4. QUATERNION ALGEBRAS

§4.1. Hamilton and His Quaternions

Historically, quaternions were the step between complex numbers and matrices. Hamilton sought in vain to find a 3-dimensional analogue of the way complex numbers represent rotations in 2-dimensional space. His 8 year old son would ask him after breakfast, "Well Papa, can you multiply triplets?" whereupon his father sadly shook his head and said, "no, I can only add and subtract them."

Eventually, in 1843, while walking along beside a canal in Dublin, he realized that he had to consider not triplets but quadruplets, or "quaternions". He took out a penknife and carved in Brougham Bridge the key to the problem:

$$i^2 = j^2 = k^2 = ijk = -1.$$

Here i, j, k represent 90° degree rotations about three mutually orthogonal axes. The other basic relationships:

$$ij = k = -ji;$$

 $jk = i = -kj;$
 $ki = i = -ik$

can be deduced from them, assuming the associative law.

A typical quaternion has the form:

$$x_0 + x_1 i + x_2 j + x_3 k$$
.

Addition and multiplication are defined in the obvious way, assuming the associative and distributive laws.

Example 1: Writing a typical quaternion as an element (λ, v) of $F \times V$, where i, j, k are a basis for V, the operation of multiplication becomes:

$$(\lambda_1, v_1). (\lambda_2, v_2) = (\lambda_1 \lambda_2 - v_1. v_2, \lambda_1 v_2 + \lambda_2 v_1 + v_1 \times v_2).$$

§4.2. Quaternion Algebras

If $a, b \in F^{\#}$ then we define $[a, b]_F$ to be a vector space over F of dimension 4 with basis 1, i, j, k (with F identified with the subspace spanned by 1) made into an F-algebra by defining multiplication as follows:

	1	i	j	k
1	1	i	j	k
i	i	a	k	-j
j	j	-k	b	i
k	k	j	—i	-ab

Example 2:

 $[-1, -1]_{\mathbf{R}}$ is Hamilton's quaternion algebra.

 $[1, -1]_F \cong M_2(F)$, the algebra of 2×2 matrices over F, for any field F.

Here
$$1 \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $i \leftrightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $j \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $k \leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

§4.3. Quaternion Algebras and Quadratic Forms

If $x = x_0 + x_1i + x_2j + x_3k$ is an element of the quaternion algebra A, then the **conjugate** of x is defined by:

$$\mathbf{x} = \mathbf{x}_0 - \mathbf{x}_1 \mathbf{i} - \mathbf{x}_2 \mathbf{j} - \mathbf{x}_3 \mathbf{k}.$$

We define x to be a **pure quaternion** if $x_0 = 0$, that is, if $\overline{x} = -x$. Notation: A_0 denotes the set of pure quaternions in A.

We make A into a quadratic space by defining:

 $\langle x \mid y \rangle = \frac{1}{2} (x y + y x).$

Note that F and A₀ are orthogonal complements of one another and so $A = F \oplus A_0$ as quadratic spaces.

Theorem 1: If $A = [a, b]_F$ then $A \cong \langle 1, -a, -b, ab \rangle$, $F \cong \langle 1 \rangle$ and $A_0 \cong \langle -a, -b, ab \rangle$. **Proof:** Take the basis 1, i, j, k. **Corollary:** det $A \cong 1$.

Theorem 2: $[a_1, a_2]_F \cong [b_1, b_2]_F$ as F-algebras if and only if $\langle -a_1, -a_2, a_1a_2 \rangle \cong \langle -b_1, -b_2, b_1b_2 \rangle$. **Proof:** Let $A = [a_1, a_2]_F$ and $B = [b_1, b_2]_F$. Let $\varphi: A \rightarrow B$ be an F-isomorphism. (1) $\varphi(A_0) = B_0$: It is sufficient to show that $\varphi(i), \varphi(j), \varphi(k) \in B_0$. Suppose $\varphi(i) = x_0 + x_1i + x_2j + x_3k$. Then $a_1 = a_1\varphi(1) = \varphi(a_1) = \varphi(i^2) = \varphi(i)^2$ $= (x_0^2 + b_1x_1^2 + b_2x_2^2 - b_1b_2x_3^2) + 2x_0(x_1i + x_2j + x_3k)$. Equating pure parts, $x_0(x_1i + x_2j + x_3k) = 0$. If $x_1i + x_2j + x_3k = 0$ then $\varphi(i) = x_0 = \varphi(x_0)$, a contradiction since φ is 1-1. Hence $x_0 = 0$ and so $\varphi(i) \in B_0$. Similarly for $\varphi(j)$ and $\varphi(k)$.

(2)
$$\overline{\varphi(x)} = \varphi(\overline{x})$$
: Let $x = y + z$ where $y \in F$ and $z \in A_0$.
Then $\overline{\varphi(x)} = \overline{\varphi(y) + \varphi(z)} = \varphi(y) - \varphi(z) = \varphi(y - z) = \varphi(\overline{x})$.

(3) φ is an isometry: $\langle \varphi(x) | \varphi(x) \rangle = \varphi(x) \overline{\varphi(x)} = \varphi(x) \varphi(\overline{x}) = \varphi(x\overline{x}) = x\overline{x} = \langle x | x \rangle$, since $x\overline{x} \in F$.

Hence A_0 , B_0 are isomorphic as quadratic spaces.

Now suppose that $A_0 \cong B_0$. Then $\langle -a_1, -a_2, a_1a_2 \rangle \cong \langle -b_1, -b_2, b_1b_2 \rangle$. Let $\varphi: A_0 \to B_0$ be an isometry. Then $-\varphi(i)^2 = \varphi(i) \overline{\varphi(i)} = \langle \varphi(i) | \varphi(i) \rangle = \langle i | i \rangle = -i^2 = -a_1$. Hence $\varphi(i)^2 = a_1$. Similarly $\varphi(j)^2 = a_2$ and $\varphi(i)\varphi(j) = -\varphi(j)\varphi(i)$. Since 1, $\varphi(i)$, $\varphi(j)$, $\varphi(k)$ is a basis for B, B $\cong [a_1, a_2]_F$ as F-algebras. **Corollary:** Quaternion algebras are isomorphic if and only if they are isometric as quadratic spaces.

Proof: This follows from the fact that $A \cong B$ if and only if $A_0 \cong B_0$ (using the Witt Uniqueness Theorem).

Theorem 3: Either $[a, b]_F$ is a division ring or it is isomorphic to $M_2(F)$.

Proof: Suppose $A = [a, b]_F$ is not a division ring.

(1) A is isotropic as a quadratic space:

There exists $0 \neq x \in A$ with no multiplicative inverse.

Now if $x \ \overline{x} \neq 0$ then $x\left(\frac{x}{x \ \overline{x}}\right) = 1$, a contradiction. Hence $\langle x | x \rangle = x \ \overline{x} = 0$.

(2) A is hyperbolic as a quadratic space:

By Theorem 8 of chapter 2, $A \cong \langle 1, -1 \rangle \oplus \langle c, d \rangle$ for some c, d $\cong \langle 1, -1 \rangle \oplus \langle 1, -1 \rangle$ by Theorem 5 of chapter 2.

(3) A₀ is isotropic as a quadratic space:

A contains two linearly independent elements $x + x_0$ and $y + y_0$, with $x, y \in F$ and $x_0, y_0 \in A_0$ which are orthogonal and have zero length.

We may assume without loss of generality that x = y = 1. (If x or y = 0 we are done, otherwise we may divide.)

Clearly $x_0 \neq y_0$. From $\langle 1 + x_0 | 1 + x_0 \rangle = \langle 1 + x_0 | 1 + y_0 \rangle = \langle 1 + y_0 | 1 + y_0 \rangle = 0$ we conclude that $\langle x_0 | x_0 \rangle = \langle x_0 | y_0 \rangle = \langle y_0 | y_0 \rangle = -1$ and hence $\langle x_0 - y_0 | x_0 - y_0 \rangle = 0$.

(4) $A \cong M_2(F)$ as F-algebras:

By Theorem 8 of chapter 2, $A_0 \cong \langle -a, -b, ab \rangle \cong \langle 1, -1 \rangle \oplus \langle -1 \rangle$. Hence by Theorem 2 above, $A_0 \cong [1, -1]_F \cong M_2(F)$.

Example 3:

Over **C** the only possible quaternion algebras is $M_2(\mathbf{C})$.

Example 4:

Over **R** the possible quaternion algebras are:

Quaternion	As a QS	Isomorphic to
algebra		
$[1, 1]_{\mathbf{R}}$	$\langle 1, -1, -1, 1 \rangle$	$M_2(\mathbf{R})$
$[1, -1]_{\mathbf{R}}$	$\langle 1, -1, 1, -1 \rangle$	$M_2(\mathbf{R})$
$[-1, -1]_{\mathbf{R}}$	$\langle 1, 1, 1, 1 \rangle$	Hamilton's
		quaternion
		algebra

Example 5: There are infinitely many Quaternion algebras over **Q**. In fact, if p, q are distinct primes of the form 4n + 3 then $[-1, p]_{\mathbf{Q}}$ is not isomorphic to $[-1, q]_{\mathbf{Q}}$. Dirichlet's Theorem ensures that there are infinitely many such primes.

§4.4. The Witt Ring of a Finite Field

Theorem 4: There is only one quaternion algebra over a finite field, namely $M_2(F)$. **Proof:** If F is a finite field and Q is a quaternion algebra over F then $|Q| = |F|^4 < \infty$. By a theorem of Wedderburn every finite division ring is a field. Since Q is noncommutative it must be isomorphic to $M_2(F)$.

Theorem 5: If there is only one quaternion algebra over the field F then $W(F) = \{\langle \rangle\} + \{\langle x \rangle \mid x \in F^{\#}/F^{\#2}\} + \{\langle 1, x \rangle \mid x \in F^{\#}/F^{\#2}, x \neq -F^{\#2}\}.$ Addition and multiplication is defined by:

+	0	$\langle \mathbf{x} \rangle$	$\langle 1, x \rangle$
0	0	$\langle \mathbf{x} \rangle$	$\langle 1, x \rangle$
$\langle \mathbf{y} \rangle$	$\langle y \rangle$	$\langle 1, xy \rangle$ if $x \neq -y$	$\langle -xy \rangle$
		0 if $x = -y$	
$\langle 1, y \rangle$	$\langle 1, y \rangle$	$\langle -xy \rangle$	$\langle 1, -xy \rangle$ if $x \neq y$
			0 if $\mathbf{x} = \mathbf{y}$

×	0	$\langle \mathbf{x} \rangle$	$\langle 1, x \rangle$
0	0	0	0
$\langle \mathbf{y} \rangle$	0	$\langle xy \rangle$	$\langle 1, x \rangle$
$\langle 1, y \rangle$	0	$\langle 1, y \rangle$	0
		1	1

Proof: Let x, y, $z \in F^{\#}$. Putting $a_1 = -\frac{1}{yz}$, $a_2 = -\frac{1}{xz}$, $b_1 = b_2 = 1$ in Theorem 2 we conclude that

conclude that

 $\langle 1/yz, 1/xz, 1/xy \rangle \cong \langle -1, -1, 1 \rangle \cong \langle -1 \rangle \oplus H.$

Multiplying by xyz, $\langle x, y, z \rangle \cong \langle -xyz \rangle \oplus H$.

Hence every non-isotropic quadratic form has degree ≤ 2 .

Now, putting z = -1 we conclude that

 $\langle \mathbf{x}, \mathbf{y}, -1 \rangle \cong \langle \mathbf{x}\mathbf{y}, 1, -1 \rangle$

whence, by Witt's Cancellation Theorem, $\langle x, y \rangle \cong \langle 1, xy \rangle$. Hence every element of W(F) can be written in the form stated. The addition and multiplication tables can be easily checked. Corollary: Suppose there is only one quaternion algebra over F. If $-1 \notin F^{\#2}$ then W(F) has exponent 4. If $-1 \in F^{\#2}$ then W(F) has exponent 2. Proof: Every element of the form $\langle 1, x \rangle$ has order 2. $\langle x \rangle \oplus \langle x \rangle \cong \langle 1, 1 \rangle$.

Hence $\langle x \rangle$ has order $\begin{cases} 4 \text{ if } -1 \notin F^{\# 2} \\ 2 \text{ if } -1 \in F^{\# 2} \end{cases}$.

Theorem 5: If F is a finite field of odd characteristic, $|F^{\#}/F^{\#2}| = 2$. **Proof:** $\{\pm x\} \leftrightarrow x^2$ is a 1-1 correspondence. **Theorem 6:** If F is a finite field, |W(F)| = 4 and $W(F) \cong \begin{cases} \mathbf{Z}_4 \text{ if } -1 \notin F^{\#2} \\ \mathbf{Z}_2(C_2) \text{ if } -1 \in F^{\#2} \end{cases}$ **Proof:** If $-1 \notin F^{\#2}$, $W(F) = \{\langle \rangle, \langle 1 \rangle, \langle -1 \rangle, \langle 1, 1 \rangle\} \cong \mathbf{Z}_4$. If $-1 \in F^{\#2}$ and $s \notin F^{\#2}$, $W(F) = \{\langle \rangle, \langle 1 \rangle, \langle s \rangle, \langle 1, s \rangle\} \cong \mathbf{Z}_2(C_2)$.