1,2 ⋯ 𝑘 ∙ 𝑎1,𝑛

𝑘 ∙ 𝑎2,1 𝑘 ∙ 𝑎2,2 ⋯ 𝑘 ∙ 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑘 ∙ 𝑎𝑚,1 𝑘 ∙ 𝑎𝑚,2 ⋯ 𝑘 ∙ 𝑎𝑚,𝑛]

 
 
 

(2) 

 

Matrices are widely used to represent various types of data, 

including images and transformations, in both mathematical and 

computational contexts.  

In the case of images, each element of a matrix corresponds 

to a pixel, with its value representing the intensity of the pixel. 

In grayscale images, this intensity value typically ranges from 0 

(black) to 255 (white), with intermediate values representing 

varying shades of gray. For binary images, where the only colors 

present are black and white, pixel values are limited to 0 (black) 

and 1 (white), simplifying the representation. 

 

 
(a) Grayscale image 

 
(b) Binary image 

Fig. 1. Pixel values in images represented as matrix 

Source: [3] 

 

When resizing images, techniques like bilinear interpolation 

are commonly used to preserve image quality. Bilinear 

interpolation resamples the image by estimating the value of a 

pixel in the resized image through a weighted average of the four 

nearest pixels in the original image. This approach helps to 

ensure smooth transitions and maintain the shape and structure 

of the gesture, which is crucial during preprocessing for gesture 

recognition. 

 

C. Vector 

A vector is a mathematical object that represents both 

magnitude and direction. It is expressed as an ordered list of 

numbers, called components, each of which corresponds to a 

specific direction in a given space. In 𝑛-dimensional space (Rn), 

a vector 𝐯 is written as: 

 

𝐯 = [𝑣1, 𝑣2, … , 𝑣𝑛] (3) 

 

Each component 𝑣𝑖 is a scalar that indicates the magnitude of 

the vector in the direction of the corresponding axis in the space. 

For example, in a 2D space, a vector 𝐯 = [𝑣1, 𝑣2] represent a 

direction in the 𝑥-axis and 𝑦-axis, respectively. Similarly, in a 

3D space, a vector 𝐯 = [𝑣1, 𝑣2, 𝑣3] represent a direction in the 

𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively. 

 

 
(a) Vector in R2 space 
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(b) Vector in R3 space 

Fig. 2. Vector in Euclidean spaces 

Source: [4] 

 

Vectors exist within a vector space, which is a set of vectors 

that can be added together and multiplied by scalars while still 

remaining within the same space. A vector space V must satisfy 

certain properties [5]: 

1. Closure 

The result of addition and scalar multiplication of vectors 

must be within the same space. If 𝐮, 𝐯 ∈ V and 𝑘 is a 

scalar, then: 

𝐮 + 𝐯 ∈ V (4) 

𝑘𝐮 ∈ V (5) 

 

2. Commutativity 

Vector addition must be commutative, meaning for all 

𝐮, 𝐯 ∈ V: 

 

𝐮 + 𝐯 = 𝐯 + 𝐮 (6) 

 

3. Associativity 

Vector addition must be associative,  meaning for all 

𝐮, 𝐯, w ∈ V: 

 

𝐮 + (𝐯 + 𝐰) = (𝐮 + 𝐯) + 𝐰 (7) 

 

4. Identity 

For all 𝐮 ∈ 𝑉, there exist 𝟎 identity vector and scalar 1 

such that: 

 

𝐮 + 𝟎 = 𝟎 + 𝐮 = 𝐮 (8) 

1𝐮 = 𝐮 (9) 

5. Inverse 

For each 𝑢 ∈ 𝑉, there exists −u ∈ V, such that: 

 

𝐮 + (−𝐮) = (−𝐮) + 𝐮 = 𝟎 (10) 

 

6. Distributivity 

Vector addition and scalar multiplication must hold 

distributive properties. For all 𝐮, 𝐯,𝐰 ∈ V and 𝑘,𝑚 is 

scalars, then: 

 

𝑘(𝐮 + 𝐯) = 𝑘𝐮 + 𝑘𝐯 (11) 

(𝑘 + 𝑚)𝐰 = 𝑘𝐰 + 𝑚𝐰 (12) 

𝑘(𝑚𝐮) = (𝑘𝑚)𝐮 (13) 

 

One of the fundamental operations in vector is scalar 

multiplication, which involves multiplying each component of a 

vector by a scalar. Given a vector 𝐯 = [𝑣1, 𝑣2, … , 𝑣𝑛] and a 

scalar 𝑘, the operation results in a new vector: 

 

𝑘 ⋅ 𝐯 = [𝑘 ⋅ 𝑣1, 𝑘 ⋅ 𝑣2, … , 𝑘 ⋅ 𝑣𝑛] (14) 

 

This operation scales the vector, changing its magnitude 

without affecting its direction. Scalar multiplication is crucial 

for transforming vectors or normalizing them to unit length in 

various applications. 

Another fundamental vector operation is the dot product (or 

scalar product) of two vectors, which provides a measure of their 

similarity. It is defined as the sum of the products of their 

corresponding components. For two vectors 𝐀 = [𝑎1, 𝑎2, … , 𝑎𝑛] 
and 𝐁 = [𝑏1, 𝑏2, … , 𝑏𝑛] the dot product is given by: 

 

𝐀 ∙ 𝐁 = ∑𝑎𝑖𝑏𝑖

𝑛

𝑖=1

(15) 

 

The dot product has several important properties. It is 

commutative, meaning 𝐀 ⋅ 𝐁 = 𝐁 ⋅ 𝐀, and distributive over 

vector addition. It is also bilinear, meaning it is linear in each of 

its arguments. 

Geometrically, the dot product of two vectors can also be 

expressed as: 

 

𝐀 ⋅ 𝐁 = ‖𝐀‖‖𝐁‖ 𝑐𝑜𝑠 θ (16) 

 

Where ‖𝐀‖ and ‖𝐁‖ are the magnitudes (or norms) of the 

vectors, and θ is the angle between them. If the vectors are 

parallel, the dot product is maximized. If they are orthogonal, 

the dot product is zero, indicating no similarity. 

The norm of a vector, also known as the magnitude or length, 

is a measure of its size. The most commonly used type of norm 

is the Euclidean norm, which is defined as: 

 

‖𝐯‖ = √∑𝑣𝑖
2

𝑛

𝑖=1

(17) 

 

This norm calculates the straight-line distance from the origin 

to the point represented by the vector in the space. The norm of 

two vectors follow triangle inequality, meaning ‖𝐯 + 𝐰‖ ≤
‖𝐯‖ + ‖𝐰‖ for any vectors v and w. 

 

D. Information Retrieval System 

Information retrieval (IR) system is a framework designed to 

retrieve relevant information from a dataset in response to a 

query. Examples include search engines and document matching 

systems. In the context of gesture recognition, the task of 

classifying gestures is analogous to information retrieval: the 

input gesture serves as the "query," and the system matches it to 

the most relevant template from a database. 

A key concept in IR systems is the measurement of similarity 

between the query and the available documents. One common 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025 

 

metric used to compare the similarity of two vectors is cosine 

similarity. For query vector 𝐐 and document vector 𝐃, it is 

defined as [6]: 

 

sim(𝐐,𝐃) = 𝑐𝑜𝑠 θ =
𝐐 ⋅ 𝐃

‖𝐐‖‖𝐃‖
(18) 

 

This metric quantifies how closely the two vectors align in 

terms of their direction. The value ranges from −1 to 1, where 

values closer to 1 indicates greater similarity, and values closer 

to −1 indicates greater dissimilarity.  

A value of 1 indicates that the vectors are identical in 

direction, meaning they have maximum similarity. A value of 0 

suggests that the vectors are orthogonal, meaning there is no 

similarity between them. Conversely, a value of −1 indicates 

that the vectors point in opposite directions, signifying 

maximum dissimilarity. 

 
Fig. 3. A query vector 𝐐 compared to two document vectors 𝐃𝟏 

and 𝐃𝟐 

Source: [6] 

 

Thus, cosine similarity provides a useful measure for 

comparing vectors in a variety of applications, including gesture 

recognition, where it helps assess how similar a query gesture is 

to predefined gesture templates. 

 

III.   METHODOLOGY 

The proposed gesture recognition system presented in this 

paper aims to classify touchscreen gestures using cosine 

similarity as the core metric for matching. The methodology 

involves a series of systematic stages, including dataset 

preparation, preprocessing, feature extraction, and 

classification, each contributing to the overall recognition 

process. These stages are carefully designed to ensure the 

system accurately identifies input gestures by matching them 

with the most relevant templates in the database. 

 

A. Dataset Preparation 

The foundation of any recognition system lies in its dataset. 

For this study, the dataset are comprised of black-and-white 

images, where the white pixels trace the path of the gesture 

drawn on a touchscreen. Each gesture is recorded as a PNG 

image with a resolution of 240 × 150 pixels and an 8-pixel-wide 

gesture path. This resolution and path size were chosen to strike 

a balance between accurately representing the gesture drawn and 

minimizing storage requirements. Standardizing the image size 

eliminates inconsistencies that could arise from varying 

dimensions, ensuring uniformity across the dataset. For 

simplicity and proof of concept, all gesture images in this study 

were created using Microsoft Paint, providing a controlled 

environment for generating the dataset. 

 

B. Preprocessing 

Once the dataset is prepared, the next stage is preprocessing, 

which transforms raw gesture images into a structured format 

suitable for subsequent analysis. In this stage, each gesture 

image in the dataset is converted into a binary image matrix, 

where the white pixels are represented with the value of 1 and 

the black pixels are represented with the value of 0. This binary 

representation ensures simplicity and efficiency in processing. 

To further structure the image, the matrix is divided into equal-

sized grid cells. This grid-based segmentation is essential for the 

next stage, as it facilitates the extraction of spatial information 

by dividing the image into smaller, manageable regions. 

 

C. Feature Extraction 

Feature extraction is the stage where the meaningful 

characteristics of the gestures are distilled into a numerical 

representation. Using the grid-based representation from 

preprocessing, the system calculates the proportion of white 

pixels within each grid cell. This process transforms the binary 

image matrix into a grid of density values that capture the spatial 

distribution of the gesture. The grid is then flattened into a 

feature vector, where each component maps to a specific region 

of the gesture image. This high-dimensional vector preserves the 

general spatial structure of the gesture, allowing the system to 

compare gestures effectively. By condensing the gesture’s 

details into a density format, the system reduces the complexity 

of raw images while retaining the information necessary for 

accurate classification. 

 

D. Classification 

With the feature vectors obtained from the feature extraction 

stage, the system proceeds to classify input gestures by 

comparing their feature vectors to those of the template gestures 

in the database. The core of this classification process lies in 

cosine similarity, a metric that measures the angular similarity 

between two vectors. For each input gesture, cosine similarity 

evaluates the alignment between its feature vector and the 

feature vectors of all template gestures. A similarity score is 

produced for each comparison, ranging from −1 to 1, with score 

closer to 1 indicates a high degree of similarity, while a score 

closer to −1 indicates significant dissimilarity. The template 

gesture with the highest similarity score is selected as the 

predicted class. To account for poorly matched gestures, a 

threshold is applied. If the highest similarity score falls below 

this threshold, the input gesture is classified as "unrecognized." 

This mechanism helps to prevent erroneous classifications in 

cases where the input gesture does not closely resemble any of 

the stored templates. 

 

E. Evaluation 

The final stage of the methodology involves evaluating the 

performance of the system. Accuracy is assessed by comparing 
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the predicted gesture labels against the ground truth labels for a 

diverse set of test gestures. The evaluation dataset includes 

variations in gesture styles and drawing consistency to simulate 

real-world scenarios and test the system’s ability to generalize. 

This evaluation shows the system's effectiveness and its 

potential for practical applications. 

 

IV.   IMPLEMENTATION 

The implementation of the gesture recognition system is 

developed using Python, using libraries such as OpenCV for 

image processing and NumPy for numerical computations. The 

system is modular, comprising several key functions that 

perform preprocessing, feature extraction, classification, and 

evaluation. 

 

A. Preprocessing Gesture Images into Grids 

Preprocessing begins by converting gesture images into a 

binary format and dividing them into grids. The function 

preprocess_image_into_grids takes an image filepath and 

a specified grid size as inputs. It loads the image in grayscale, 

binarizes it (assigning pixel values of 0 or 1), and divides it into 

a 4D array of grid cells. This process ensures a consistent 

representation of gesture images for subsequent feature 

extraction. This function ensures uniformity in image 

dimensions and prepares the data for extracting spatial features. 

 

def preprocess_image_into_grids(filepath,  

                               grid_size): 

  image = cv2.imread(filepath, 

                     cv2.IMREAD_GRAYSCALE) 

  if image is None: 

    raise FileNotFoundError(f"Image not found 

                            at {filepath}") 

  _, binary_image = cv2.threshold(image, 127, 1, 

                               cv2.THRESH_BINARY) 

  height, width = binary_image.shape 

  if (height % grid_size[0] != 0 or width %  

      grid_size[1] != 0): 

    raise ValueError(f"Image dimensions({height} 

                     , {width}) must be divisible 

                     by grid size {grid_size}") 

  cell_height = height // grid_size[0] 

  cell_width = width // grid_size[1] 

  grid = binary_image.reshape(cell_height, 

                              grid_size[0], 

                              cell_width, 

                              grid_size[1]) 

  return grid 

Fig. 4. Code snippet for the preprocessing function 

 

B. Extracting Features from Gesture Grids 

The function extract_features converts the preprocessed 

grid into a feature vector. It computes the sum of white pixels in 

each grid cell and flattens the resulting 2D array into a 1D 

feature vector. This vector represents the spatial structure of the 

gesture and is crucial for classification. 

 

def extract_features(grid): 

  density_grid = grid.sum(axis=(1, 3)) 

  vector = density_grid.flatten() 

  return vector 

Fig. 5. Code snippet for feature extraction function 

 

By summarizing pixel densities within grid cells, this method 

reduces the complexity of raw image data while retaining 

essential spatial information. 

 

C. Gesture Recognition Using Cosine Similarity 

To classify gestures, the function cosine_similarity 
computes the similarity between two feature vectors. It 

calculates the cosine of the angle between the vectors, with 

values closer to 1 indicating higher similarity. 

 

def cosine_similarity(vector1, vector2): 

  dot_product = np.dot(vector1, vector2) 

  magnitude = np.linalg.norm(vector1) *  

              np.linalg.norm(vector2) 

  return dot_product / magnitude 

Fig. 6. Code snippet for cosine similarity function 

 

The recognize_gesture function uses this metric to 

compare the feature vector of an input gesture with template 

vectors stored in a dictionary. The gesture with the highest 

similarity score is identified as the recognized gesture. 

 

def recognize_gesture(input_filepath,  

                      gesture_vectors,  

                      grid_size): 

  grid = preprocess_image_into_grids( 

         input_filepath, grid_size) 

  input_vector = extract_features(grid) 

  best_match = None 

  best_score = -1 

  scores = [] 

  for gesture_id, template_vector in 

      gesture_vectors.items(): 

    score = cosine_similarity(input_vector,  

                              template_vector) 

    scores.append(float(score.round(2))) 

    if score > best_score: 

      best_match = gesture_id 

      best_score = score 

  return best_match, best_score, scores 

Fig. 7. Code snippet for input gesture recognition 
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D. Loading Gesture Templates 

The load_gesture_vectors function preprocesses 

template gestures stored in a directory. It converts each gesture 

image into a feature vector and maps it to a unique gesture ID. 

This function creates a database of gesture templates, enabling 

efficient comparison during recognition. 

 

def load_gesture_vectors(data_dir, grid_size): 

  gesture_vectors = {} 

  for filename in os.listdir(data_dir): 

    if filename.endswith(".png"): 

      gesture_id = os.path.splitext(filename)[0] 

      filepath = os.path.join(data_dir, filename) 

      grid=preprocess_image_into_grids(filepath, 

                                       grid_size) 

      feature_vector = extract_features(grid) 

      gesture_vectors[gesture_id]=feature_vector 

  return gesture_vectors 

Fig. 8. Code snippet for loading gesture templates function 

 

E. Evaluating System Performance 

To evaluate the system, a loop iterates through grid sizes, 

preprocesses gestures from input and template directories, and 

calculates accuracy for each grid size. Recognition accuracy is 

determined by comparing the predicted gesture IDs with the 

ground truth. 

 

accuracies = [] 

for i in range(1, 151): 

  if 150 % i != 0: 

    continue 

  for j in range(1, 241): 

    if 240 % j != 0: 

      continue 

    grid_size = (i, j) 

    data_dir = "./template" 

    input_dir = "./input" 

    gesture_vectors = load_gesture_vectors( 

                        data_dir, grid_size) 

    total, correct = 0, 0 

      for filename in os.listdir(input_dir): 

      input_filepath = os.path.join(input_dir,  

                                    filename) 

      recognized_gesture, similarity, scores =  

        recognize_gesture(input_filepath,  

                          gesture_vectors,  

                          grid_size) 

      print(f"Input {filename} recognized as  

            gesture {recognized_gesture}.  

            (Similarity score: 

            {similarity:.2%})", end="\t") 

      for score in scores: 

        print(score, end="\t") 

      print() 

      total += 1         

      if filename[0] == recognized_gesture: 

        correct += 1 

    accuracy = correct / total 

    print(f"Accuracy: {accuracy:.2%}  

          ({correct}/{total}) for grid size  

          {grid_size[0]}x{grid_size[1]}") 

    accuracies.append((grid_size, accuracy)) 

Fig. 9. Code snippet for the main driver 

 

V.   ANALYSIS 

The system rely heavily on the preprocessing stage to 

transform raw input into a format that allows for accurate feature 

extraction and classification. To achieve this, the input gesture 

images are first binarized and divided into grids of specified 

size. Fig. 10. is an excerpt from the preprocessing pipeline, 

showcasing a sample gesture template and its corresponding 

input gesture used for evaluation. 

 

 
(a) Template path 

 

 
(b) Input path 
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Fig. 10. A pair of template and input gesture image, subdivided 

by 30 × 20 grid after preprocessing pipeline 

 

After preprocessing, the gesture image undergoes feature 

extraction, where each grid cell is summed to compute its pixel 

density. This step outputs a compact feature vector representing 

the gesture, capturing both the structural and spatial 

characteristics necessary. The resulting feature vector is then 

compared to a database of precomputed gesture templates using 

cosine similarity as the matching metric. Fig. 11.  demonstrates 

the image post-feature extraction using grid size of 30 × 20, 

where the grid cell intensities reflect the distribution of the path 

pixels across the image. 

 

 
(a) Template path 

 

 
(b) Input path 

Fig. 11. A pair of template and input gesture image converted 

into density matrix after feature extraction pipeline 

 

To determine the optimal grid size for maximizing 

recognition accuracy, every combination of grid sizes is tested 

extensively. Grid configurations range from highly granular and 

small sizes, such as 1 × 1 and 2 × 2, to coarse and large sizes 

like 150 × 240. Each configuration generates a unique feature 

vector representation, impacting the system’s ability to 

distinguish between gestures. Below is the table of 5 top-

performing and worst-performing grid sizes, along with graph 

displaying every combination performance, which displays the 

balance between granularity and accuracy. 

 

 

Table 1. 5 top-performing and worst-performing grid sizes 

Grid Size 
Correct 

(out of 56 inputs) 

Accuracy  

(%) 

Top-performing 

30 x 20 44 78.57 

30 x 24 43 76.79 

30 x 48 43 76.79 

15 x 20 40 71.43 

25 x 20 40 71.43 

Worst-performing 

75 x 120 19 33.93 

150 x 120 17 30.36 

150 x 60 15 26.79 

75 x 240 11 19.64 

150 x 240 8 14.29 

 

 

 
Fig. 12. Scatter plot of various grid sizes and its resulting 

accuracies 

 

From Table 1 and Fig. 12, it is evident that grid sizes in the 

small-to-mid range such as 30 × 20, achieving an accuracy of 

78.57%, outperform both overly coarse and excessively granular 

configurations. This success can be attributed to their ability to 

preserve crucial structural details without introducing 

segmentation noise. In comparison, overly coarse grids, such as 

150 × 240, fail to capture sufficient detail, leading to worse 

accuracy. Small and granular grid sizes provide decent accuracy, 

despite resulting in over-segmentation and amplifying noise. 

 

VI.   CONCLUSION 

Despite the promising results observed with certain grid sizes, 

the overall accuracy levels highlight that the system, in its 

current state, is not reliable enough for consistent, day-to-day 

usage. Even the best-performing grid size, 30 × 20, achieves an 

accuracy of only 78.57%, which falls short for practical 
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applications requirement where high reliability is essential. 

Without further enhancements to both preprocessing and 

classification methodologies, the system risks frequent 

misclassifications, making it unsuitable for environments that 

demand precision and consistency. 
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