
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

The Importance of Quaternion Spherical Linear

Interpolation for Rotating Objects

Nathan Jovial Hartono - 135230321
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13523032@mahasiswa.itb.ac.id, nathjovi899@gmail.com

Abstract—This study investigates the application of

spherical linear interpolation (slerp) as a method of

interpolating 3D orientations based on discrete orientation

points. The study also examines the weakness of other

techniques achieving similar motion like slerp, that is

controlling Euler angles. This study also explores the

application of slerp in computer graphics which exposes the

correlation between animation and robotics.

Keywords—Quaternion, 3D Animation, Interpolation,

Euler angles

I. INTRODUCTION

Computer graphics have entered an era where the gap

between simulation and realism is steadily closing.

Advanced physics engines now simulate interactions of the

physical world, lighting and shader algorithms that recreate

lifelike lighting effects, and professional tools creating

fluid, realistic movements for 3D computer-generated

objects—movements so natural they closely mimic those

of real life. Beyond animation, this field also helps explore

abstract concepts like the fourth dimension, offering

insights into realms beyond human perception. It is a tool

that can support proofs for theories and or claims of unclear

conclusions of said concepts.

In this evolving landscape, the industry standards have

seen better days manually deriving complex mathematical

equations. Modern workflows leverage optimized or

precises techniques to achieve the best solution. As many

of these solutions, there lies one of the fundamental

principles of computer graphics: rotation.

Rotation is a core concept in both computer graphics

and linear algebra. It governs the change in orientation of

rigid bodies in a 3D world and can be expressed as angular

displacement around a single axis or a combination of

multiple axes. Understanding and manipulating rotation

relies on foundational linear algebra concepts like

matrices, vectors, and their derivatives—including the

powerful tool known as quaternions., vectors and its

byproducts, and even quaternions.

II. PREREQUISITES

A. Quaternions

A Quaternion is mathematical expression of the form

𝑄 = 𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧

where 𝑤, 𝑥, 𝑦, 𝑧 or the four constituents of the quaternion

are real numbers that may be of positive, negative, or zero

and the symbols 𝑖, 𝑗, 𝑘 denote three imaginary units of the

quaternion which are independent and have no by any

linear relation [1].

Suppose another quaternion expression of the form

𝑄′ = 𝑤′ + 𝒊𝑥′ + 𝒋𝑦′ + 𝒌𝑧′

and supposed the equality between the expressions above,

𝑄 = 𝑄′,

then the constituents of 𝑄 and 𝑄′ are equal to each of their

respective constituents as follows,

𝑤 = 𝑤′, 𝑥 = 𝑥′, 𝑦 = 𝑦′, 𝑧 = 𝑧′

resulting in the natural definition of addition and

subtraction of quaternions, or by Hamilton’s rule “the sums
or differences of the constituents of any two quaternions,

are the constituents of the sum or difference of those two

quaternions themselves” [1]. The formula can be expressed

as follows,

𝑄 ± 𝑄′ = 𝑤 ± 𝑤′ + 𝒊(𝑥 ± 𝑥′) + 𝒋(𝑦 ± 𝑦′) + 𝒌(𝑧 ± 𝑧′).

B. Multiplying Quaternions

It is also natural to define the product of 𝑄𝑄′ as if

multiplying an algebraic equation which is represented as

follows,

𝑄𝑄′ = 𝑤𝑤′ + 𝒊𝑤𝑥′ + 𝒋𝑤𝑦′ + 𝒌𝑤𝑧′
 + 𝒊𝑥𝑤′ + 𝒊2𝑥𝑥′ + 𝒊𝒋𝑥𝑦′ + 𝒊𝒌𝑥𝑧′
 +𝒋𝒚𝑤′ + 𝒋𝒊𝑦𝑥′ + 𝒋2𝑦𝑦′ + 𝒋𝒌𝑦𝑧′
 +𝒌𝒛𝑤′ + 𝒌𝒊𝑧𝑥′ + 𝒌𝒋𝑧𝑦′ + 𝒌2𝑧𝑧′

mailto:1author@itb.ac.id
mailto:2author@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

where Hamilton then adopts the following system in order

to get the desired quaternion expression with three

imaginer units, of which are known as follows

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = −𝟏;
𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋;

𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊, 𝒊𝒌 = −𝒋;

giving us the final formula of multiplying a quaternion Q

as a multiplier with Q’ as a multiplicand will yield a

quaternion Q’’ with the proper expression consisting of
four real constituents and three imaginer units [1]. The

formula is as follows

𝑄′′ = 𝑄𝑄′
 = 𝑤𝑤′ − 𝑥𝑥′ − 𝑦𝑦′ − 𝑧𝑧′

 +(𝑤𝑥′ + 𝑥𝑤′ + 𝑦𝑧′ − 𝑧𝑦′)𝒊
 +(𝑤𝑦′ + 𝑦𝑤′ + 𝑧𝑥′ − 𝑥𝑧′)𝒋
 +(𝑤𝑧′ + 𝑧𝑤′ + 𝑥𝑦′ − 𝑦𝑥′)𝒌

C. Properties of Quaternions

C.1. Complex Conjugate

Two quaternions are determined to be conjugates if they

both share the same scalar part but have opposite vector

parts [1], [2]. For a quaternion of

𝑞 = 𝑞0 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3

the conjugate of q is presented as q*, denoted as follows

𝑞∗ = 𝑞0 − 𝒊𝑞1 − 𝒋𝑞2 − 𝒌𝑞3

with rules such as (𝑝𝑞)∗ = 𝑞∗𝑝∗ and (𝑝∗𝑞)∗ = 𝑞∗𝑝 [2].

C.2. Quaternion Norm

The norm of a quaternion q is denoted as N(q) which is

expressed as follows:

𝑁(𝑞) = √𝑞∗𝑞 or 𝑁2(𝑞) = 𝑞∗𝑞

where q is the standard expression for quaternions [2]. The

following expression can be expanded into a more familiar

equation found when trying to normalize a vector. The

expansion is as follows

𝑁2(𝑞) = 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = |𝑞|2

the equation is useful in determining the squared

magnitude of a quaternion especially in scenarios of 3D

rotations.

C.3. Unit Quaternion

A unit quaternion has a norm equal to one, where the

magnitude of the quaternion 𝑞 and it’s conjugate 𝑞∗ and the

norm value of q, 𝑁2(𝑞) is equals to 1 [2].

|𝑞| = |𝑞∗| = 1 and 𝑁2(𝑞) = 𝑞∗𝑞,

where the multiplication product of unit quaternions is a

unit quaternion [2].

 Any unit quaternion may be written as the following

𝑞 = 𝑞0 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 = cos 𝜃 + 𝒖 sin 𝜃,

𝒖 =
𝑞

|𝑞|
 , tan 𝜃 =

|𝑞|

𝑞0

, 𝜃 =
𝛼

2
 .

unit quaternion may also be expressed in the form of a tuple

(𝑎, 𝑏) where 𝑎 represents the scalar part and 𝑏 represents

the vector part of the quaternion.

𝑞 = (cos 𝜃 , 𝒖 sin 𝜃) = (cos
𝛼

2
, 𝒖 sin

𝛼

2
)

C.4. Inverse Quaternion

An inverse of a real number can be defined as a number

that represents a multiplicand or multiplier that multiplies

the other number which results in 1. The same concept can

be applied to finding the inverse of a quaternion. The

identity of a quaternion is defined as

𝑞 = 1 + 𝒊0 + 𝒋0 + 𝒌0

where the vector part has constituent values of zero. The

idea is to get a quaternion that outputs a product of the

identity quaternion from the following equation, q−1 q =
qq−1 = 1, and then multiplying both sides of the 2nd

equation with 𝑞∗ which we may write as follows

𝑞∗𝑞𝑞−1 = 𝑁2(𝑞)𝑞−1 = 𝑞∗

𝑞−1 =
𝑞∗

𝑁2(𝑞)
=

𝑞∗

|𝑞|2

and if q is a unit quaternion, then

𝑞−1 = 𝑞∗, |𝑞|2 = 1; [2].

C.5. Pure Quaternion

A pure quaternion is defined as a quaternion with the

scalar constituent equal to zero [2]. Pure quaternions have

one-to-one relationships with all vectors in ℝ3 and a vector

in that space corresponds to its respective pure quaternion.

From this property, we can define the product of a vector

with a quaternion to be a quaternion product of a

quaternion with a pure quaternion, effectively preserving

the quaternion representation.

D. Quaternions Rotation

Kuipers theorem defined the rotation of a quaternion as

the result from a triple product involving any unit

quaternions and its conjugate. The rotation is defined as

𝐿𝑞(𝑣) which is formulated as follows

𝐿𝑞(𝑣) = 𝑞𝑣𝑞∗

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

where q is any unit quaternion [2]. The above expression

can be described as a rotation of the vector 𝑣 , where 𝑣

represents any vector in the 3D space as such 𝑣 ∈ ℝ3, by

an angle of 2𝜃 about the axis rotation of 𝑞 [2]. The rotation

performed on the vector is anticlockwise. Performing a

clockwise rotation of 𝑣 is as simple as switching the

“cover” order of the 𝑣 to 𝐿𝑞∗ (𝑣) = 𝑞∗𝑣𝑞 with 2𝜃 as the

angle [2]. An important not here is that 𝑣 is represented as

a pure quaternion as it does not have any scalar value. The

unique property of this

E. Relative Rotation

Given two quaternions 𝑞0 and 𝑞1 where exists a

quaternion 𝑞0,1 that rotates 𝑞0 into 𝑞1 [3] [4]. Assume the

condition of a Global Frame of Reference, 𝑞0,1 must be left

multiplied with 𝑞0 as follows

𝑞0,1𝑞0 = 𝑞1

and by expanding the expression we can obtain the formula

for 𝑞0,1 [3] [4]:

𝑞0,1𝑞0𝑞0
−1 = 𝑞1𝑞0

−1

𝑞0,1 = 𝑞1𝑞0
−1

As for the condition of a Local Frame of Reference, 𝑞0,1

must be right multiplied with 𝑞0 which yields the formula

of 𝑞0,1 as [3] [4]:

𝑞0,1 = 𝑞0
−1𝑞1.

Some clarifications as to what the conditions are defined in

this context, simply a Global Frame of Reference is a fixed,
universal coordinate system, a common point of reference

for all objects in the system, whilst a Local Frame of

Reference is a coordinate system fixed relative to an object

or entity.

F. Canonicalization

A method to remove the ambiguity of multiple rotations,

in a sequence, caused by the property, double cover, of

rotations between quaternions [4]. This method checks the

angle in 4D space between each neighboring quaternions

in the sequence and ensures that it’s at most 90 degrees,

which translates to 180 degrees in 3D space [4]. This is

from the property that states the angle between two

quaternions in 4D space is half the angle it takes to rotate
one orientation to another in 3D space [6]. If any pair of

quaternions is not of the case, then simply negate one of

the quaternions to achieve the shortest rotation [4].

G. Exponentiation

A unit quaternion raised to the power of 𝑛 means

applying the same rotation for as much as 𝑛 times [4]. We

can refer to the image below if 𝑛 ∈ ℤ [7]:

Fig 1. Quaternion Integer Exponentiation [7]

with 𝑞0 = 1 and 𝑞1 = 𝑞 as the most basic form [4]. Using

the exponent −1 is equivalent to taking the inverse of the

unit quaternion, hence negative integer exponents apply

inverse rotation multiple times [4].

Non-integer exponents lead to partial rotations with the

value 𝑘 proportional to the rotation angle resulting in the

following formula [4]:

𝑞𝑘 = cos
𝑘𝛼

2
 + 𝒖 sin

𝑘𝛼

2

and can be referred to the following image below [8]:

Fig 2. Quaternion Non-integer Exponentiation [8]

III. SPHERICAL LINEAR INTERPOLATION

A. Spherical Linear Interpolation

“Slerp” or “spherical linear interpolation” or “great arc

in-betweening” (introduced by Shoemake [5]) describes an

interpolation of constant angular velocity along the shortest

path on the unit hypersphere between two quaternions. The

formula Shoemake presented is as follows [5]:

𝑆𝑙𝑒𝑟𝑝(1, 𝑞; 𝑡) = 𝑞1(𝑞1
−1𝑞2)𝑡 (3.1)

Eq (3.1) only works for quaternions [4]. From the 4D
geometry comes [5]:

𝑆𝑙𝑒𝑟𝑝(𝑞1, 𝑞2; 𝑡) =
sin(1−𝑡)𝛼

sin 𝛼
𝑞1 +

sin 𝑡𝛼

sin 𝛼
𝑞2 (3.2)

whereas the expression Eq. (3.2) works for unit-length
elements of arbitrary-dimensional inner product space [4].

B. Derivation

Starting off by performing slerp on the identity

quaternion to some unit quaternion which can be achieved

by simply changing the angle from 0 to 𝛼 while the rotation

axis stays the same, which will yield the expression below

[4] :

𝑆𝑙𝑒𝑟𝑝(1, 𝑞; 𝑡) = 𝑞𝑡 (3.3)

Generalizing this to the great arc from 𝑞0 to 𝑞1 by left

multiplying Eq. (3.3) (substitute 𝑞 with 𝑞0,1) of the global

frame relative rotation with 𝑞0. The expression is as

follows [4]:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

 𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) = 𝑆𝑙𝑒𝑟𝑝(1, 𝑞0,1; 𝑡)𝑞0 = (𝑞1𝑞0
−1)𝑡𝑞0

 (3.4)

An alternative is to right multiply Eq. (3.3) of the local

frame relative rotation (substitute 𝑞 with 𝑞0,1) with 𝑞0. This

will yield the expression [4]:

𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) = 𝑞0𝑆𝑙𝑒𝑟𝑝(1, 𝑞0,1; 𝑡) = 𝑞0(𝑞0
−1𝑞1)𝑡

 (3.5)

Another alternative is to express Eq. (3.4) and Eq. 3.5 by

swapping 𝑞0 with 𝑞1 and replacing the parameter 𝑡 with

1 − 𝑡 [4]. This will yield the four equivalent ways of

describing slerp between 𝑞0 and 𝑞1 with parameter t, with

the expressions as follows [4]:

𝑆𝑙𝑒𝑟𝑝(𝑞0, 𝑞1; 𝑡) = 𝑞0(𝑞0
−1𝑞1)𝑡

= 𝑞1(𝑞1
−1𝑞0)1−𝑡

= (𝑞1𝑞0
−1)𝑡𝑞0

= (𝑞0𝑞1
−1)1−𝑡𝑞1,

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑡 ≤ 1 (3.6)

When we negate one of the quaternions, for example 𝑞1,

we can see that both quaternions move along the same great

circle but in different rotation directions, but 𝑞2 and −𝑞2

represent the same rotation hence the result of the

interpolation will have the same orientation. For

visualization examples visit our GitHub repository [11].

IV. EULER ANGLE LIMITATIONS

A. Euler Angle

A representation of rotations as a sequence of three

elementary rotations, i.e. rotations around one of the basis

vectors 𝑒𝑥
0, 𝑒𝑦

0, 𝑜𝑟 𝑒𝑧
0, in the three-dimensional space, where

two successive rotations should not be made around

parallel axes to fully describe every orientation [9]. The

concept of Euler angles is classified into two categories,
first being the proper Euler angles, where the first and the

third rotation are made around the same axis, and the

second referred to Tait-Bryan angles, or roll-pitch-yaw

angles, whereas unlike proper Euler angles, Tait-Bryan

angles rely on three different angles XYZ with different

order of arrangement [9]. The order of arrangement

represents a hierarchy relation between each axis, as

example in XYZ Euler angles the rotation of the starting

axis X will affect the orientation or position in vector space

of the elementary rotation axis Y and Z [9]. This can be

easily visualized gimbals.

B. Euler Angle Conversion to Unit Quaternion

Identify the Azimuth or Yaw (𝜓), Elevation or Pitch (𝜃),

and the Roll (𝜙) of the desired orientation of the object. We

then convert the three axes to its respective quaternion

using it’s respective rotation axis; Azimuth using the z-

axis, Elevation using the x-axis, and Roll using the y-axis

[4]. To convert a single axis-angle representation into a

quaternion, we must normalize the axis, scale the angle by

half as quaternion angle representation, then we pass

through an exponential map from that converts from ℝ3 to

unit quaternions [4]. After acquiring each quaternion from

its respective axis, multiply the unit quaternion axis with

the order of 𝑞𝐴𝑧𝑖𝑚𝑢𝑡ℎ ∗ 𝑞𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ∗ 𝑞𝑅𝑜𝑙𝑙 which will yield

the quaternion based off the three axes of Euler angles [4].

C. Gimbals

Gimbals are physical manifestations of Euler angles

where each ring represents one of the elementary rotations,

whereas the collection of gimbals represents a sequence

such as XYZ or ZYX in Euler angles term [10] [11]. This

device is capable of visualizing rotation of an object’s
orientation through complex axis. A single gimbal

provides one degree of rotational freedom and when three

are combined in a nested sequential way, they allow an

object to rotate freely in three dimensions [10] [11].

A sequence of gimbals is to be arranged in a specific

manner where the hierarchy order of elementary rotations

are important in determining the sequence of rotations to

be performed on an object [10][11]. The downside of this

system is that it has practical limitations in complex or

continuous rotations [10].

D. Gimbal Lock

A gimbal lock occurs when two of the three rotational

axes are aligned, leading to the reduction of the system’s

degree of freedom from three to two [10]. This corresponds
to the singularity property of Euler angle’s representation

of rotations, where a specific configuration will lead to the

loss of one independent rotation axis, effectively only

making two axes free of rotation. A gimbal lock creates an

unintended rotating path of the great arc when rotating an

object’s orientation due to the lack of third degree of

freedom [10].

Consider a three-ring gimbal system of order XYZ,

where the rotation of Y and Z is affected by X and the

rotation of Z is affected by the Y. We then rotate the axis

Y until X and Z are aligned to within each other. The same

applies to every variation of Euler angles, whereas (in the
context of three gimbals) the middle axis rotates the

innermost child axis aligning it along the outer parent axis.

Fig 4. Gimbal Lock of the orientation XYZ

Fig 4. shows that there is a loss of degree where the

changes of orientation by rotating on the red axis will yield

the same result as rotating on the blue axis. This behavior

creates unintended arcs when trying to do simple rotations

on certain axes. One of the solutions is to undo the rotation

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

on the axis that caused the lock and perform rotations on

the axes that are in need which in return gives us

unintended arcs.

Fig 5. Rotation arc comparison

Fig 5. represents the rotation arc of a gimbal system. The

system shown is using the sequence XYZ where the initial

state is as the figure represents, where the Y axis

orientation has been rotated 90° to simulate the gimbal

lock. When trying to rotate through the X axis by 90° from

the current orientation, it will create a new unintended arc

(arc number 2 in Fig 5.) trying to reach the orientation it

has been assigned. The object will not be able to rotate

through the intended arc (arc number 1 in Fig 5.) because

of the lock. The solution is to flip or rearrange the sequence

order according to the case of use, but unreliable for special

case of rotations. Another solution that will fix this issue is

by using quaternions as they are representatives of 4D
orientations that is used to calculate rotations in 3D space,

hence achieving the intended arc without the issue of

locking. The animation for Fig 5. is available in our GitHub

repository [11].

V. APPLICATIONS OF SLERP

A. 3D Computer Animation

Animators are equipped with tools that express 3D

objects with their respective position, orientation, and size

in its respective software representation of 3D space.

Animating is a way to represent the change of these

properties in a specific time frame. Traditional 2D

animation is presented by illustrating each individual frame

with the object’s desired motion. This process does not rely

on vectors or quaternions concepts to illustrate orientation

of the object presented in its medium. Each frame of

illustration is based off the animator’s intuition, supported

by perspective theories and more. 3D animators must grasp

advanced concepts such as physics and vectors to replicate

the workload presented by 2D animators. The solution is to

provide tools that interpolate the positions and orientations

of objects. Animators simply specify these properties at

key time frames, and the software calculates the

intermediate values to replicate smooth motion.

Slerp is applied to the change of orientation between

specified time frames. Each keyframe in the timeline is

assigned the value of its orientation at that timeframe.

Fig 6. Keyframing Orientation in Blender 3D Software

The resulting keyframing will create a continuous and

smooth path from the beginning to the end of the sequence.

Using slerp will prevent gimbal lock occurring in between

rotation motions. We have presented the simulation of

keyframe animation in our GitHub Repository [11].

B. Robotics in 3D Animation

One of the most important aspects of robotics is its

control system. Creating a reliable control system

determines the quality of the robot. Motors are an

important aspect of robotics; it simulates a rotating motion.

This can be achieved by calculating the angular speed of

the rotation or by applying inverse kinematics [12].

Inverse kinematics involves the determination of joint

rotations and part lengths that yields precise motion,

placement, and orientation of an end node, for example

robot arms [12]. We only care the discrete position or

orientation of the object, but we do not need any details on

how to reach that point. The problem presented here is

similar to interpolating a position or orientation hence

animators must have a fundamental understanding of

robotics to achieve smooth motion. For example, the

motion in arm movement at minimum requires the

orientation of two important axes, the shoulder and the

elbow. With the orientation presented, we can perform the

Slerp interpolation at the shoulder axis then we can

continue performing slerp at the connected elbow axis.

Fig 7. Robotics Arm Axes Mapping [13]

V. CONCLUSION

This study explored the interpolation technique "slerp"

(spherical linear interpolation) as an effective method for

interpolating orientations based on discrete orientation in

3D space. The study exposed the weaknesses and

limitations of alternative techniques, such as Euler angles,

which often suffer from issues like gimbal lock resulting in

undesired rotation arc of the motion. The study presents the

robustness of slerp in providing smooth and consistent

rotational transitions, making it an excellent choice for

applications requiring precise orientation control.

Additionally, the study identified various practical

applications of slerp, such as animation and robotics where

accurate orientation interpolation is crucial to achieve

perfect output. Future work may explore techniques that

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

combine slerp with other methods to achieve a wider range

of motion of a rigid object. Future work will also explore

the techniques to achieve “Bezier” like motion when

achieving slerp, replicating the motion of a cubic spline of

De Casteljau’s Algorithm, Piecewise Bezier, and Catmull-

Rom algorithm, and translating that concept into a

spherical representation of that motion.

VII. ACKNOWLEDGMENT

The author would like to express its gratitude to the

lecturers of “Aljabar Linear dan Geometri” class of ITB

2023, professor Dr. Ir. Rinaldi Munir, M.T. , for providing

the knowledge and guiding the students of this class to

accomplish success and passing grades of this class. The

author is also deeply thankful to family and friends for their

support across the semester.

REFERENCES

[1] W. R. Hamilton, "On quaternions," The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 1844–

1850.

[2] J. E. Kuipers, Quaternions and Rotation Sequences: A Primer with

Applications to Orbits, Aerospace, and Virtual Reality. Princeton,

NJ: Princeton University Press, 1999..

[3] M. D. Shuster, "A survey of attitude representations," Journal of the

Astronautical Sciences, vol. 41, no. 4, pp. 439–517, Oct.–Dec. 1993.

[4] "Quaternions," splines documentation. [Online]. Available:

https://splines.readthedocs.io/en/latest/rotation/quaternions.html.

[Accessed: Dec. 24, 2024].

[5] K. Shoemake, "Animating rotation with quaternion curves," ACM

SIGGRAPH Computer Graphics, vol. 19, no. 3, pp. 245–254, 1985

[6] "Orientation & Quaternions," CSE169 Lecture Slides, University of

California, San Diego. [Online]. Available:

https://cseweb.ucsd.edu/classes/wi18/cse169-

a/slides/CSE169_03.pdf. [Accessed: Jan. 1, 2025].

[7] "Rotation Quaternions 34," splines documentation. [Online].

Available:

https://splines.readthedocs.io/en/latest/_images/rotation_quaternio

ns_34_0.svg. [Accessed: Jan. 1, 2025].

[8] "Rotation Quaternions 38," splines documentation. [Online].

Available:

https://splines.readthedocs.io/en/latest/_images/rotation_quaternio

ns_38_0.svg. [Accessed: Jan. 1, 2025].

[9] "Kinematics," Robot Dynamics, ETH Zurich, Zurich, Switzerland.

[Online]. Available: https://ethz.ch/content/dam/ethz/special-

interest/mavt/robotics-n-intelligent-systems/rsl-

dam/documents/RobotDynamics2016/KinematicsSingleBody.pdf.

[Accessed: Dec. 31, 2024].

[10] A. G. Atkins and T. I. Archer, "Gimbals and their Applications,"

Mechanical Engineering Journal, vol. 45, no. 3, pp. 123–130, 2005.

[11] 19623248Git, "Quaternion Implementations," GitHub repository,

[Online]. Available:

https://github.com/19623248Git/Quaternion_Implementations.

[Accessed: 02-Jan-2025].

[12] Computer History Museum, "DEC PDP-10 Maintenance Manual,"

[Online]. Available:

https://archive.computerhistory.org/resources/access/text/2023/06/

102724883-05-10-acc.pdf. [Accessed: 02-Jan-2025].

[13] CODESYS SoftMotion. "Robotics Orientation Interpolation,"

[Online]. Available: https://content.helpme-

codesys.com/en/CODESYS%20SoftMotion/_sm_robotics_orientat

ion_interpolation.html. [Accessed: 02-Jan-2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 01 Januari 2025

Nathan Jovial Hartono - 13523032

