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4. QUATERNION ALGEBRAS 
 

§4.1. Hamilton and His Quaternions 
 Historically, quaternions were the step between complex numbers and matrices.  

Hamilton sought in vain to find a 3-dimensional analogue of the way complex numbers 

represent rotations in 2-dimensional space.  His 8 year old son would ask him after 

breakfast, “Well Papa, can you multiply triplets?” whereupon his father sadly shook his 

head and said, “no, I can only add and subtract them.” 

 Eventually, in 1843, while walking along beside a canal in Dublin, he realized 

that he had to consider not triplets but quadruplets, or “quaternions”.  He took out a 

penknife and carved in Brougham Bridge the key to the problem: 

i
2
 = j

2
 = k

2
 = ijk = 1. 

 Here i, j, k represent 90 degree rotations about three mutually orthogonal axes.  

The other basic relationships: 

ij = k = ji; 

jk = i = kj; 

ki = j = ik 

can be deduced from them, assuming the associative law. 

 A typical quaternion has the form: 

x0 + x1i + x2j + x3k. 

Addition and multiplication are defined in the obvious way, assuming the associative and 

distributive laws. 

 

Example 1: Writing a typical quaternion as an element (, v) of F  V, where i, j, k are a 

basis for V, the operation of multiplication becomes: 

(1, v1). (2, v2) = (12  v1.v2, 1v2 + 2v1 + v1v2). 

 

§4.2. Quaternion Algebras 
 If a, b  F

#
 then we define [a, b]F to be a vector space over F of dimension 4 with 

basis 1, i, j, k (with F identified with the subspace spanned by 1) made into an F-algebra 

by defining multiplication as follows: 

 1 i j k 

1 1 i j k 

i i a k j 

j j k b i 

k k j i ab 

 

Example 2: 

[1, 1]R is Hamilton’s quaternion algebra. 

[1, 1]F  M2(F), the algebra of 2  2 matrices over F, for any field F. 

Here 1  




1 0

0 1
 ,  i  







0  1

1 0
 ,  j  





0 1

1 0
 ,  k  







1  0

0 1
 . 
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§4.3. Quaternion Algebras and Quadratic Forms 
 If x = x0 + x1i + x2j + x3k is an element of the quaternion algebra A, then the 

conjugate of x is defined by: 

x = x0  x1i  x2j  x3k. 

We define  x  to be a pure quaternion if x0 = 0, that is, ifx = x. 

Notation: A0 denotes the set of pure quaternions in A. 

 

 We make A into a quadratic space by defining: 

x | y = ½ (xy + yx). 

 

 Note that F and A0 are orthogonal complements of one another and so A = F  A0 

as quadratic spaces. 

 

Theorem 1: If A = [a, b]F then A  1, a, b, ab, F  1 and A0  a, b, ab. 

Proof: Take the basis 1, i, j, k. 

Corollary: det A  1. 

 

Theorem 2: [a1, a2]F  [b1, b2]F as F-algebras if and only if 

a1, a2, a1a2  b1, b2, b1b2. 

Proof: Let A = [a1, a2]F and B = [b1, b2]F.  Let : A  B be an F-isomorphism. 

(1) (A0) = B0: 

It is sufficient to show that (i), (j), (k)  B0. 

Suppose (i) = x0 + x1i + x2j + x3k. 

Then a1 = a1(1) = (a1) = (i
2
) = (i)

2 

                  
 = (x0

2
 + b1x1

2
 + b2x2

2
  b1b2x3

2
) + 2x0(x1i + x2j + x3k). 

Equating pure parts, x0(x1i + x2j + x3k) = 0. 

If x1i + x2j + x3k = 0 then (i) = x0 = (x0), a contradiction since  is 1-1. 

Hence x0 = 0 and so (i)  B0.  Similarly for (j) and (k). 

 

(2)  xx  )(  : Let x = y + z where y  F and z  A0. 

Then      zyx    =        xzyzy   . 

 

(3)  is an isometry: 

              xxxxxxxxxxxx ||   , since Fxx  . 

 

Hence A0, B0 are isomorphic as quadratic spaces. 

 

Now suppose that A0  B0. 

Then a1, a2, a1a2  b1, b2, b1b2. 

Let :A0  B0 be an isometry. 

Then           1

22
|| aiiiiiiii   . 

Hence (i)
2
 = a1.  Similarly (j)

2
 = a2 and (i)(j) = (j)(i). 

Since 1, (i), (j), (k) is a basis for B, B  [a1, a2]F as F-algebras. 
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Corollary: Quaternion algebras are isomorphic if and only if they are isometric as 

quadratic spaces. 

Proof: This follows from the fact that A  B if and only if A0  B0 (using the Witt 

Uniqueness Theorem). 

 

Theorem 3: Either [a, b]F is a division ring or it is isomorphic to M2(F). 

Proof: Suppose A = [a, b]F is not a division ring. 

(1) A is isotropic as a quadratic space: 

There exists 0  x  A with no multiplicative inverse. 

Now if xx  0 then x






x

xx
 = 1, a contradiction. 

Hence x | x = xx = 0. 

 

(2) A is hyperbolic as a quadratic space: 

By Theorem 8 of chapter 2, A  1, 1  c, d for some c, d 

                                                  1, 1  1, 1 by Theorem 5 of chapter 2. 

 

(3) A0 is isotropic as a quadratic space: 

A contains two linearly independent elements x + x0 and y + y0, with x, y  F and 

x0, y0  A0 which are orthogonal and have zero length. 

We may assume without loss of generality that x = y = 1.  (If x or y = 0 we are done, 

otherwise we may divide.) 

Clearly x0  y0.  From 1 + x0 | 1 + x0 = 1 + x0 | 1 + y0 = 1 + y0 | 1 + y0 = 0 we 

conclude that x0 | x0 = x0 | y0 = y0 | y0 = 1 and hence x0  y0| x0  y0 = 0. 

 

(4) A  M2(F) as F-algebras: 

By Theorem 8 of chapter 2, A0  a, b, ab  1, 1  1. 

Hence by Theorem 2 above, A0  [1, 1]F  M2(F). 

 

Example 3: 

Over C the only possible quaternion algebras is M2(C). 

 

Example 4: 

Over R the possible quaternion algebras are: 

Quaternion 

algebra 

As a QS Isomorphic to 

[1, 1]R 1, 1, 1, 1 M2(R) 

[1, 1]R 1, 1, 1, 1 M2(R) 

[1, 1]R 1, 1, 1, 1 Hamilton’s 

quaternion 

algebra 

 

Example 5: There are infinitely many Quaternion algebras over Q.  In fact, if p, q are 

distinct primes of the form 4n + 3 then [1, p]Q is not isomorphic to [1, q]Q.  Dirichlet’s 

Theorem ensures that there are infinitely many such primes. 
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§4.4. The Witt Ring of a Finite Field 
Theorem 4: There is only one quaternion algebra over a finite field, namely M2(F). 

Proof: If F is a finite field and Q is a quaternion algebra over F then |Q| = |F|
4
 < . 

By a theorem of Wedderburn every finite division ring is a field.  Since Q is non-

commutative it must be isomorphic to M2(F). 

 

Theorem 5: If there is only one quaternion algebra over the field F then 

W(F) = { } + {x | x  F
#
/F

#2
} + {1, x | x  F

#
/F

#2
, x  F

#2
}. 

Addition and multiplication is defined by: 

+ 0 x 1, x 

0 0 x 1, x 

y y 1, xy if x  y 

0 if x = y 

xy 

1, y 1, y xy 1, xy if x  y 

0 if x = y 

  

 0 x 1, x 

0 0 0 0 

y 0 xy 1, x 

1, y 0 1, y 0 

Proof: Let x, y, z  F
#
.  Putting a1 =  

1

yz
 , a2 =  

1

xz
 , b1 = b2 = 1 in Theorem 2 we 

conclude that 

1/yz, 1/xz, 1/xy  1, 1, 1  1  H. 

Multiplying by xyz, x, y, z  xyz  H. 

Hence every non-isotropic quadratic form has degree  2. 

Now, putting z = 1 we conclude that 

x, y, 1  xy, 1, 1 

whence, by Witt’s Cancellation Theorem, x, y  1, xy. 

Hence every element of W(F) can be written in the form stated. 

The addition and multiplication tables can be easily checked. 

Corollary: Suppose there is only one quaternion algebra over F. 

If 1  F
#2

 then W(F) has exponent 4. 

If 1  F
#2

 then W(F) has exponent 2. 

Proof: Every element of the form 1, x has order 2. 

x  x  1, 1. 

Hence x has order 


4 if 1  F

#2

2 if 1  F
#2  . 

 

Theorem 5: If F is a finite field of odd characteristic, |F
#
/F

#2
| = 2. 

Proof: {x}  x
2
 is a 1-1 correspondence. 
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Theorem 6: If F is a finite field, |W(F)| = 4 and 

W(F)  


 Z4 if 1  F

#2

 Z2(C2) if 1  F
#2  . 

Proof: If 1  F
#2

, W(F) = { , 1, 1, 1, 1}  Z4. 

If 1  F
#2

 and s  F
#2

, W(F) = { , 1, s, 1, s}  Z2(C2). 
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