4. QUATERNION ALGEBRAS

84.1. Hamilton and His Quaternions

Historically, quaternions were the step between complex numbers and matrices.
Hamilton sought in vain to find a 3-dimensional analogue of the way complex numbers
represent rotations in 2-dimensional space. His 8 year old son would ask him after
breakfast, “Well Papa, can you multiply triplets?” whereupon his father sadly shook his
head and said, “no, I can only add and subtract them.”

Eventually, in 1843, while walking along beside a canal in Dublin, he realized
that he had to consider not triplets but quadruplets, or “quaternions”. He took out a
penknife and carved in Brougham Bridge the key to the problem:

i”=j? =k = ijk =-1.

Here i, j, k represent 90° degree rotations about three mutually orthogonal axes.

The other basic relationships:

ij = k = —ji;
jk =i = —kj;
ki =j = —ik

can be deduced from them, assuming the associative law.
A typical quaternion has the form:
Xo + X1i + Xoj + X3K.
Addition and multiplication are defined in the obvious way, assuming the associative and
distributive laws.

Example 1: Writing a typical quaternion as an element (A, v) of F x V/, where i, j, k are a
basis for V, the operation of multiplication becomes:
(7\.1, V1). (7\.2, V2) = (7\,17\,2 —V1.Vo, MVo + Aovq + V1XV2).

84.2. Quaternion Algebras

If a, b e F” then we define [a, b]r to be a vector space over F of dimension 4 with
basis 1, i, j, k (with F identified with the subspace spanned by 1) made into an F-algebra
by defining multiplication as follows:

11i | |k
110 |j| k
i|ilal|k]| o
JlJ|-k|b] i
k|k| J |-i|-ab

Example 2:
[-1, —1]r is Hamilton’s quaternion algebra.
[1, —1]r = My(F), the algebra of 2 x 2 matrices over F, for any field F.
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84.3. Quaternion Algebras and Quadratic Forms
If X = Xo + Xai + Xpj + X3K is an element of the quaternion algebra A, then the
conjugate of x is defined by:
X = Xg — X1i — Xaj — Xak.
We define x to be a pure quaternion if xo = 0, that is, if x = —x.
Notation: Ay denotes the set of pure quaternions in A.

We make A into a quadratic space by defining:
xly)=%%(x y+y x).

Note that F and A, are orthogonal complements of one another and so A=F @ Ay
as quadratic spaces.

Theorem 1: If A =[a, b]rthen A = (1, —a, —b, ab), F = (1) and Ay = (—a, —b, ab).
Proof: Take the basis 1, i, j, k.
Corollary: det A= 1.

Theorem 2: [a;, a2]r = [b1, bo]r as F-algebras if and only if
(-a1, —a, aaz) = (~by, —b, b1by).

Proof: Let A = [aj, az]r and B = [by, by]r. Let ¢: A — B be an F-isomorphism.
(1) ©(Ao) = Bo:
It is sufficient to show that ¢(i), ¢(j), (k) € Bo.
Suppose ¢(i) = Xg + X1i + Xp] + XK.
Then a; = a19(1) = (a1) = @(i%) = (i)’

= (Xo? + baxa? + boXo? — biboxs?) + 2Xo(Xai + Xaj + X3K).
Equating pure parts, Xo(X1i + Xz + X3Kk) = 0.
If X411 + Xo] + X3k = 0 then o(i) = Xo = ¢(Xo), a contradiction since ¢ is 1-1.
Hence xo = 0 and so ¢(i) € Bo. Similarly for ¢(j) and o(Kk).

(2) mzq)()_() :Letx=y+zwherey e Fand z € A,.
Then o(x)=p(y)+ 9(z) = ply)-o(z) = ply—2)= olx).

(3) @ is an isometry:

(p(x)] p(x)) = p(x)pp(x) = o(X)p(x) = plxx) = xx = (x| x), since xx e F.
Hence Ao, Bg are isomorphic as quadratic spaces.

Now suppose that Ay = B,.

Then (—al, —do, a1a2> = <—b1, —bz, b1b2>.

Let @:Ag — Bg be an isometry.

Then — (i = o(i) (i) = (i) (i) = (i | i) =—i* = —a,.

Hence ¢(i)? = a;. Similarly ¢(j)* = a, and ¢(i)o(j) = —9()o(i).
Since 1, o(i), ¢(j), o(K) is a basis for B, B = [a1, a,]r as F-algebras.
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Corollary: Quaternion algebras are isomorphic if and only if they are isometric as
quadratic spaces.

Proof: This follows from the fact that A = B if and only if Ay = By (using the Witt
Uniqueness Theorem).

Theorem 3: Either [a, b]g is a division ring or it is isomorphic to M(F).
Proof: Suppose A = [a, b] is not a division ring.

(1) A is isotropic as a quadratic space:

There exists 0 # x € A with no multiplicative inverse.

Now if X X # 0 then x(ﬁ) =1, a contradiction.

Hence (x| x) =x x =0.

(2) A'is hyperbolic as a quadratic space:
By Theorem 8 of chapter 2, A = (1, -1) ® (c, d) for some c, d
=~ (1,-1) ® (1, -1) by Theorem 5 of chapter 2.

(3) A is isotropic as a quadratic space:

A contains two linearly independent elements X + Xp and y + Yo, with X, y € F and
Xo, Yo € Ao Which are orthogonal and have zero length.

We may assume without loss of generality that x =y =1. (If X or y = 0 we are done,
otherwise we may divide.)

Clearly Xo #Yyo. From {1+ Xo |1+ Xo)={(1+Xo|1+Yyo)=(1+Yyo|1+Yyo=0we
conclude that (Xo | Xo) = {Xo | Yo) = (Yo | Yoy =—1 and hence {Xo — Yo| Xo — Yo) = 0.

(4) A = My(F) as F-algebras:
By Theorem 8 of chapter 2, A = (—a, —b, ab) = (1, -1) ® (-1).
Hence by Theorem 2 above, Ag = [1, —1]r = My (F).

Example 3:
Over C the only possible quaternion algebras is M3(C).

Example 4:
Over R the possible quaternion algebras are:
Quaternion Asa QS Isomorphic to
algebra
[1, 1]r 1,-1,-1,1) | Ma(R)
[1,-1]r 1,-1,1,-1) M2(R)
[-1, -1]r 1,1,1,1) Hamilton’s
quaternion
algebra

Example 5: There are infinitely many Quaternion algebras over Q. In fact, if p, q are
distinct primes of the form 4n + 3 then [-1, p]q is not isomorphic to [-1, g]q. Dirichlet’s
Theorem ensures that there are infinitely many such primes.
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84.4. The Witt Ring of a Finite Field
Theorem 4: There is only one quaternion algebra over a finite field, namely My(F).
Proof: If F is a finite field and Q is a quaternion algebra over F then |Q| = |F|* < .

By a theorem of Wedderburn every finite division ring is a field. Since Q is non-
commutative it must be isomorphic to Mz(F).

Theorem 5: If there is only one quaternion algebra over the field F then
W(F) = {03 + {0 | x € FIIF?} + {(1, x) | x e FYIF™, x = -F%}.

Addition and multiplication is defined by:

+ 0 x 1, x
o] o (x) (1, X)
|y [dxy)ifxz-y (=xy)
0ifx=—y
@€y Ly (=Xy) (1, —xy)ifx=y
Oifx=y
x 0 () (1,x%
o[o] O 0
WM O0] &xyy [1,%)
@y 0|Ly| O
1

) 1
Proof: Let X, y, z € F". Putting a; =— -

conclude that

yz,azz

(Uyz, Uxz, 1Ixy) = (-1, -1, 1) = (-1) ® H.
Multiplying by xyz, (X, y, z) = (—xyz) @ H.
Hence every non-isotropic quadratic form has degree < 2.

Now, putting z = —1 we conclude that
Xy, -1y =(xy, 1, -1)

A

whence, by Witt’s Cancellation Theorem, (X, y) = (1, Xy).
Hence every element of W(F) can be written in the form stated.
The addition and multiplication tables can be easily checked.

Corollary: Suppose there is only one quaternion algebra over F.

If -1 ¢ F* then W(F) has exponent 4.
If -1 e F* then W(F) has exponent 2.

Proof: Every element of the form (1, x) has order 2.

(x) ® (x) = (1, 1).
4if -1 ¢ F?

Hence (x) has order {2 i1 e £

by = b, = 1 in Theorem 2 we

Theorem 5: If F is a finite field of odd characteristic, |[F*/F*| = 2.
Proof: {+x} <> x?is a 1-1 correspondence.
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Theorem 6: If F is a finite field, |W(F)| = 4 and
| zyif-1e F?
W(F) = { Z,(Cy) if -1  F*2"
Proof: If -1 ¢ F*2, W(F) = {(), (1), (-1, (1, 1)} = Z,.
If -1 e F?and s ¢ F?, W(F) = {(), (1), (s), (1, )} = Z(Co).
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