
Intrusion Detection Against Unauthorized File Modification

by Integrity Checking and Recovery with HW/SW Platforms

Using Programmable System-On-Chip (SoC)

Mochamad Julianto S

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

muhamad.info@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi.munir@itb.ac.id

Abstract— The attacks of modifying files such as website

hacking, virus infection and ransomware are becoming a

recent issue. This is due to a lack of attention to the

programs or maintenance of web applications after it has

been completed and connected to the internet, while hackers

will always try to find a security hole to infiltrate the system.

The security of software-based system used in the market

today is not good enough to protect those attacks because

the software-based protection, in general, can still be

modified or manipulated. Therefore, a mechanism that can

protect files in a system (such as personal computer or

server) by both software and hardware is required.

Implementing the mechanism to a hardware can bring a

better immunity from malware infections. This paper

proposed a method that provides protection mechanism

against unauthorized file modification using the existing

Integrity Checking and Recovery (ICAR) concept by

holistic approach (hardware and software protection) with

an open source security-oriented platform using a

programmable system on chip (SoC). The results of the

simulations show that the system can protect the

authenticity of files against file modification-based attacks

in the limited scenarios of attack without modifying main

system configuration.

Keyword---system on chip, integrity checking, malware,

intrusion detection, web defacement.

I. INTRODUCTION

Nowadays, the development of information technology

causes many efforts of hacking or corrupting a system

(PC/server) by manipulating it, for example, an illegal

modification of the system configuration or sending malware

on specific systems to open security holes and commit crimes.

The Indonesian government’s incident response team said that

the vulnerability of a system could be due to several things, such

as the lack of protection mechanisms against files stored in the

system storage, operating system vulnerabilities and program

code vulnerabilities when building website pages. Once the

vulnerabilities are known, then the hacker will exploit it to gain

access to the system as root or administrator. When exploiting

system vulnerabilities, attackers usually use malicious code or

commonly referred as exploit code [9]. These actions are also

called intrusions and most of them cause file modifications [6].

This can be a serious threat because a successful attack may

lead to system failure.

There is a concept of digital checksum which calculates a

unique value from a file content called an Integrity Checking

and Recovery (ICAR) [6]. The conceptual approach is to

prevent file modification of important data such as file systems

in the operating system. This concept can be very powerful to

prevent previously mentioned threats such as preventing

malicious code to infect or modify important files (e.g., web

server configuration, web pages, file system, etc.) stored in

system storage. Also, it protects website pages by preventing

web defacement and, at the same time, protecting all the crucial

ICAR data including binaries, file backups and hash database

inside write-protected storage.

ICAR was implemented as an in-kernel Linux Security

Modules (LSM). Besides affecting system performance,

modification of kernel level may also increase the attack

surface. By enhancing this method using a different approach,

it might be possible to integrate security system outside the

physical system without modifying the main system (e.g.,

kernel, operating system configuration, create a rootkit, etc.) in

existing infrastructure. This approach is expected to suppress

the attack surface.

Faced with this challenge, holistic security approach that

combines logical and physical aspect to provide better

immunity from contamination, malicious code infections or

vulnerability must be taken to protect the system [2]. The

physical approach used in this study is an open source security-

oriented hardware and software platform called system on chip

(SoC). SoC is an Integrated Circuit (IC) that integrates all

components of a computer or other electronic system into single

chip [7]. SoC design allows high performance, good processing

technology, miniaturization, efficient battery lifetime and cost

sensitivities.

In this research, we propose a mechanism to overcome file

modification attack to protect the integrity of crucial files stored

in system storage using ICAR method with some modifications

to the model layer. Furthermore, implementation using SoC

module that is applied as a separate physical system can also

monitor file integrity on specific files in the main system. The

enhanced system can also perform valid updates in real time to

checksums database and backup files through a security

procedure such as authentication mechanism to ensure that the

system performs updates by an authorized user only.

II. RELATED WORKS

Some of the threats to computer system security include

virus, Trojan programs, rootkit, and others. Most computer

system attacks are performed using network access and the

likelihood of security breach increases if the computer system

is not adequately protected [6]. So it needed necessary to

introduce some methods to check whether there has been a

breach or not which are done most effectively by checking for

unauthorized file modification [5]. There are several concepts

to overcome issues related to the threats.

In-kernel Integrity Checker and Intrusion Detection File

System (I3FS) concept is an in-kernel system to detect intrusion

through integrity checks. It compares the checksum of files in

real-time. This system approach is capable of discovering any

failure in integrity check and it immediately blocks access to

the affected file and notifies the administrator. Moreover, I3FS

is implemented inside the kernel as a loadable module. It

assumes that the file system is the most appropriate location for

security modules because most intrusions would cause file

modification [6].

The advantage of this system is that it has an authentication

mechanism. Therefore, only valid updates to the files that carry

policies should be permitted through a secure channel as to

prevents malicious programs from triggering checksum updates

subsequent to an unauthorized modification to file data. This is

due to critical programs and files need to be updated

occasionally and such updates should not require re-

initialization of the file system [11].

Another concept is called Integrity Checking and Recovery

(ICAR) system. This system concept utilizes the mechanism of

a unique digital fingerprint, also known as a checksum, is stored

in a secured database and retrieved to check if an unauthorized

modification to a file has been made. If the calculated hash

differs from the initial hash, a security procedure is activated to

restore the original file content from the backup and notify

system administrator. The file integrity checking mechanism is

implemented as kernel level security module which supplies

higher security than user level protection. This mechanism was

designed to protect file contents, especially considering the

important configuration and file system [6].

The system provides the advantages of backup mechanism

to ensure that the files are restored when file intrusion detected

and it uses write-protected media to store crucial files of the

security system such as cryptographic hash, file backup, and

security binaries to eliminate the threat of unauthorized

modification to them.

As mentioned earlier, this work adapted the ICAR system

concept with an approach of methodology to implement holistic

security on hardware and software system architecture with an

open source security-oriented platforms using SoC device

named SecubeTM development board [2].

Fig. 1 SecubeTM development board

As shown in Fig. 1, the hardware components used in

development system are the programmable chip (no.1)

(provided with a JTAG interface (no.2) for programming,

debug and testing operations), the external flash memory (no.3),

and the physical USB interface (no.4) to support request

services.

III. PROPOSED APPROACH

 Currently, the proposed approach has two main APIs

software libraries [2]. First, the device-side software includes

all device functionalities implement on embedded CPU.

Second, the host-side software includes software that can run

on other physical entities such as PC or server. This host-side

software is an adapter of the entities to request service from the

device through device-side software and the physical

communication from host to request services to the device are

supported through USB interface.

III.1. System Design

The proposed system consists of three layers as shown in

Fig. 2. System layers are as follows:

1. Application Layer: consists of two modules - First, the

security module is responsible for the file integrity

verification and verify the integrity of backup copies of

protected files stored in device storage. Second, device

adapter module is responsible to handle authentication

procedure and service requests.

2. Hardware Layer: contains device-side software provides

functionalities that include login/logout, key management,

1
3

4

2

cryptography, and storage manager to manage database

synchronization operations and write-protected manager as

a controller for write permission to write-protected device

storage.

3. Data Layer: consists of crucial data for the security

mechanism such as security database that stores file hashes,

metadata from the protected file and backup copies of

protected files. These files are stored in a write-protected

storage.

The write-protected storage in this proposed system has a

flexible function managed by the write-protected manager that

is included in the device-side software. This is used to control

access permission to write into or modify the file inside device

flash storage. Thus, only authorized actions for modifying files

stored in the device storage.

Fig. 2 Modified ICAR system layer

Fig. 3 Design implementation architecture

The application layer is an external device library that is

designed to be scalable, they may portably run on a different

operating system, thus limiting the usage of platform-dependent

modules. Practically, they run on host OS layer to improve

portability and migration, the libraries of host-side software are

organized in device write-protected storage.

The hardware layer consists of device-side software that

provides functionalities as mentioned earlier. The data layer is

applied inside hardware layer. It is used to store copied files and

security database in device storage. It is also protected by write-

protected manager function in device-side software. If the

security module in the application layer detects an unauthorized

modification of protected files, it will automatically restore the

original file content from the backup file in the data layer. Fig.

3 illustrates the system implementation architecture and shows

the position of data layer on the hardware structure.

III.2. Protection Mechanism

The proposed system flow consists of two protection

mechanisms that include backup and restores processes. The

system also records any process information in system log to

simplify administrators work to monitoring and evaluating the

system.

III.2.1. Backup Mechanism

A whole backup process covers the activity of scanning files

in a directory specified by an authorized user and all process

including authentication, backup, and logs records. The

authentication mechanism consists of two-level processes. The

first one is a legitimate process for receiving a key from device

key manager used to decrypt password string from user input.

The second one is an authentication process that uses the

password to gain write access permission to device flash

memory, it deactivates write-protected function during a write

process. After the writing process is complete, the write-

protected function is reactivated.

Fig. 4 shows the algorithm for the backup process used by

the proposed system. This process can run parallel with the file

monitoring process as it covers functions including selection of

directory where files will be protected, generating

cryptographic hashes, extracting file information (i.e. name,

path, size, last modified date) to store in security database and

files backup which are automatically stored in the data layer.

III.2.2. Restore Mechanism

The host system protection algorithm detail of integrity

verification and recovery process is shown in Fig. 4. It is

responsible to create a list of files in the selected directory,

generate hashes, and extract file information (i.e. name, path,

size, last modified date) before requesting services from the

device to compare each file detail to the security database. It is

also responsible for generating and executing a command to

request services from the device through device adapter. Fig. 5

shows the algorithm to check file information in the security

database. If there is an information about the current file, it is

assumed that the file should not be there (it could be a

virus/worm or Trojans) then the system will remove it. If there

is an information about the file, the system will calculate a hash

and extract meta information (i.e. name, path, size, last

modified date) from the file and then compare them to security

database.

If they are not the same, the system will remove the modified

file and then activate recovery procedure to restore the original

file content.

Additionally, there are two verification processes before and

after restoring file content procedure executed to ensure

restored files are correct. Before the original file content

restored, the system will ensure whether the backup file is clean

or corrupted by comparing the hash of backup file with the

security database. If the comparison value is different, it is

assumed that the backup file is corrupted, then it will

automatically remove from the system. Furthermore, after the

restore process is completed, the system verifies the restored

file whether it is correct or not by comparing hashes value with

the security database. If the restored file is incorrect, the system

will repeat the attempt of restoring the corrupted file.

Fig. 4 Backup process algorithm

Fig. 5 Restore process algorithm

IV. IMPLEMENTATION

The proposed system was implemented in C language and

it included device-side (chip firmware) and host-side software.

The device-side software was injected into the programmable

processor so that the device system can perform its function to

provide services. The host-side software (device adapter) are

run as user-level tools, it is installed in the device write-

protected flash memory.

Fig.6 shows an implementation of the system. As is shown,

the hardware architecture is implemented as an external device.

This approach isolates device functionality separated from the

main system. Currently, to support portability, there are no

modifications at the operating system level including kernel or

any file systems and there are no user application installation

processes required. The physical communication between the

device and main system are done via a USB interface.

In this paper, we define scenarios for intrusion detection

using simulation such as malware (i.e. virus/worm and Trojan),

unauthorized file modification and web defacement.

Fig. 6 Implementation for simulation

V. EXPERIMENT RESULTS AND EVALUATION

Based on the design in Fig. 6, we test the response of

security mechanism based on the scenario that already

mentioned in section IV. The goal of this simulation is to know

the advantages of using hardware and software protection.

Fig. 7 Example of virus/worm attack scenario

Before beginning all simulations scenario, first of all, we

specified directories including their files to be protected by

doing the backup process on them and started the monitoring

process. In this experiment, the files included configuration of

a web server and web site pages. We use them to simulate

unauthorized file change made by virus/worm infection or

manually by unauthorized users (i.e. hackers).

Fig. 7 shows an example of malware attack scenario, we use

virus/worm which has the ability to encrypt files and Trojan that

carry the same virus to simulate infection or modification to

them. When an infection occurs, the restore procedure is

triggered and it automatically remove infected files including

illegal files inside protected directories.

In a website hacking example scenario (Fig. 8), we simulate

attacks using a malicious script to create a backdoor to modify

pages by inserting malicious code into it and also modifying

configuration file including website and web server setting. The

recovery procedure also active when unauthorized modification

occurs on the protected files.

Fig. 8 Example of web defacement scenario

The summary of comparison between the conventional

system (ICAR) with the proposed mechanism can be seen in the

following table.

Table 1 Criteria comparison [8]

VI. CONCLUSION AND FUTURE WORK

The proposed mechanism presented the solutions with a

different approach which enable holistic security using

hardware and software platforms. Comparing with the existing

system, there are several advantages as follows:

1 Hardware layer: The security service is treated as an

extension of the hardware layer and the functionalities are

isolated make it more robust and have better immunity,

2 Flexible write-protected storage: the proposed design

allows writing into device flash storage through valid

authentication procedure to update some files when

necessary, so there is no need to recreate initial backup

using write-protected storage separate from protection

operation every time authorized modifications are needed.

The authentication procedure is handled by device-side

software (chip firmware),

3 Portable: With this approach, there is no need to modify

operating system in the main system. The major benefit of

the solution is that the mechanism is separate from the

protected system, which enables the implementation of this

method in different platforms.

On the other hand, when the extended hardware that

provides protection mechanism encounter failure (i.e.

connection issue, hardware failure, etc.), there is no fail-safe

operation that can respond to recovery procedure to the threat

to the main system. So, the system should be made available to

encounter failure to the issues mentioned earlier.

REFERENCES

[1] Ray, S. (2017): System-on-Chip Security Assurance for

IoT Devices Cooperations and Conflicts. IEEE Custom

Integrated Circuits Conference (CICC).

[2] Farulla, A. G., Prinetto, P., Varriale, A. (2017): Holistic

Security via Complex HW/SW Platforms. 12th

International Conference on Design & Technology of

Integrated Systems in Nanoscale Era (OTIS).

[3] Varriale, A., Vatajelu, E. I., Natale, G. D., Prinetto, P.,

Trotta, P., Margaria, T. (2016): SEcube™: An Open-

Source Security Platform in a Single SoC. International

Conference on Design and Technology of Integrated

Systems in Nanoscale Era (DTIS).

[4] Winarno, I., Okamoto, T., Hata, Y., Ishida, Y. (2016):

Increasing The Diversity of Resilient Server using

Multiple Virtualization Engines. 20th International

Conference on Knowledge Based and Intelligent

Information and Engineering Systems.

[5] Adukkathayar, C. A., Krishnan, G. S., Sasikumar, G.

(2015): Advanced integrity checking and recovery using

write-protected storage for enhancing operating system

security. Computer Science & Education (ICCSE).

[6] Kaczmarek, J. dan Wrobel, M. R. (2014): Operating

system security by integrity checking and recovery using

write-protected storage. IET Information Security.

[7] Rajesvari, R., Manoj, G., Ponrani, M. (2013): System-on-

Chip (SoC) for Telecommand System Design.

International Journal of Advanced Research in Computer

and Communication Engineering

[8] Grim, L. dan Vandenbrink, R. (2014): IDS: File Integrity

Checking. SANS Institute Infoces Reading Room.

[9] Standard Operating Procedure Incident Handling Web

Defacement, Retreived from:

https://govcsirt.kominfo.go.id/download/SOP/SOP

IH_Web_Defacement(2).pdf. 2017-Jul-22.

[10] Christodorescu, M., Jha, S., Maughan, D., Song, D.,

Wang, C. (2007): Malware Detection. Springer Science.

1, X-XI.

[11] Patil, S., Kashyap, A., Sivathanu, G., Zadok, E. (2004):

I3FS: An in-kernel integrity checker and intrusion

detection file system. Proceedings 18th USENIX Annual

Large Installation System Administration Conference

(LISA2004).

[12] McGraw, G., Morrisett, G. (2000): Attacking malicious

code: report to the Infosec research council. IEEE

Software, 5, 33 - 41.

[13] Nelson, V. P. (2012): Systems On Chip (Soc) For

Embedded Applications. VLSI D&T Seminar.

