
Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

Quaternions for 3D Rotation Features and Its

Application in Unity Game Engine

Geraldi Dzakwan 13514065

Informatics Undergraduate Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Avenue Number 10 Bandung 40132, Indonesia

geraldzakwan@students.itb.ac.id

Abstract—Linear and vector algebra are some of the basic

for computer graphic. It is commonly used to transform an

object (such as rotating) in computer graphics as what most of

people know. But, there is a fairly new concept relative to

linear and vector algebra which becomes more popular

recently. That would be the concept of quaternion. Quaternion

(frequently called as quaternion algebra) basicly is the 3D

equivalent of complex numbers which eases many problems in

3D computer graphics especially object transformation. Many

game developers start to use quaternion to develop some

features for their game such as 3D rotation feature. Hence,

this paper will focus on 3D computer graphics and review its

3D rotation feature. There are reasons why they leave linear

and vector algebra and prefer to choose quaternion (these will

also be reviewed in this paper). This paper will also include

implementations of quaternion for 3D rotation in unity game

engine as a popular game development tool with describing

illustrations in the last section.

Keywords—computer graphic, linear algebra, vector

algebra, quaternion algebra, 3D rotation, game

development, unity game engine

I. INTRODUCTION

 Computer graphic is one of important branch in

computer science as it supports software development,

mainly for games development. Good graphic design for

software can help to attract more users as users would

always look for best interface.

Computer graphic has wide variety of applications in

computer science. Every tools, software, and games are

supported by good graphic design. For example, gamers

would prefer a game which has better computer graphics.

It applies to other computer science products as well.

 The discussion in this paper will be restricted just for

3D computer graphic features, especially 3D rotation. It is

more complicated than 2D rotation since we must specify

an axis of rotation. In 2D, the axis of rotation is always

perpendicular to the xy plane, i.e., the Z axis, but in 3D

the axis of rotation can have any spatial orientation.

 As stated before in the abstract, there are many

approaches on how to rotate 3D objects. People tend to

use linear algebra (such as rotation matrix) or vector

algebra to be applied to 3D rotation. But, since the new

concept of quaternion is introduced, developers start to

use quaternion as it has some advantages. Further

explanation about quaternion and what advantages

quaternion has will not be discussed here but instead later

in quaternion section.

Fig 1.1 An illustration for rotating 3D object

Source :

http://docs.autodesk.com/ACD/2010/ENU/AutoCAD%20

2010%20User%20Documentation/images/PTDCPM/Gato

r-All/English/ill_23_rotate_GT_vector.png

 Hence, I would say that this paper holds the whole

thing about 3D rotation. This paper starts with basic

theories of quaternion algebra which underlies 3D

rotation feature. Then, how quaternion supports 3D

rotation and what makes it more versatile tools than linear

or vector algebra will be reviewed in the middle part of

the paper. Last but not least, there will be an insight of a

unity game engine as a popular game development tool

among game developers. There will be illustrations on

how to rotate a game object in unity. Their concept of

rotating object is based on quaternion algebra so I think

this paper’s last section will correspond to the previous

sections preceding.

http://docs.autodesk.com/ACD/2010/ENU/AutoCAD%202010%20User%20Documentation/images/PTDCPM/Gator-All/English/ill_23_rotate_GT_vector.png
http://docs.autodesk.com/ACD/2010/ENU/AutoCAD%202010%20User%20Documentation/images/PTDCPM/Gator-All/English/ill_23_rotate_GT_vector.png
http://docs.autodesk.com/ACD/2010/ENU/AutoCAD%202010%20User%20Documentation/images/PTDCPM/Gator-All/English/ill_23_rotate_GT_vector.png

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

II. QUATERNION THEORIES

 The whole explanations about quaternion theories are

taken from Geometric Algebra for Computer Graphics

book written by John Vince. Some contents are modified

by my own writing and by other references as well. There

will be as well illustrations, some are taken from the

book, some other are taken from other references.

A. Quaternion Overview

 Quaternions are the result of one man’s determination

to find the 3D equivalent of complex numbers. Sir

William Rowan Hamilton was the man, and in 1843 he

revealed to the world his discovery which had taken him

over a decade to resolve.

Quaternion is the form of 4-tuple as stated below :

z = a + ib + jc + kd

where i, j, and k are unit imaginaries which obey

Hamilton’s rules.

The Hamilton’s rules of unit imaginaries :

i
2
 = j

2
 = k

2
 = ijk = −1

ij =k jk=i ki =j ji = −k kj = −i ik= −j

 However, when vector algebra became the preferred

system over quaternion algebra, the i, j and k terms

became the Cartesian unit vectors i, j and k.

 One very important feature of quaternion algebra is its

anticommuting rules. Maintaining order between the unit

imaginaries is vital for the algebra to remain consistent,

which is also a feature of GA (geometric algebra).

B. Quaternion Operation and Properties

1. Sum of Quaternions
Two quaternions q1 and q2

q1 = s1 + i x1 + j y1 + k z1

q2 = s2 + i x2 + j y2 + k z2

are equal if, and only if, their corresponding terms

are equal. Furthermore, like vectors, they can be

added or subtracted as follows:

q1 ± q2 = [(s1 ± s2) + i(x1 ± x2) + j(y1 ± y2) + k(z1 ±

z2)].

For example, given two quaternions

q1 = 1 + i2 + j3 + k4

q2 = 2 − i + j5 − k2

their sum is given by

q1 + q2 = 3 + i + j8 + k2

2. Product of Quaternions
Given two quaternions

q1 = s1 + v1 = s1 + i x1 + j y1 + k z1

q2 = s2 + v2 = s2 + i x2 + j y2 + k z2

their product is given by

q1 q2 = s1 s2 – v1 · v2 + s1 v2 + s2 v1 + v1 × v2

which is still a quaternion and ensures closure.

However, the quaternion product anticommutes,

which we can prove by computing q2q1:

q2 q1 = s1 s2 – v2 · v1 + s2 v1 + s1 v2 + v2 × v1

The pure scalar terms s2 s1, v2 · v1 and the products

s2 v1 and s1 v2 commute, but the cross product

v2×v1 anticommutes, therefore q1 q2 is not equal to

q2 q1.

For example, given the quaternions

q1 = 1 + i2 + j3 + k4

q2 = 2 − i + j5 − k2

their product q1q2 is

q1 q2 = (1 + i2 + j3 + k4)(2 − i + j5 − k2)

 = [1 × 2 − (2 × (−1) + 3 × 5 + 4 × (−2))

 +1(−i + j5 − k2) + 2(i2 + j3 + k4)

+i(3 × (−2) − 4 × 5) + j(4 × (−1) − (−2) ×

2) + k(2 × 5 − (−1) × 3)]

 = −3 + i3 + j11 + k6 − i26 + k13

q1 q2 = −3 − i23 + j11 + k19

which is a quaternion.

Whereas the product q2q1 is

q2 q1 = (2 − i + j5 − k2)(1 + i2 + j3 + k4)

 = [2 − ((−1) × 2 + 5 × 3 + (−2) × 4)

 +2(i2 + j3 + k4) + 1(−i + j5 − k2)

+i(5 × 4 − 3 × (−2)) + j((−2) × 2 − 4 ×

(−1)) + k((−1) × 3 − 2 × 5)]

q2 q1 = −3 + i29 + j11 − k7

which is also a quaternion, but q2q1 is not equal to

q1 q2.

3. Magnitude of Quaternion
Given the quaternion

q = s + ix + jy + kz

its magnitude is defined as

||q|| = (s
2
 + x

2
 + y

2
 + z

2
)

1/2

For example, given the quaternion

q = 1 + i2 + j3 + k4

||q|| = (1
2
 + 2

2
 + 3

2
 + 4

2
)

1/2
 = √30

4. Unit of Quaternion
Like vectors, quaternions have a unit form where

the magnitude equals unity. For example, the

magnitude of the quaternion

q = 1 + i2 + j3 + k4

is

||q|| = (1
2
 + 2

2
 + 3

2
 + 4

2
)

1/2
 = √30

therefore, the unit quaternion q
u
 equals

q
u
 = 1/30 (1 + i2 + j3 + k4)

5. Pure Quaternion
Hamilton named a quaternion with a zero scalar

term a pure quaternion. For example,

q1 = s1 + i x1 + j y1 + k z1

and q2 = s2 + i x2 + j y2 + k z2

are pure quaternions. Let’s see what happen when

we multiply them together:

q1 q2 = (i x1 + j y1 + k z1) (i x2 + j y2 + k z2)

q1 q2 = [−(x1 x2 + y1 y2 + z1 z2) + i(y1 z2 – y2 z1) +

j(z1 x2 – z2 x1) + k(x1 y2 – x2 y1)]

which is no longer a pure quaternion, as a negative

scalar term has emerged. Thus the algebra of pure

quaternions is not closed.

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

6. Conjugate of Quaternion
Given the quaternion

q = s + v

q = s + ix + jy + kz

by definition, its conjugate is

q
c
 = s − v = s − (ix + jy + kz)

For example, the quaternion

q = 1 + i2 + j3 + k4

its conjugate is

q
c
 = 1 − i2 − j3 − k4

7. Inverse of Quaternion
Given the quaternion

q = s + ix + jy + kz

the inverse quaternion q
−1

 is

q
−1

 = s − ix − jy – kz / ||q||
2

because this satisfies the product

qq
−1

 = (s + ix + jy + kz)(s − ix − jy − kz) / ||q||
2
 = 1

We can show that this is true by expanding the

product as follows:

qq
−1

 = (s2 − isx − jsy − ksz + isx + x2 − ijxy − ikxz +

jsy − jixy + y2 − jkyz + ksz − kixz − kjyz + z2) / ||q||
2

 = (s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz −

kixz – kjyz) / ||q||
2

qq
−1

 = (s2 + x2 + y2 + z2) / ||q||
2

= 1

and confirms that the inverse quaternion q
−1

 is

q
−1

 = q / ||q||
2

Because the unit imaginaries do not commute, we

need to discover whether

qq−1 = q−1q

Expanding this product

q
−1

q = (s − ix − jy − kz)(s + ix + jy + kz) / ||q||
2

 = (s2 + isx + jsy + ksz − isx + x2 − ijxy − ikxz−

jsy − jixy + y2 − jkyz − ksz − kixz − kjyz + z2) / ||q||
2

 = (s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz −

kixz− kjyz) / ||q||
2

q
−1

q = (s
2
 + x

2
 + y

2
 + z

2
) / ||q||

2
= 1

therefore,

qq
−1

 = q
−1

q

C. Quaternion Algebra

 The axioms associated with quaternions are as follows:

 Given

q, q1, q2, q3 ∈ C:

1. Closure

For all q1 and q2

addition q1 + q2 ∈ C

multiplication q1 q2 ∈ C

2. Identity

For each q there is an identity element 0 and 1

such that:

addition q+0 = 0+q = q (0 = 0 + i0 + j0 + k0)
multiplication q(1) = (1)q = q (1 = 1 + i0 + j0 + k0)

3. Inverse

For each q there is an inverse element −q and

q
−1

 such that:

addition q + (−q) = −q + q = 0

multiplication qq
−1

 = q
−1

q = 1 (q is not zero).

4. Associativity

For all q1, q2 and q3

addition q1 + (q2 + q3) = (q1 + q2) + q3

multiplication q1(q2 q3) = (q1 q2)q3

5. Commutativity

For all q1 and q2

addition q1 + q2 = q2 + q1

multiplication q1 q2 is not equal to q2 q1

6. Distributivity

For all q1, q2 and q3

q1(q2 + q3) = q1 q2 + q1 q3

(q1 + q2)q3 = q1 q3 + q2 q3

C. Conclusion for Quaternion Theories

 Out of all the algebras we have so far considered,

quaternion algebra paves the way to geometric algebra. In

fact, as we will soon discover, geometric algebra shows

that quaternions are a left-handed system and employ the

concepts of geometric algebra. The good news is that if

you understand quaternions, you will find it much easier

to understand geometric algebra.

III. 3D ROTATION USING QUATERNION

A. Why Quaternion
 As stated before in the introduction, there would be

other methods to rotate an object, such as using linear

algebra (rotation matrix) and vector algebra. Then, why

we bother considering to rotate object using quaternion?

Of course, there are reasons behind it. Rotating object

using quaternion does have some advantages compared to

other methods. Not only for rotating object problems, but

quaternions are used in computer graphics a lot for

these reasons :

1. They are much more efficient to store than

rotation matrices (4 floats rather than 16)

2. They are much easier to interpolate than euler

angle rotations (spherical interpolation or

normalized liner interpolation)

3. They avoid gimbal lock

4. It’s more sophisticating to tell that your rotation

is described as a great circle on the surface of a

unit 4 dimensional hypersphere

 To understand more about the benefits of using

quaternions you have to consider different ways to

represent rotations.

Here are few ways with a summary of the pros and cons:

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

 Euler angles

 Rotation matrices

 Axis angle

 Quaternions

 Rotors (normalized Spinors)

 Euler angles are the best choice if you want a user to

specify an orientation in a intuitive way. They are also

space efficient (three numbers). However, it is more

difficult to linear interpolate values. Consider the case

where you want to interpolate between 359 and 0 degrees.

Linearly interpolating would cause a large rotation, even

though the two orientations are almost the same. Writing

shortest path interpolation, is easy for one axis, but non-

trivial when considering the three Euler angles (for

instance the shortest route between (240, 57, 145) and

(35, -233, -270) is not immediately clear).

 Rotation matrices specify a new frame of reference

using three normalized and orthogonal vectors (Right, Up,

Out, which when multiplied become the new x, y, z).

Rotation matrices are useful for operations like strafing

(side way movement), which only requires translating

along the Right vector of the camera's rotation matrix.

However, there is no clear method of interpolating

between them. They are also expensive to normalize

which is necessary to prevent scaling from being

introduced.

 Axis angle, as the name suggests, are a way of

specifying a rotation axis and angle to rotate around that

axis. You can think of Euler angles, as three axis angle

rotations, where the axis is the x, y, z axis respectively.

Linearly interpolating the angle in a axis angle is pretty

straight forward (if you remember to take the shortest

path), however linearly interpolating between different

axis is not.

 Quaternions are a way of specifying a rotation

through a axis and the cosine of half the angle. They main

advantage is I can pick any two quaternions and smoothly

interpolate between them.

 Rotors are another way to perform rotations. Rotors

are basically quaternions, but instead of thinking of them

as 4D complex numbers, rotors are thought of as real 3D

multivectors. This makes their visualization much more

understandable (compared to quaternions), but requires

fluency in geometric algebra to grasp their significance.

B. Quaternion Rotation Concept

 One excellent application for quaternions is rotating

vectors. If you require an introduction to this topic or are

willing to learn more you can see [2].

 It can be shown that a position vector p can be rotated

about an axis u
^
 by an angle θ to p′ using the following

operation:

p′ = qpq
−1

where

p = xi + yj + zk

p = 0 + ix + jy + kz

q = cos(θ/2) + sin(θ/2) u
^

q
−1

 = cos(θ/2) − sin(θ/2) u
^

and the axis of rotation is

u
^
 = [xui + yuj + zuk] (||u

^
|| = 1)

 This is best demonstrated through an example. Let

the point to be rotated be

P(0, 1, 1)

Let the axis of rotation be

u
^
 = j

Let the angle of rotation be

θ = 90
0

Therefore,

p = 0 + i0 + j + k

q = cos 45
0
 + sin 45

0
(i0 + j + k0)

q = √2/2 (1 + i0 + j + k0)

q
−1

 = cos 45
0
 − sin 45

0
(i0 + j + k0)

q
−1

 = √2/2 (1 − i0 − j − k0)

The rotated point is given by

p′ = qpq
−1

p′ = √2/2 (1 + i0 + j + k0) (0 + i0 + j + k) √2/2 (1 − i0 − j

− k0)

 This is best expanded in two steps, and zero

imaginary terms are included for clarity.

qp followed by (qp)q−1.

Step 1

qp = √2/2 (1 + i0 + j + k0) (0 + i0 + j + k)

qp = √2/2 (−1 + i + j + k)

Step 2

(qp)q
−1

 = √2/2 (−1 + i + j + k) √2/2 (1 − i0 − j − k0)

 = ½ (−1 + 1 + j + i + j + k + i − k)

 = ½ (0 + i2 + j2 + k0)

 (qp)q−1 = 0 + i + j + k0

 The coordinates of the rotated point are stored in

the pure part of the quaternion: (1, 1, 0).

IV. 3D ROTATION IMPLEMENTATION FOR UNITY AS A

GAME ENGINE

A. Unity Overview

 Unity is a cross-platform game engine developed

by Unity Technologies and used to develop video

games for PC, consoles, mobile devices and websites.

First announced only for OS X, at Apple’s Worldwide

Developers Conference in 2005, it has since been

extended to target more than fifteen platforms. It is now

the default software development kit (SDK) for the Wii

U. Five versions of Unity have been released, its latest is

the Unity 5. At the 2006 WWDC trade show, Apple, Inc.

named Unity as the runner up for its Best Use of Mac OS

X Graphics category.

https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Unity_Technologies
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Wii_U
https://en.wikipedia.org/wiki/Wii_U

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

 With an emphasis on portability, the engine targets the

following APIs : Direct3D on Windows and Xbox 360;

OpenGL on Mac and Windows; OpenGL ES on Android

and iOS; and proprietary APIs on video game consoles.

Unity allows specification of texture compression and

resolution settings for each platform the game engine

supports, and provides support for bump

mapping, reflection mapping, parallax mapping, screen

space ambient occlusion (SSAO), dynamic shadows

using shadow maps, render-to-texture and full-screen

post-processing effects. Unity's graphics engine's platform

diversity can provide a shader with multiple variants and

a declarative fallback specification, allowing Unity to

detect the best variant for the current video hardware; and

if none are compatible, fall back to an alternative shader

that may sacrifice features for performance.

 Unity is notable for its ability to target games to

multiple platforms. Within a project, developers have

control over delivery to mobile devices, web browsers,

desktops, and consoles. Supported platforms

include BlackBerry 10, Windows Phone 8, Windows, OS

X, Android, iOS, Unity Web Player (including

Facebook), PlayStation 3, PlayStation 4, PlayStation

Vita, Xbox 360, Xbox One, Wii U, Nintendo 3DS

line and Wii. It includes an asset server and

Nvidia's PhysX physics engine. Unity Web Player is a

browser plugin that is supported in Windows and OS X

only. Unity is the default software development kit (SDK)

for Nintendo's Wii U video game console platform, with a

free copy included by Nintendo with each Wii U

developer license. Unity Technologies calls this bundling

of a third-party SDK an "industry first".

 In 2012, VentureBeat said, "Few companies have

contributed as much to the flowing of independently

produced games as Unity Technologies."

 For the Apple Design Awards at the

2006 WWDC trade show, Apple, Inc. named Unity as the

runner up for its Best Use of Mac OS X Graphics

category, a year after Unity's launch at the same trade

show. Unity Technologies says this is the first time a

game design tool has ever been nominated for this

award. A May 2012 survey by Game Developer magazine

indicated Unity as its top game engine for mobile

platforms. In July 2014, Unity won the "Best Engine"

award at the UK's annual Develop Industry Excellence

Awards.

 Unity 5 has been met with similar praise, with The

Verge stating "Unity started with the goal of making

game development universally accessible. Unity 5 is a

long-awaited step towards that future."

 There are so many popular games which are built by

this powerful and versatile game engine since the very

first time this engine was introduced. Some of them are

Dead Frontier, Three Kingdoms Online, Temple Run,

Plague Inc, Slender, Game of Thrones, Space Hulk,

World Series of Poker, Angry Birds, Crossy Road,

Wasteland, Heroes of Warcraft, and Pathfinder Online.

As you may see, Unity works on wide variety of platform,

such as console, PC, and mobile.

Fig 4.1 Unity Working Environment/User Interface on

Mac OS platform

Source : http://3.bp.blogspot.com/-

O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2

cklVQLA/s1600/358365%5B1%5D.png

Fig 4.2 Unity Scene View and Game View on Mac OS

platform

Source : http://3.bp.blogspot.com/-

O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2

cklVQLA/s1600/358365%5B1%5D.png

B. Unity 3D Rotation Feature using Quaternion

 It is best to explain this section with example and

illustrations which describe it. Let us take an example of a

human character object that is programmed to always

look at an orb wherever the orb goes.

Fig 4.2 Scene with a human character object and an orb

object

https://en.wikipedia.org/wiki/Microsoft_Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Texture_compression
https://en.wikipedia.org/wiki/Bump_mapping
https://en.wikipedia.org/wiki/Bump_mapping
https://en.wikipedia.org/wiki/Reflection_mapping
https://en.wikipedia.org/wiki/Parallax_mapping
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Shadow_map
https://en.wikipedia.org/wiki/Render_to_Texture
https://en.wikipedia.org/wiki/BlackBerry_10
https://en.wikipedia.org/wiki/Windows_Phone_8
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/PlayStation_3
https://en.wikipedia.org/wiki/PlayStation_4
https://en.wikipedia.org/wiki/PlayStation_Vita
https://en.wikipedia.org/wiki/PlayStation_Vita
https://en.wikipedia.org/wiki/Xbox_360
https://en.wikipedia.org/wiki/Xbox_One
https://en.wikipedia.org/wiki/Wii_U
https://en.wikipedia.org/wiki/Nintendo_3DS_line
https://en.wikipedia.org/wiki/Nintendo_3DS_line
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/PhysX
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Wii_U
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/WWDC
https://en.wikipedia.org/wiki/Apple,_Inc.
https://en.wikipedia.org/wiki/Develop_(magazine)
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png
http://3.bp.blogspot.com/-O6Ut6OMivBQ/UTRZzEgsFNI/AAAAAAAAAKk/fLa2cklVQLA/s1600/358365%5B1%5D.png

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.3 There are panel in the top right side in which you

can set position, rotation, and scale component. To

specify rotation, you must add the quaternion component

which corresponds to the rotation you want

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.4 The orb is attached to a Motion script so later it

can rotate to move around/orbit the character

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.5 The motion script in JS which is attached to the

orb. The motion is set based on time and axis.

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.6 The character is attached to a LookAt script so it

can look at the orb wherever the orb goes

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.7 The LookAt script which take benefits of

quaternion to make the character rotate relative to the

position of the orb

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions

Makalah IF2123 Aljabar Geometri – Informatika ITB –Semester I Tahun 2015/2016

Fig 4.8 When the orb goes to the right, the character’s

face will rotate to the right so it can look at the orb

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

Fig 4.9 When the orb goes to the left, the character’s face

will rotate to the left so it can look at the orb

Source :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions

 To see more comprehensive example, visit this link :

https://unity3d.com/learn/tutorials/modules/intermediate/s

cripting/quaternions. You can watch the Unity Official

Tutorials about how to utilize the Quaternion System to

manage the rotation of game object.

V. CONCLUSION

 In conclusion, quaternion algebra is a beneficial

system to use for rotating 3D object and for other feature

related to computer graphics. It is because quaternion

algebra has some advantages over linear algebra (rotation

matrices) and vector algebra which has been reviewed

before in the middle part of the paper.

 Quaternion system is not only implemented in 3D

rotation, but also for computer graphics generally. So,

beside game development, there are a lot of fields in

computer graphics which will be using quaternion system

to improve furthermore. Quaternion is a versatile tool to

be implemented in computer graphics besides the other

methods such as Euler angle, rotation matrices, axis

angle, and rotors.

 Although the implementation of quaternion in

computer graphics is not as far as the linear or vector

algebra, but I believe the use of quaternion will grow

bigger as many developers realize the advantage of using

this system for developing their product, not only game,

but also software in general.

REFERENCES

[1] Vince, John. Geometric Algebra for Computer Graphics.

[2] Vince, John. Mathematics for Computer Graphics.
[3] http://math.stackexchange.com/questions/71/real-world-uses-of-

quaternions.

Accessed on December 12th 2015 at 16.00.
[4] https://www.siggraph.org/education/materials/HyperGraph/modeli

ng/mod_tran/3drota.htm.

Accessed on December 12th 2015 at 16.00.
[5] https://www.researchgate.net/publication/255594303_Quaterions_

and_their_Applications_to_Rotation_in_3D_Space.

Accessed on December 12th 2015 at 17.00
[6] http://www.gamasutra.com/view/feature/131686/rotating_objects_

using_quaternions.php
Accessed on December 12th 2015 at 17.00

[7] http://docs.unity3d.com/Manual/UnityOverview.html

Accessed on December 15th 2015 at 10.00
[8] http://docs.unity3d.com/Manual/UnityManual.html

Accessed on December 15th 2015 at 10.00

[9] http://docs.unity3d.com/learn/tutorials/topics/graphics

Accessed on December 15th 2015 at 11.00

[10] https://unity3d.com/learn/tutorials/modules/intermediate/scripting/

quaternions
Accessed on December 15th 2015 at 11.00

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 16 Desember 2015

Geraldi Dzakwan 13514065

https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
http://math.stackexchange.com/questions/71/real-world-uses-of-quaternions
http://math.stackexchange.com/questions/71/real-world-uses-of-quaternions
https://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
https://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
https://www.researchgate.net/publication/255594303_Quaterions_and_their_Applications_to_Rotation_in_3D_Space
https://www.researchgate.net/publication/255594303_Quaterions_and_their_Applications_to_Rotation_in_3D_Space
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://docs.unity3d.com/Manual/UnityOverview.html
http://docs.unity3d.com/Manual/UnityManual.html
http://docs.unity3d.com/learn/tutorials/topics/graphics
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/quaternions

