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Introduction: Length, area and volume

Primarily, GA manipulates vectors, although scalar quantities are easily integrated into the
equations, but, for the moment, we will concentrate on the role vectors play within the algebra.

A single vector, independent of its spatial dimension, has two qualities: orientation and mag-
nitude. Its orientation is determined by the sign of its components, whilst its magnitude is
represented by its length, which in turn is derived from its components. A vector’s orientation is
reversed, simply by switching the signs of its components.
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The product of two vectors can be used to represent the area of a parallelogram as shown in
Fig. 7.1, where the area is given by

area = ||a||||b]| sin 8. (7.1)

Because ||a|| and ||b]|| are scalars, their order is immaterial. Furthermore, we have assumed that the
angle & is always positive, hence its sign is always positive, which is why area is normally regarded
as a positive quantity.

Grassmann was aware that mathematics, especially determinants, supported positive and neg-
ative areas and volumes, and wanted to exploit this feature. His solution was to create a vector
product that he called the outer product and written a A b. The wedge symbol “A” is why the
product is also known as the wedge product, and it is worth noting that this symbol is also used by
French mathematicians for the vector (cross) product. The outer product is sensitive to the order
of the vectors it manipulates, and permits us to distinguish between a A b and b A a. In fact, the
algebra ensures that

ansh=—=bnra. (7.2)

Figure 7.2a shows that a A b creates an area from vectors a and b forming an anticlockwise
rotation, whereas Fig. 7.2b shows that b A a creates an area from vectors b and a forming a
clockwise rotation. The directed circle is included to remind us of the area’s orientation.
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The outer product

Now we already know that the magnitude of the vector product is given by
lla > Bl = [lal[|b]| sin & (7.3)

where @ is the angle between the two vectors. The outer product preserves this value but abandons
the concept of a perpendicular vector. Instead, the value [|af|||b] sin@ is retained as the signed
area formed by the two vectors.

Now although [la A b|| = [la|l||b|| sin &, we must pose the question: What sort of object is a A b?
Well, for a start, it is not a vector, nor is it a simple scalar. In fact, we have to invent a new name,
which is always unsettling as it is difficult to relate it to things with which we are familiar. Where
the cross product a x b creates a vector, the outer product a A b is called a bivector, which is a
totally new concept to grasp.

A bivector describes the orientation of a plane in terms of two vectors, and its magnitude is
the area of the parallelogram formed by the vectors. Reversing the vector sequence in the product
flips the sign of the area. The outer product has the same components as the cross product, but
instead of using the components to form a vector, they become the projective characteristics of a
planar surface.
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Some algebreic properties

Even with our sketchy knowledge of a bivector, it is possible to describe how the outer product
responds to parallel vectors. For example

lla rall = llallllall sin 0* = 0. (7.4)

Although the outer product is antisymmetric, it behaves just like the scalar product when
multiplying a group of vectors:

scalar: a-(b4+c)=a-b+a-c (7.5)

similarly
outer: an(b+cy=arbtanc (7.6)
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Visualizing the outer product

The cross product is easy to visualize: a x b = ¢, where ¢ is orthogonal to the plane containing
a and b. The relative direction of ¢ is determined by the right-hand rule where using one’s right
hand, where the thumb aligns with a, the first finger with b, and the middle finger aligns with ¢.
The magnitude of ¢ equals [|al|||b|| sin @, where 6 is the angle between a and b, and equals the
area of the parallelogram formed by a and b. This relationship is shown in Fig. 7.3.
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Visualizing the outer product is slightly different. It is true that the magnitude |ja A b is
lla[ll|lb]] sin @ which represents the area of the parallelogram formed by a and b, but consider what
happens if we form the product a’ A b where a’ = a + Ab:

asb=(@+ib)rb
=anb+abnab

aAb=anbhb (7.7)

Two other vectors generate the same bivector! Figure 7.4 illustrates what is happening.

4
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The area created by a’ A b is identical to that created by a A b, so there is no single parallelogram
that represents a A b — there are an infinite number! So why bother trying to represent a A b as
a parallelogram in the first place? Well, it was a starting point, but now that we have discovered
this feature of the outer product, why not substitute another shape such as a circle instead of
a parallelogram, and make the area of the circle equal to ||a||||b|| sin#? That was a rhetorical
question, but a useful suggestion, and Fig. 7.5 shows what is implied.
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Orthogonal bases

If we continue with this notation the alphabet cannot support very high-dimensional spaces. An
alternative convention is to use e;, e, €3, . . . &, to represent the orthogonal unit basis vectors.
Using this notation we define two vectors in B? as

a = e, + aze; (7.8)
b = bje; + bye,. (7.9)
‘We can now state the outer product as
a s b= (ae; + azea) A (byey + bees) (7.10)
which expands to
anrb=abie ne) 4+ abi(e Aes) + asbiles Ae)) + asbs(es Aes). (7.11)
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Substituting the following observations

egAe=erne;=0ande Ae = —e Az (7.12)
we obtain
a b =able; Ae) — arby(e) Aer) (7.13)
simplifying, we obtain
anb= (R|E’2 - ﬂzb|)(cl M Cz). ‘_?.14)

The scalar term a;b: — a;by in Eq. (7.14) looks familiar — in fact, it is the magnitude of the
imaginary term of Eq. (3.17), the value of which equals ||a||||b|| sin@, which is the area of the
parallelogram formed by a and b. So in this context, the outer product a A b is a scalar area
multiplying the unit bivector e; A e;, which just means that the area is associated with the plane
defined by e; A e;. Figure 7.6 illustrates this relationship.
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FIGURE 7.6.

Now let’s compute b A a:

b roa = (bie; + baed) A (ae; + aze;)
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which expands to
baa=abi(erne)+ abi(en ner) + abaler Aer) + arbales mes). (7.15)

Substituting the following observations

egne =ene;=0ande; Aep = —e Aes (7.16)
we obtain
b aa = ab(e; Aey) —aby(e Aey). (7.17)
Simplifying, we obtain
baa=—(aby — aby)(e; Ae) (7.18)

which confirms that b A a = —a b,
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Now let’s consider the outer product in B*:

a=ae; + dye; + ase, (7.19)
b = bie; + bies + bses. (7.20)
The outer product is
amb = (aie; + aze; + ases) A (biey + baes + baes) (7.21)
which expands to
anb=ab(e; ne) 4 abile; Aes) + arbale; Aes) + aghy(ey Aey) + aghale; Aes)
+azbs(es Aes) + ashi(es A er) + asba(es Aer) + asha(es Aes). (7.22)
Substituting
gMe =N =2 Aey=10 (7.23)
and
G ME = —C AC CLAEI=—E3AE € AG=—0 AC (7.24)
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we obtain
amb =abyle; Aer) — abales Ae) —aaby (e Aes)
+ azba(es A es) + asbyles A ey) — asba(es A es). (7.25)
Simplifying, we obtain
anb=(ab —a:be; Aes + (azbs — asbades A ey + (ashy — arbs)es A ey (7.26)

You may be wondering why the unit basis bivectors in Eq. (7.26) have been chosen in this way,
especially e; A ;. This could easily be e; A e;. To understand why, refer to Fig. 7.7, which shows a

right-handed axial system and where each orthogonal plane is defined by its associated unit basis
bivectors.
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Figure7.7 also shows the orthogonal alignment of the Cartesian axes with the unit basis
bivectors:

the x-axis is orthogonal to e; A e;
the y-axis is orthogonal to es A e

the z-axis is orthogonal to e; A e,
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and if Eq. (7.26) is rearranged in this sequence we obtain
anb= (ﬂzbg - ﬂ}bz:laz Aey 4 (ﬂgbl - ﬂ|b}}¢3 Aey 4 (ﬂlbz = ﬂzb|}e| Mg, {?.2?)

Now let’s look at a definition of the cross product. We begin by declaring two vectors using the
conventional orthogonal unit basis vectors i, j and k:

a =i+ a:j+ ask (7.28)
b = bi+ bsj + buk (7.29)

The cross product is
a x b = (@i + a2j + ask) x (b + baj + b:k) (7.30)

which expands to
axb=ab(ixi)+aby(ixj)+ abs(i x k) + aaby(j x 1) + azba(j % )
4 azhs(j % k) + asby(k x i) + ashy(k x §) + asbs(k x k). (7.31)
The magnitude of the cross product is ||| [|b]| sin &, which means that
ixi=jxj=kxk=0. (7.32)
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Therefore,

axb=ab(i xj)+abs(i x k) + aaby(j x i)
+ azbs(j x k) + asby (k x i) + asba(k x j). (7.33)
Because the cross product is antisymmetric

jxi=—-ixj kxj=—jxk ixk=-kxi (7.34)
Substituting these relationships:
axb=ab,(ixj)—abyk xi)—abixj

+ azby(j x k) 4 asby(k x i) — asba(j x k). {7.35)
Collecting up like terms:

a x b = (a:by — asbs)j x k+ (asby — ayby)k x i+ (@ by — azby)i x j. (7.36)
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If we place Eqgs. (7.27) and (7.36) together and substitute the e notation for i, j and k, we obtain
a A b = (aaby — asby)es A es + (ashy — arba)es Aey + by — azby ey Aes (7.37)
ax b= (ambs —ashy)e; x es + (ashy — aybs)es x ey + (aby — azby)e, x ;. (7.38)

In the cross product, the terms (a:bs — asb,), (asby — aybs) and (@, by — a;by) are the components

of an orthogonal vector, whereas in the outer product they become signed areas projected onto

the planes defined by the unit bivectors e; A es,es A e; and e; A €. And in spite of there being

such similarity between the two equations, it would be dangerous to conclude thata A b = a x b.
What Hamilton had proposed was that

€ X B3 =0 E3XE =€ € Xe& =~¢ (7.39)

which is fine for 23, but is ambiguous for higher dimensions. So, in GA we substitute the outer

product for the cross product and introduce the concept of a directed area, which holds for any
number of dimensions.
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We define two vectors as
a = a;e; + aze; + ase; (7.40)
b = bie, + bres + bses. (7.41)

Starting with the plane containing e, and e;, which is defined by e, A e,, the projections of a and
b are a™ and b"™, respectively, where

a" = ae; + ase; (7.42)
b" = e, 4 bies. (7.43)
Therefore,
a” A b = (age; + azes) A (brey + baes)
= aibi(er Aer) + abales Aer) + arbi(er A er) + arbaler Aey)
a” A b = (ayby — aaby)e; A (7.44)

which is the last term in Eq. (7.27).
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Similarly, we can show that

a" A b = (a:bs — ashies Mey (7.45)
a” A b = (ashy — a1bs)es A ey, (7.46)
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To illustrate this concept, consider two vectors a and b

a = ae; + aze; + ases (7.47)
b = biey + byes + bses (7.48)
where
i = 1 i = 0 iy = 1
bh=1 b= bs=10 (7.49)
which makes
a=e +es b=e +e. (7.50)
Using Eq. (7.26)
a A b= (aby — abi)e; A ey + (ayhs — asba)es Aes + (ashy — aybs)es A ey
anb= (e Aes+ (—1)e; Aes+ (e Aey. (7.51)

The signed area on the plane e; A e; is +1 and is shown in Fig. 7.9. The projected area is shown
crosshatched.
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Figure 7.9.
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Similarly, the signed area on the plane e; A ey is —1 and is shown in Fig. 7.10. Note that the
direction of the projected area opposes the direction of e, A es.

Figure 7.10.
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And the signed area on the plane e; A ¢, is +1, and is shown in Fig. 7.11.

Figure 7.11.
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Now let’s compute the magnitude of the bivector a A b.
To begin with, we need to know the angle between a and b, which is revealed using the dot

product:
8 = cos™! (albl + aabs + ﬂaba)
lalllall
—1 1 o
8 = cos m = 60°. (7.52)
Therefore,
lla A bll = Jallllb] sin 60"
3
lla n bl = JE«:‘E% =+/3. (7.53)

The next question to pose is whether this value is related to the other three areas? Well the
answer is “yes”, and for a very good reason:

lla AB|* = (arhy — a:b1)* + (azhs — ashs)* + (ashy — asbs)’ (7.54)
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therefore,
VI = (1 + ()P (1) =3, (7.55)

Remember, that the cross product uses these coefficients as Cartesian components of the axial
vector and satisfy the Pythagorean rule:

llall* = af + a2 + ai. (7.56)

To prove that this holds, we need to show that Eq. (7.54) is correct.
Expanding the LHS of Eq. (7.54):

la A bl* = lall*[Ib]* sin® & = lla|*|b]*(1 = cos® @)
lla A BI* = llall*lIB* — lall*1B])* cos® 8. (7.57)
From the dot product

_ (ayby + azby + asby)?

cost 0 = (7.58)
llall?b]*

Therefore,
lla A b'"z = ||"1||2||E’||1 = (aby — ayb; — “JE’:]I
lla A BI* = (a] + a + ai)(b] + b7 4+ b3) — (arhy — asbs — asbs)?
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Therefore,
la AbI* = lal?[IBI* — (b, — ayb, — azbs)*
la A Bl = (af + a3 + a)(B] + b + b3) — (@b — azby — asbs)*
and we obtain
lla A BN = (a®b? — 2a1a,b1 b + a2b?) + (a3b? — 2azasbybs + aZbl)
+ (azzbf — Zasaybsby + nfbi)

la A bI = (ahy — azby)* + (azbs — asha)® + (ashy — aybs)™. (7.59)
Therefore, Eq. (7.54) is correct.
Now, as
lla ~ &l = [lallb] sind (7.60)
la A bJI* = [lal*||b] sin® & (7.61)

hal. 28/54



and
lallllbll sin® @ = (ayby — azb1)® + (azbs — ashy)* + (asby — aybs)” (7.62)
therefore
PR (q’(albz — a, by + (ayby — asb,)* + (ayb, — ulb,)z) . (7.63)
flallligh
Substituting the values for the above example:
f =sin"' (%) = 60" (7.64)
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The beauty of the outer product is that it works in any number of dimensions. For example,
we can create two vectors in R* as follows:

a = ae; + az€; + ases + asey (7.65)
b = bje; + bye; + byes + bye, (7.66)

and form their outer product:
a b= (ae; + aze2 + ases + aqgeq) A (brey + baes + byes + byey). (7.67)
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This explodes into

a b =abile; Ae) + abale Aes) + abalen Aes) + arbale Aey)
+aybyley Aey) + asbyle; Aey) + azby(en Aes) + arbyles Aey)
+asbi(es ner) + asha(es Aex) + asba(es A es) + ashales Acey)
+ashi(es noer) + asha(es A ex) + asbs(es A es) + asbales Acey)

and collapses to

anb=(ab, —aby)(e; Aey) + (apby — asby)e; Aes) + (ashy — aybs)es Aey)
+ (a1by — asby)(ey Aceg) + (azby — asba)(er Acey) + (ashy — aabs)(es A ey)  (7.68)

which resolves the outer product into six bivectors.
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As a final example, let’s consider two vectors in E* and compute their outer product. The vectors
are

a=e +es+ey (7.71)
b= e +e +ey (7.?2}
Then
lal =3 |bll =+3 (7.73)
and the separating angle 8 is
0 = cos™! (;) = 48.19°, (7.74)
Similarly,
5
# = sin™" ("I‘T_) = 48.19°. (7.75)
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Substituting the vectors into Eq. (7.68):
anb=(1)(e; Aer)+(=1)es Aes) + (1es Ae) +(—1les Aeg) + (1les Aeg).  (7.76)
Therefore, [|a A b|| is given by
lla A bl = flall1B]l sin® = +/3+/3 sin 48.19° = 2.2361. (7.77)
Finally, let’s show that the B* equivalent of Eq. (7.54) still holds:

la A b||* = |ayby — ashy|* + |azhs — asha|* + |ashy — aybs]?
+ lahy — aghi P 4 |azhy — aba|* + |ashy — aghs|*
22361 = (1)* + (—1)" + (1)* + (0)* + (=1)* + (1)* = 5. (7.78)
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Area of a triangle

There are many ways to find the area of a triangle, but the one proposed here uses a triangle’s vertex
coordinates, as shown in Fig. 7.12a. The triangle has vertices A, B, C defined in an anticlockwise
order, and its area is given by

1 |¥ 1
area = — |xg ¥y 1. (7.79)
xz yo 1

Using the coordinates from Fig. 7.12a we have

1 0 2 1
areq = 3 31 1 (7.80)
3 31
1
area = E('5 +6—6-—3)=43 (7.81)

which is correct. Note that reversing the triangle’s vertex sequence creates a negative area:
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area =

— -

2
3
1

(PO U - ]

1
2

1
area = =(3+6-6-9) =-3. (7.82)
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Figure 7.12.

The sum of the outer products become

area AABC = %[(n AR+ (B Ae)+ (e na)] (7.83)
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which expand to

1
area AABC = E(xﬁyg — VaXp + Xp¥e — Ve¥e + Xc¥a — YoXa)

and

Xa ya 1
Xg Ve 1].
xe ye 1

1

area AABC = 5 (7.84)

What is useful about summing these outer products is that it works for any irregular shape.
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The sine rule

H H
— =sine¢ and — =sinp {7.85)
B A
from which we can write
Bsing = Asin (7.86)
or
A B
2 2 (7.87)

Using another vertex and an associated perpendicular we can show that

A B C
—_— = —, (7.88)
sing  sinf siny
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Figure 7.14.

The GA approach is to remember that the outer product includes a sine function and computes
an area. Therefore, we develop Fig. 7.13 to include three vectors as shown in Fig. 7.14 where

A=lal B=]Jbl C=lell (7.89)
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To find 4 we eliminate £ by multiplying Eq. (7.98) by », and Eq. (7.99) by x;:

X + Ay = x5 + EXpY (7.100)
xn¥r + AXaYa = XYy + EXpVi- (7.101)

Subtracting Eq. (7.101) from Eq. (7.100):

Keyp — XY + MK}y — XpYa) = GYp — % Ys (7.102)
where : ( )
l=xt0'r_ys = Yul¥ — X, . (7.103)
XaVb — X}
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Intersection of two lines

The traditional way of calculating the intersection point of two lines in a plane is to define two
vectors as shown in Fig. 7.15, where

p=r+ia Ael (7.95)
p=s+eb esecR (7.96)

Frcure 7.15.
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Therefore,
r+ha=s+¢ebh.

From Eq. (7.95) we can write

X+ Axg = x4 Exp

et A=y +Ep.

(7.97)

(7.98)
(7.99)
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To find 4 we eliminate £ by multiplying Eq. (7.98) by », and Eq. (7.99) by x;:

X + Ay = x5 + EXpY (7.100)
xn¥r + AXaYa = XYy + EXpVi- (7.101)

Subtracting Eq. (7.101) from Eq. (7.100):

Keyp — XY + MK}y — XpYa) = GYp — % Ys (7.102)
where : ( )
l=xt0'r_ys = Yul¥ — X, . (7.103)
XaVb — X}
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Let’s test this with the following vectors

r=j a=2i—j (7.104)
s=2 b =2i-12 (7.105)
21=-2)+200-0) —2
therefore,
p=j+2i—j=2i (7.107)
and the point of intersection is (2, 0).
Another approach is to reason that
p=aa+ Bb (7.108)
therefore, we can write
Xy = x, + Bxp (7.109)
Yo = ¥a + B (7.110)
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To find o we eliminate f by multiplying Eq. (7.109) by 4 and Eq. (7.110) by x;:

Xp = wxyy + By, (7.111)
Xp)p = axpya + Bxuys. (7.112)

Subtracting Eq. (7.112) from Eq. (7.111) we obtain

Kp¥p — Xp¥p = O0XuVp — O0Xp Y = O(Xapy — XYa) (7.113)
where
|xp Yo
=2 TN 1% W (7.114)
Ka¥b — Xp¥a % Ya
|xs- Y
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To find § we eliminate o by multiplying Eq. (7.109) by y, and Eq. (7.110) by x,:

HYa = 0Xa¥a + Bryy. (7.115)
Xalp = UXaYa + BXa}s. (7.116)
Subtracting Eq. (7.116) from Eq. (7.115) we obtain

KpVa — Xa¥p = Bxy¥a — Bryy = By, — x0) (7.117)
where
‘xp e
B= XpVa — X}y - Xa Ya ) (7.118)
K¥a = %a¥b  |% W
Xa Ya
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Using Eq. (7.114) and Eq. (7.118) we can rewrite Eq. (7.108) as

X Yo X Yp
X X
p=r Nl Jaly (7.119)
Xa Ya B ]
Xy Ve Xa  Ya

The problem with Eq. (7.119) is that the determinants reference the coordinates of the point we
are trying to discover. Nevertheless, let’s continue and write Eq. (7.119) using outer products

=p;\ba+pf\a

b. 7.120
anrhb bara ( )

P

Figure 7.16a provides a graphical interpretation of part of Eq. (7.120) where the parallelogram
formed by the outer product p A a is identical to the outer product formed by r A a. Which means
that we can substitute r A a for p A a in Eq. (7.120):

Ab M
LAALPPRALL

b. 7.121
anrhb bara ( )

p=
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Similarly, in Fig. 7.16b the parallelogram formed by the outer product p A b is identical to the
outer product formed by s A b. Which means that we can substitute s A b for p A b in Eq. (7.121):

sab raa
= — —b. 7.122
P=ant + bra ( )
The positions of R and § are not very important, as they could be anywhere along the two vectors,
even positioned as shown in Fig. 7.17:
In Fig. 7.17 the three parallelograms: OSTU, OVWR and OVXU have areas:

area OSTU =s A b (7.123)
area OVWR =r A a (7.124)
area OVXU = a A b. (7.125)
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Figure 7.17.
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Simply by relocating § and R, we have created a convenient visual symmetry where

L (7.126)
anhb
and
rAa
r=1"%. (7.127)
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Note how s A b and a A b are in the same sense, whilst r A a and b A a are in the opposite sense.
Observe, also, from Fig. (7.17) why

snb (7.128)
a anb '
and P
= . 7.129
b bara ( )
It now becomes obvious that
M b FAad b (7.130)

5
=54+r=——a
4 anb bara

where the solution to the problem is based upon the ratios of areas of parallelograms!
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Let’s test Eq. (7.130) using the same vectors above:

r=e; a=32e —e (7.131)
s=2e;, b=2e —2e (7.132)
(2e;) A (2e; — 2e;) e A (2e — &)
S B A -z Pt Ga 2o A e ey 2
—4({31 M C;._!] —2(C| ay Cz}
P= e ne) 126 ey 2 T A v Ay 0 T2
p=2(2e; — &) — (2e1 — 2€3) = 2e,. (7.133)

Therefore, the point of intersection is (2, 0). Which is the same as the previous result.
We have spent some time exploring the above techniques, which in some cases are quite tedious.
However, the conformal model, which is explored in chapter 11, simplifies the whole process.
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