DESKRIPSI dan SPESIFIKASI Tugas Besar 1 IF2123 Aljabar Geometri Aplikasi Aljabar Lanjar pada Metode Numerik Semester Tahun 2014/2015

Dosen: Dr. Ir Rinaldi Munir, M.T.

PROSEDUR PENGERJAAN

- 1. Tugas dikerjakan secara berkelompok yang terdiri dari 3 orang.
- 2. Tugas ini dikumpulkan hari Jumat 2 Oktober 2015 paling lambat pukul 7.30 pagi di atas loker Lab IRK. Silakan isi absensi pengumpulan dan tanggal untuk demo program di depan asisten

BAHASA PEMROGRAMAN

- 1. Bahasa program yang digunakan adalah Java dengan kakas pengembangan program adalah J2SE.
- 2. Program tidak harus berbasis GUI, cukup text-based saja.

PROGRAM

Program dapat dibuat dengan pilihan menu. Urutan menu dan isinya dipersilakan ditrancang masing-masing.

LAPORAN

- 1. *Cover*: *Cover* laporan ada foto anggota kelompok (foto bertiga, bebas gaya). Foto ini menggantikan logo "gajah" ganesha.
 - Bab 1: Deskripsi masalah (dapat meng-copy paste file tugas ini)
 - Bab 2: Teori singkat mengenai metode eliminasi Gauss, metode eliminasi Gauss-Jordan, tatancang pemorosan, interpolasi, dll.
 - Bab 3: Implementasi program dalam Java, meliputi struktur data, kelas-kelas Java, dll.
 - Bab 4: Eksperimen. Bab ini beris hasil eksekusi program terhadap contoh-contoh kasus yang diberikan berikut analisis hasil eksekusi tersebut
 - Bab 5: Kesimpulan dan saran (hasil yang dicapai, saran pengembangan).
 - Tuliskan juga referensi (buku, web), yang dipakai/diacu di dalam Daftar Referensi.

Keterangan laporan dan program:

- a) Laporan ditulis dalam bahasa Indonesia yang baik dan benar, tidak perlu panjang tetapi tepat sasaran dan jelas.
- b) Laporan tidak perlu memakai *cover* mika dan dijilid. Cukup dibuat agar laporan tidak akan tercecer bila dibaca.
- c) Laporan boleh menggunakan kertas rius, boleh bolak-balik, boleh dalam satu halaman kertas terdapat dua halaman tulisan asalkan masih terbaca.

- d) Identitas per halaman harus jelas (misalnya: halaman, kode kuliah).
- e) Listing program ataupun algoritma tidak perlu disertakan pada laporan.
- e) Program disimpan di dalam *folder* Algeo-xxxxx. Lima digit terakhir adalah NIM anggota terkecil. Didalam *folder* tersebut terdapat tiga folder bin, src dan doc yang masing-masing berisi:

Folder bin berisi java byte code (.class)

Folder src berisi source code dari program java

Folder test berisi data uji.

Folder doc berisi dokumentasi program dan readme

PENGUMPULAN TUGAS

- 1. Yang diserahkan saat pengumpulan tugas adalah:
 - a) CD/DVD yang berisi program sumber (*source code*) dan arsip java yang sudah dikompilasi tanpa ada kesalahan.
 - b) Laporan
- 2. *Java bytecode* di dalam CD/DVD dapat dijalankan. Asisten pemeriksa tidak akan melakukan *setting* atau kompilasi lagi agar program dapat berjalan. Program yang tidak dapat dijalankan tidak akan diberi nilai.
- 3. CD dan laporan akan dikembalikan setelah dinilai.

PENILAIAN

Komposisi penilaian umum adalah sebagai berikut :

Program: 80 %
 Laporan: 20 %

SPESIFIKASI UMUM

- 1. Program harus dapat menerima input data dari
 - Papan ketik
 - File
- 2. Keluaran program harus dapat ditampilkan ke:
 - Layar monitor
 - Simpan ke dalam arsip

Format keluaran (misalnya dalam bentuk tabel) didefinisikan sendiri. Keluaran harus mudah dibaca dan informatif.

SPESIFIKASI MATERI

A. Tulislah program java untuk menyelesaikan sistem persamaan lanjar (SPL) dengan *n* peubah (*variable*) dan *m* persamaan:

SPL diselesaikan secara numerik dengan metode eliminasi Gauss dan metode eliminasi Gauss-Jordan. Di dalam kedua metode tersebut diterapkan tatancang pemorosan untuk mengurangi galat pembulatan.

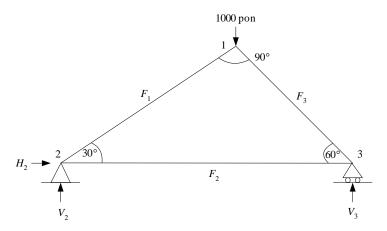
Program harus dapat menangani kasus-kasus sebagai berikut:

- a) SPL memiliki solusi unik, tampilkan solusinya
- b) SPL memiliki solusi tak terbatas, tampilkan solusinya dalam bentuk parameter
- c) SPL tidak memiliki solusi, tuliskan tidak ada solusinya.

Contoh-contoh SPL yang dijadikan data eksperimen:

a)
$$0.31x_1 + 0.14x_2 + 0.30x_3 + 0.27x_4 = 1.02$$

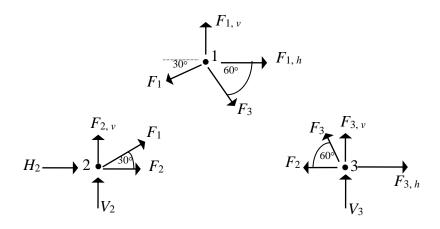
 $0.26x_1 + 0.32x_2 + 0.18x_3 + 0.24x_4 = 1.00$
 $0.61x_1 + 0.22x_2 + 0.20x_3 + 0.31x_4 = 1.34$
 $0.40x_1 + 0.34x_2 + 0.36x_3 + 0.17x_4 = 1.27$


b)
$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

 $2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_4 - 3x_6 = -1$
 $5x_3 + 10x_4 + 15x_6 = 5$
 $2x_1 + 6x_2 + 8x_4 + 4x_4 + 18x_6 = 6$

c) AX = B sebagai berikut:

								_		
0.70	710	0	-1	-0.8660	0	0	0	0		0
0.70	710	1	0	0.5	0	0	0	0		-1000
0	1	0	0	0	-1	0	0	0		0
0	0	-1	0	0	0	0	0	0		0
0	0	0	0	0	0	1	0	0.7071	X =	500
0	0	0	1	0	0	0	0	-0.7071		0
0	0	0	0	0.8660	1	0	-1	0		0
0	0	0	0	-0.5	0	-1	0	0		-500
0	0	0	0	0	0	0	0	0.7071		0
Щ										


- B. Aplikasikan metode penyelesaian SPL pada persoalan sain dan rekayasa sebagai berikut:
- 1. Misalkan seorang insinyur Teknik Sipil merancang sebuah rangka statis yang berbentuk segitiga (Gambar 1). Ujung segitiga yang bersudut 30° bertumpu pada sebuah penyangga statis, sedangkan ujung segitiga yang lain bertumpu pada penyangga beroda.

Rangka mendapat gaya eksternal sebesar 1000 pon. Gaya ini disebar ke seluruh bagian rangka. Gaya F menyatakan tegangan atau kompresi pada anggota rangka. Reaksi eksternal (H_2 , V_2 , dan V_3) adalah gaya yang mencirikan bagaimana rangka berinteraksi dengan permukaan pendukung. Engsel pada simpul 2 dapat menjangkitkan gaya mendatar dan tegak pada permukaan, sedangkan gelinding pada simpul 3 hanya menjangkitkan gaya tegak.

Gambar 1 Gaya-gaya pada rangka statis tertentu

Struktur jenis ini dapat diuraikan sebagai sistem persamaan aljabar lanjar simultan. Diagram gaya-benda-bebas diperlihatkan untuk tiap simpul dalam Gambar 2.

Gambar 2 Diagram gaya-benda-bebas untuk simpul-simpul rangka statis

Menurut hukum Newton, resultan gaya dalam arah mendatar maupun tegak harus nol pada tiap simpul, karena sistem dalam keadaan diam (statis). Oleh karena itu, untuk simpul 1,

$$\sum F_H = 0 = -F_1 \cos 30^\circ + F_3 \cos 60^\circ + F_{1,h}$$

$$\sum F_V = 0 = -F_1 \sin 30^\circ - F_3 \sin 60^\circ + F_{1,\nu}$$

untuk simpul 2,

$$\sum F_H = 0 = F_2 + F_1 \cos 30^\circ + F_{2, h} + H_2$$

$$\sum F_V = 0 = F_1 \sin 30^\circ - F_{2, v} + V_2$$

dan untuk simpul 3,

$$\sum F_H = 0 = -F_2 - F_3 \cos 60^\circ + F_{3, h}$$

$$\sum F_V = 0 = F_3 \sin 60^\circ + F_{3, v} + V_3$$

Gaya 1000 pon ke bawah pada simpul 1 berpadanan dengan $F_{1, \nu} = -1000$, sedangkan semua $F_{i, \nu}$ dan $F_{i, h}$ lainnya adalah nol. Persoalan rangka statis ini dapat dituliskan sebagai sistem yang disusun oleh enam persamaan lanjar dengan 6 peubah yang tidak diketahui:

$$\sum F_H = 0 = -F_1 \cos 30^\circ + F_3 \cos 60^\circ + F_{1, h} = -0.866F_1 + 0.5 F_3$$

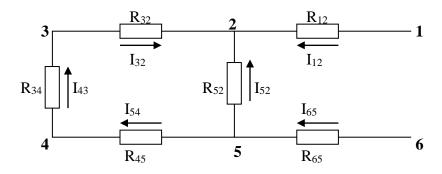
$$\sum F_V = 0 = -F_1 \sin 30^\circ - F_3 \sin 60^\circ + F_{1, v} = -0.5F_1 - 0.866 F_3 + 1000$$

$$\sum F_H = 0 = F_2 + F_1 \cos 30^\circ + F_{2, h} + H_2 = F_2 + 0.866F_1 + 0 + H_2$$

$$\sum F_V = 0 = F_1 \sin 30^\circ - F_{2, v} + V_2 = 0.5 F_1 + V_2$$

$$\sum F_H = 0 = -F_2 - F_3 \cos 60^\circ + F_{3, h} = -F_2 - 0.5 F_3$$

$$\sum F_V = 0 = F_3 \sin 60^\circ + F_{3, v} + V_3 = 0.866 F_3 + V_3$$


Keenam persamaan di atas ditulis ulang kembali dalam susunan yang teratur berdasarkan urutan peubah F_1 , F_2 , F_3 , H_2 , V_2 , V_3 :

atau dalam bentuk matriks:

$$\begin{bmatrix} 0.866 & 0 & -0.5 & 0 & 0 & 0 \\ 0.5 & 0 & 0.866 & 0 & 0 & 0 \\ -0.866 & -1 & 0 & -1 & 0 & 0 \\ -0.5 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & -0.866 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ H_2 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1000 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Tentukan solusi sistem di atas!

2. Diberikan sebuah rangkaian listrik sbb:

Diminta menghitung arus pada masing-masing rangkaian. Arah arus dimisalkan seperti diatas. Dengan hukum Kirchoff diperoleh persamaan-persamaan berikut :

$$\begin{split} I_{12} + I_{52} + I_{32} &= 0 \\ I_{65} - I_{52} - I_{54} &= 0 \\ I_{43} - I_{32} &= 0 \\ I_{54} - I_{43} &= 0 \end{split}$$

Dari hukum Ohm didapat:

$$\begin{split} I_{32}R_{32} &- V_3 + V_2 = 0 \\ I_{43}R_{43} &- V_4 + V_3 = 0 \\ I_{65}R_{65} &+ V_5 = 0 \\ I_{12}R_{12} &+ V_2 = 0 \\ I_{54}R_{54} &- V_5 + V_4 = 0 \\ I_{52}R_{52} &- V_5 + V_2 = 0 \end{split}$$

Tentukan I_{12} , I_{52} , I_{32} , I_{65} , I_{54} , I_{13} , V_2 , V_3 , V_4 , V_5 bila:

$$\begin{array}{ll} R_{12} = & 5 \text{ ohm, } R_{52} = 10 \text{ ohm, } R_{32} = 10 \text{ ohm,} \\ R_{65} = 20 \text{ ohm, } R_{54} = 15 \text{ ohm, } R_{14} = & 5 \text{ ohm,} \\ V_1 = 200 \text{ volt, } V_6 = 0 \text{ volt} \end{array}$$

3. (Interpolasi) Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titik-titik yang terdapat dalam tabel. Program menerima masukan nilai x yang akan dicari nilai fungsi f(x).

х	0.1	0.3	0.5	0.7	0.9	1.1	1.3
f(x)	0.003	0.067	0. 148	0.248	0.370	0.518	0.697

Lakukan pengujian pada nilai-nilai default berikut:

$$x = 0.2$$
 $f(x) = ?$
 $x = 0.55$ $f(x) = ?$
 $x = 0.85$ $f(x) = ?$
 $x = 1.28$ $f(x) = ?$

x = 1.28

4. (Interpolasi) Konsentrasi larutan oksigen jenuh dalam air sebagai fungsi suhu dan konsentrasi klorida didefinisikan dalam tabel berikut:

Suhu (⁰ C)	Konsentrasi larutan Oksigen jenuh (mg/L) untuk berbagai konsentrasi Klorida			
	Klorida = 10 mg/L	Klorida = 20 mg/L		
5	11.6	10.5		
10	10.3	9.2		
15	9.1	8.2		
20	8.2	7.4		
25	7.4	6.7		
30	6.8	6.1		

Estimasilah konsentrasi oksigen jenuh yang larut untuk $T = 22.4^{\circ}$ C pada konsentrasi klorida 10 mg/L dan 20 mg/L.

5. (Interpolasi) Harga rumah baru dari tahun 1950 hingga 1969 mengalami perubahan yang tercatat sebagai berikut:

Tahun	Harga (\$ juta)
1950	33,525
1955	46,519
1960	53,941
1965	72,319
1966	75,160
1967	76,160
1968	84,690
1969	90,866

Berdasarkan data tersebut prediksilah harga rumah baru pada tahun 1957, 1964, 1970, 1975 (atau nilai lain sesuai masukan user) dengan menggunakan polinom interpolasi derajat n (n masukan dari pengguna).