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Section 4.1 Vector Space Axioms

DEFINITION1 Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by scalars. By addition we mean a rule for
associating with each pair of objects u and v in V an object u + v, called the sum of u
and v; by scalar multiplication we mean a rule for associating with each scalar k and
each object u in V an object ku, called the scalar multiple of u by k. If the following
axioms are satisfied by all objects u, v, win V and all scalars k and m, then we call
V' a vector space and we call the objects in V vectors.
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[f u and v are objects in V, thenu 4+ visin V.
u+v=v+u
ut+iv+wi=u+v)+w

There isan object ) in V, called a zero vector for V, suchthat0 +u=u+0=u
forall uin V.

For each u in V, there i1s an object —u 1n V|, called a negative of u, such that
u+(—u)=(—u)+u=»10

If k 1s any scalar and u is any object in V, then kuisin V.

kiu+v) =ku—+ kv

(k +m)u = ku+ mu

Kimu) = (km)(u)

lu=u




To Show that a Set with Two
Operations is a Vector Space

|. ldentify the setV of objects that will become
vectors.

2. ldentify the addition and scalar multiplication
operations on'V.

3. Verify Axioms | (closure under addition) and 6
(closure under scalar multiplication) ; that
is, adding two vectors inV produces a vector
inV, and multiplying a vector inV by a scalar
also produces a vector inV.

4. Confirm that Axioms 2,3,4,5,7,8,9 and |10 hold.



Section 4.2  Subspaces

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is
itself a vector space under the addition and scalar multiplication defined on V.

THEOREM 4.2.1 [If W is a set of one or more vectors in a vector space V, then W is
a subspace of V if and only if the following conditions hold.

(@) If uandv are vectors in W, thenu + v isin W,

(b) If k is any scalar and w is any vector in W, then ku is in W.




The ‘smallest’ subspace
of a vector spaceV

DEFINITION 2 If w is a vector in a vector space V, then w 1s said to be a linear
combination of the vectors vy, v, ..., v, in V if w can be expressed in the form

W — kl\‘!] + kz"fz + ...+ kr\"r {2)

where ki, k2, . .., k, are scalars. These scalars are called the ceefficients of the linear
combination.

THEOREM 4.2.3 [If § = {w|, Wa, ..., W,} is a nonempty set of vectors in a vector
space V, then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace
of V.
(b) The set W in part (a) is the “smallest” subspace of 'V that contains all of the

vectors in S in the sense that any other subspace that contains those vectors
contains W.



The span of S

DEFINITION 3 The subspace of a vector space V that is formed from all possible
linear combinations of the vectors in a nonempty set S is called the span of S, and
we say that the vectors in S span that subspace. If § = {w;, wa, ..., w,}, then we
denote the span of S by

span{wi, Wz, ..., w,} or span(S)

(a) Span{v} is the line through the (b) Span{v,, v,} is the plane through the
origin determined by v. origin determined by v, and v,.




Section 4.3 Linear Independence

DEFINITION1 If § = {v, v2, ..., Vv,}is a nonempty set of vectors in a vector space
V, then the vector equation

-’(]Y[ + kg'\r'g + -t k;—\r’,— =0
has at least one solution, namely,
ky =0, k=0,..., k =0

We call this the trivial solution. If this is the only solution, then § is said to be a
linearly independent set. 1f there are solutions in addition to the trivial solution, then

S 1s said to be a linearly dependent set.




Linearly independence

THEOREM 4.3.1 A set § with two or more vectors is

(a) Linearly dependent if and only if at least one of the vectors in S is expressible
as a linear combination of the other vectors in §.

(b) Linearly independent if and only if no vector in S is expressible as a linear
combination of the other vectors in S.

THEOREM 4.3.2
(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not (),

(c) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.




Linear Independence in

AZ AZ

(a) Linearly dependent (b) Linearly dependent

(a) Linearly dependent (b) Linearly dependent (¢) Lmnearly independent



The Wronskian

DEFINITION 2 If f; = filx).fh = fr(x), ..., f, = f.(x) are functions that are
n — | times differentiable on the interval (—ec, o), then the determinant

fi(x) fa(x) coe fa(x)

fi(x) f(x) f,f(l‘)
Wix) = . .

AP A7) - f‘" D (x)

is called the Wronskian of fy, f>, ..., f,.

THEOREM 4.3.4 [f the functions 1,1y, ..., 1, have n — | continuous derivatives

on the interval (—oo, ), and if the Wronskian of these functions is not identically
zero on (—oe, ), then these functions form a linearly independent set of vectors in

C ™1 (—o0, o0).



Section 4.4 Coordinates and Basis

DEFINITION 1 If V is any vector space and S = {vi, V2, ..., V,} 1s a finite set of
vectors in V, then S is called a basis for V if the following two conditions hold:

(a) S 1s linearly independent.
(b) S spans V.

THEOREM 4.4.1 Uniqueness of Basis Representation

If § = {vy,va, ..., V,}is a basis for a vector space V, then every vector v in V can
be expressed in the form v = ¢;vy + c2v2 + - - - + ¢,V in exactly one way.



The coordinate vector

DEFINITION 2 If § = {vi, v2,...,V,} 1s a basis for a vector space V, and

V=V + C2V2 +---+ CnVn

is the expression for a vector v in terms of the basis S, then the scalars ¢, c2, ..., ¢,
are called the coordinates of v relative to the basis S. The vector (¢, ¢7,....¢,) In

R" constructed from these coordinates is called the ceordinate vector of v relative to
§; it is denoted by

(V)S - (Claczr ***1Cn) {6)




Section 4.5 Dimension

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

dim(R") =n The standard basis has n vectors.
dim(P,) =n + 1 The standard basis has n + 1 vectors.

dim(M,,,) = mn  The standard basis has mn vectors.




Plus / Minus Theorem

THEOREM 4.5.2 Plus/Minus Theorem
Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S U {v} that results by inserting v into S is still linearly
independent.

(b) Ifvis avectorin S that is expressible as a linear combination of other vectors
in S, and if § — {v} denotes the set obtained by removing v from S, then S and
S — {v} span the same space; that is,

span(S) = span(S — {v})

The vector outside the plane Any of the vectors can Either of the collinear
can be adjoined to the other be removed, and the vectors can be removed,
two without affecting their remaining two will still and the remaining two

linear independence. span the plane. will still span the plane.




THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V
with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

THEOREM4.5.5 Let § be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

THEOREM 4.5.6 [If W is a subspace of a finite-dimensional vector space V, then:
(@) W is finite-dimensional.

() dim(W) < dim(V).

(¢) W =V ifandonlyif dim(W) = dim(V).



Section 4.6 Change of Basis

The Change-of-Basis Problem Ifv isa vector in a finite-dimensional vector space V,
and 1f we change the basis for V from a basis B to a basis B’, how are the coordinate
vectors [v]p and [v]p related?

Solution of the Change-of-Basis Problem If we change the basis for a vector space V
from an old basis B = {u;, up, ..., u,} to a new basis B’ = {u}, u,, ..., u }, then
for each vector v in V, the old coordinate vector [v]p is related to the new coordinate
vector [v]g by the equation

[vlz = P[v]p (7)

where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are

[uilz., [uilg,.... [u,]g (8)




Transition Matrices

The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.

THEOREM 4.6.1 If P is the transition matrix from a basis B’ to a basis B for a finite-
dimensional vector space V, then P is invertible and P~" is the transition matrix from
B to B'.




Computing the transition matrix

A Procedure for Computing Pg_ p
Step 1. Form the matrix [B’ | B].

Step 2. Use elementary row operations to reduce the matrix in Step 1 to reduced
row echelon form.

Step 3. The resulting matrix will be [1 | Pp_. 5]
Step 4. Extract the matrix Pg_. p- from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

[new basis | old basis] row Jperstions [/ | transition from old to new] (14)



Section 4.7 Row Space,
Column Space, and Null Space

DEFINITION 1 For an m x n matrix

al a? s Uln
an| az e a2
A= i . .
_Hml a2 e ﬂmn_
the vectors
ry=lan an --- aul
r,=\[ay axn -+ au)
Fm = [Hml Am2 =+ l51'mﬂ]

in R” that are formed from the rows of A are called the row vectors of A, and the

vectors B _ _ B B _
day djn p
5] i) oy
C] — . k] CE. — . LR | EH — .
B (! _ B ﬂmi_ 8 ﬂnm_

in R™ formed from the columns of A are called the column vectors of A.




Row, column and null spaces

DEFINITION 2 If A is an m x n matrix, then the subspace of R" spanned by the
row vectors of A is called the rew space of A, and the subspace of R™ spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of R", is called the

null space of A.




Systems of linear equations

Question 1. What relationships exist among the solutions of a linear system Ax = b
and the row space, column space, and null space of the coefficient matrix A?

Question 2. What relationships exist among the row space, column space, and null
space of a matrix?

THEOREM 4.71 A system of linear equations AX = b is consistent if and only if b

is in the column space of A.

THEOREM 4.7.2 [f Xq is any solution of a consistent linear system AX = b, and if
S = {vi,va, ..., Vi}is a basis for the null space of A, then every solution of AX =b
can be expressed in the form

X=Xg+c1Vi + vy + - + Vi (3)

Conversely, for all choices of scalars ¢y, c3, . .., ¢, the vector X in this formula is a
solution of AX = b.



A basis for span (S)

Problem Given a set of vectors § = {vy,va, ..., vi} In R", find a subset of these
vectors that forms a basis for span(.5), and express those vectors that are not in that

basis as a linear combination of the basis vectors.

Basis for Span(§)

Step 1. Formthe matrix A having vectorsin § = {vy, v, ..., v} as column vectors.
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by wy, wa, ..., wi.

Step 4. ldentify the columns of R that contain the leading 1's. The corresponding
column vectors of A form a basis for span(S5).

Step 5. Obtain a set of dependency equations by expressing each column vector of
R that does not contain a leading 1 as a linear combination of preceding column
vectors that do contain leading 1’s.

Step 6.  Replace the column vectors of R that appear in the dependency equations
by the corresponding column vectors of A.

This completes the second part of the problem.




Section 4.8 Rank, Nullity, and the
Fundamental Matrix Spaces

DEFINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A); the dimension of the null
space of A 1s called the nullity of A and is denoted by nullity(A).

THEOREM 4.8.2 Dimension Theorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n

THEOREM 4.8.3 [If A is an m X n matrix, then
(a) rank(A) = the number of leading variables in the general solution of Ax = 0.
(b) nullity(A) = the number of parameters in the general solution of Ax = 0.



THEOREM 4.8.4 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(a) A is invertible.

(b) AX = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.

(e) AX = b is consistent for every n x 1 matrix b.

(/) AX = b has exactly one solution for every n x 1 matrix b.
(g) det(A) #0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(/) The column vectors of A span R".

(k)  The row vectors of A span R".

()  The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(0) A has nullity 0,



Fundamental Spaces of Matrix A

*Row space of A
* Null space of A

e Column space of A
* Null space of A’



THEOREM 4.8.10 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(a) A is invertible.

(by  Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

(¢) AXx = b is consistent for every n x 1 matrix b.

(/) Ax = b has exactly one solution for every n x 1 matrix b.
(g) det(A) £ 0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(j) The column vectors of A span R".

(k) The row vectors of A span R".

(/)  The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(ny A has rank n.

(o) A has nullity 0.

(p) The orthogonal complement of the null space of A is R".
(q) The orthogonal complement of the row space of A is {0}.



Section 4.9 Matrix Transformations
from R" to R™

DEFINITION 1 If V and W are vector spaces, and if f is a function with domain V
and codomain W, then we say that f is a fransformation from V to W or that f maps
V to W, which we denote by writing

fiV-W

In the special case where V = W, the transformation is also called an eperator on V.

THEOREM 4.91 For every matrix A the matrix transformation Ty: R" — R™ has the
Jollowing properties for all vectors w and v in R" and for every scalar k:

(@) Th(0)=0

(by Ta(ku) = kT4(u) [Homogeneity property]

(c) Ta(u+v)=Ta(u)+ T4(v) [Additivity property]

(d) Ta(u—v)=Tx(u) — T4(v)



Finding the standard matrix for a
matrix transformation

Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors e, ez, .. ., e, for R" in column
form.

Step 2.  Construct the matrix that has the images obtained in Step 1 as its successive
columns. This matrix is the standard matrix for the transformation.



Table 1

Operator

Images of e; and e;

Standard Matrix

Reflection about
the y-axis

Tx,y)=(=x,y)

T{f‘|) = T(] 0) = (_l: U]
T(e;)=T(0,1)=1(0,1)

o ]

Reflection about
the x-axis

Tx,y)=1(x,—¥y)

lllustration
AY
(—x,y) @ ——|—— =8 (x,y)
Tx) X x
v
A - (x, )
x/" |
| X
I =
N
Tix) 17 |
"% (x, —y)

T(e))=T(1.0)=(1,0)
T(e)) =T(0,1)= (0, —1)

Reflection about
the line y = x

T'x,y)=(y,x)

T(e))=T(1,0)=1(0,1)
T(e) =T(0,1)=(1,0)

ol




Table 2

Operator

lustration

€1, €2, €3

Standard Matrix

Reflection about T(e,)=T(1,0,0) = (1,0,0) 0 0
the xy-plane Te) =T(0,1,0)=(0,1,0) 0 1 0
T(x,y,2) = (x,y,—2) Te)=T70,0)=00-D 1 Jo 0 -1
A<
. X, —v ) vz
Reflection about ' T(e)=T(1,0,0)=(1,0,0) 1 0 0
the xz-plane Tix) ™ | /X y Tie;) =T(0,1,0) =(0,—1.0) 0 -1 0
T(x,y.2) = (x, =y, 2) ] T(e3) =T(0,0.1)= (0,0, 1) 0 0 1
X
Reflection about T(e) =T(1,0,0) = (—1,0,0) -1 0 0
the yz-plane T(e;)=T(0,1,0)=1(0,1,0) 0 1 0
T(x.y.2) = (—x, y.2) T(e;) =T(0,0,1)=1(0,0,1) 0 0 1




Table 3

Operator

[Mlustration

Images of e; and e

Standard Matrix

Y
onthexants AT ren =ta.g = .0 o
Tix,y)=(x,0) .iu_ 0 X (&) =T(0, 1) =(0,0) 0 0
Tix)
¥
Orthogonal projection | (o, y) Ii____ e (x, )

on the y-axis

TI;.'E § 1*} = {{} TJ

T(x)

X
=

Tie))=T(1,0)=1(0,0)
Tie;)=T(0,1)=1(0,1)

o 1]




Table 4

Operator IMustration Images of eq. e2. e3 Standard Matrix

Orthogonal projection T Tie)=T(1,0,00 = (1,0,0) 1 00

on the xy-plane X 1| g v Te) =T, 1,00 =(0,1,0 0 1 0

T ol
T{I._‘L'.E}Z{In.}'n.[.} - T{EJJ — T[_O{}..IJ:{’['., ['1 [”' G ﬂ ﬂ
A Ty )
A<

Orthogonal projection Tie)=T(1,0,00 = (1,0,0) 1 0 0
on the xz-plane T(e:) =T(0,1,0)=(0,0,0) 0 0 0
T(x,y,2) = (x.0,2) T(e) =T7(0.0,1) = (0,0, 1) 0 0 1
Orthogonal projection Te)=T(1,0,0)=(0,0,0) 0 0 0
on the yz-plane T(e) =T(0.1,0)=(0,1,0) 0 1 0
Mx,v.2)=1(0,y,2)

Tien)=T(0,0,1)=1(0,0,1)




Table 5

Rotation Operators

1o

(—sin 8, cos #) “—

/T'/

-,

(cos @, sin &)
1 A h
| 1

t

il T

Operator

Ilustration

Rotation Equations

Standard Matrix

Rotation through
an angle ¢

Ay oW1 W)

Y.

= xcost!l — ysin#
= xsinéf + ycost

cos? —sind
sin # cos B

|




Table 6

Operator Hlustration Rotation Equations Standard Matrix
Counterclockwise we = x 1 0 0
rotation about b= i
the positive x-axis Y | wp=ycos f—zsin 6 0 cosf ~sin 6
through an wy=ysin #+zcos # 0 sind cost
angle ¢
C‘:T““CIECIT‘“C w; =xcos +zsin f cosf# 0 sinf
rotation abou
the positive y-axis W2=Yy 0 I 0
through an w3 =—xsin f#+zcos @ —sin # 0 cos @
angle ¢
Counterclockwise I , ]
rotation about wy=xcos f—ysin f cosff —sin § 0
the positive z-axis X w w, = x sin A+ y cos # sinf cosf 0O
through an . Wy =2 0 0 ]
angle - '

x/




Dilations and Contractions

Table 7

Operator

Hlustration
Tix,y)=(kx,ky)

Effect on the
Standard Basis

Standard
Matrix

{D.Ijl_

factor k on R?

(k= 1)

¥
X7 (xy)

Y =

Contraction with X, ®(xv) (0. k) ‘ b
factor k on R? o I I
0=k<1) o . — | —
g (1,0) (k. 0)
3 e ) (0, k) A
Dilation with T2 e k)| @, 1)

(1, 0) (k.0




Table 8

factor k on B>
(k=1)

.
X 3@ (x, v, 2)

Y.

IHlustration Standard
Operator Tix,y.z) = (kx, kv, kz) Matrix
Az
Contraction with v —® (V.2
: 3 v o
factor kon R T(x) 7 (k. ky. ko)
0=k=1) ‘:
k0 0]
0 k£ 0O
A< (kx, ky, kz) 0 0 k
Dilation with T(x) i )




Expansion or Compression

Table 9
Hlnstration Effect on the Standard
Operator Tix, y) = (kx, y) Standard Basls Matrix
. > ‘L
Compressionof R~ T[Lr vl (0, l>_|\ (i, IJJ_
in the x-direction Tix) pe—@ (x.Y) Y
with factor & X -
X e
D=k =1 - | g | ¥
0=k<1) | (1.0) (k, ) © 0
0 1
i ¥ |
Expansion of R’ x,y) (kv 0, 1) 0, 1) &
in the x-direction x =" —
with factor & Iix) -
X
(k=1) > (1. 0) ! (k, 0)
Hunstration Effect on the Standard
Operator Tix, y) = (x,ky) Standard Basls Matrix
. - ahj" |
Compression of B- _ {0, 1 0.k | 1l
in the y-direction . s & 7 . &),
with factor k A ky)
¢ X -
=k = =
. 0 k
) A- ;
Expansion of R? # & k) 0, 1),k (0.5
in the y-direction vadadd]
with factor &
X
(k= 1) > (o) 1.0y




Shear

Table 10
Operator Effect on the Standard Basls Standard Matrix
[}]}l k. 1) (k, 1)
Shear of R? in the 5 s y = I
x-direction A | I
with factor & | | — - 0 1
(. v) = (x + K. Y) L (L0 (1, 0) (1, 0)
' - (k= 0) (k< 0)
: 0,1), 0, 1)/ 0, 1),
Shear of R? in 4 R ‘ 5 M
the y-direction ‘ ] LB 1 0
with factor k _ 1" : ko1
| | |
Tix.y)=(x,v+kx) (1,0) (1. k)
(k=0) (k<0)




Section 4.10 Properties of Matrix
Transformations

DEFINITION 1 A matrix transformation T4: R" — R™ 1s said to be one-to-one if T
maps distinct vectors (points) in R" into distinct vectors (points) in R™.

THEOREM 4.10.1 If A is an n x n matrix and Ty: R" — R" is the corresponding
matrix operator, then the following statements are equivalent.

(a) A is invertible.
(b) The range of Ty is R".

(¢) Ta is one-to-one.




THEOREM 4.10.2 T: R" — R™ is a matrix transformation if and only if the following
relationships hold for all vectors w and v in R" and for every scalar k:

(1) Tu+v)=Tu)+T(v) |Additivity property]
(1) T (ku) = kT (u) [Homogeneity property]

THEOREM 4.10.3 Every linear transformation from R" to R™ is a matrix trans-
formation, and conversely, every matrix transformation from R" to R™ is a linear
transformation.




THEOREM 4.10.4 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.

(e) AX = b is consistent for every n x 1 matrix b.

(f) Ax = b has exactly one solution for every n x 1 matrix b.
(g) det(A) #0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

( j) The column vectors of A span R".

(k) The row vectors of A span R".

(1) The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(0) A has nullity 0.

( p) The orthogonal complement of the null space of A is R".
(q) The orthogonal complement of the row space of A is {0}.
(r) Therange of T4 is R".

(s) T4 is one-to-one.



Section 4.1 | Geometry of Matrix
Operators on R?

' Digitized scan Rotated \

A Figure 4.11.1

LY

N\

’i Unit square ‘ 1 Unit square rotated ‘

X

\ K

Unit square projected
onto the x-axis

Unit square reflected
about the liney=x

Unit square reflected
about the y-axis




Matrix Operators

THEOREM 4.11.1 If E is an elementary matrtix, then Tg: R* — R* is one of the
following:

(@) A shear along a coordinate axis.

(b) A reflection about y = x.

(c) A compression along a coordinate axis.
(d) An expansion along a coordinate axis.
(e) A reflection about a coordinate axis.

(f) A compression or expansion along a coordinate axis followed by a reflection
about a coordinate axis.

THEOREM 4.11.2 If Ta: R*> — R? is multiplication by an invertible matrix A, then
the geometric effect of T, is the same as an appropriate succession of shears, com-
pressions, expansions, and reflections.




Computer Graphics

THEOREM 4.11.3 If T: R* — R? is multiplication by an invertible matrix, then:

(a) The image of a straight line is a straight line.

(b) The image of a straight line through the origin is a straight line through the
origin.

(¢) The images of parallel straight lines are parallel straight lines.

(d) Theimage of the line segment joining points P and Q is the line segment joining
the images of P and Q.

(e) The images of three points lie on a line if and only if the points themselves lie
on a line.



Section 4.12 Dynamical Systems
and Markov Chains

DEFINITION 1 A Markov chain is a dynamical system whose state vectors at a
succession of time intervals are probability vectors and for which the state vectors at
successive time intervals are related by an equation of the form

X(k+ 1) = Px(k)

in which P = [p;;] is a stochastic matrix and p;; is the probability that the system
will be in state i at time t = k + 1 if it is in state j at time f = k. The matrix P is
called the fransition matrix for the system.

State at time f = k

State at time
Pij = t=k+1

The entry p; is the probability
that the system is in state [ at
timet=k+1ifitisin state
at time r=k.



Regular Markov Chains

DEFINITION 2 A stochastic matrix P is said to be regular if P or some positive
power of P has all positive entries, and a Markov chain whose transition matrix is
regular is said to be a regular Markov chain.

THEOREM 4121 [If P is the transition matrix for a regular Markov chain, then:
(a) There is a unique probability vector q such that Pq = q.

(b) For any initial probability vector Xy, the sequence of state vectors
Xp. PID,..., Pk’_!ig,...

converges to q.



