
Full-Text Search on Data with Access Control

Ahmad Zaky

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

13512076@std.stei.itb.ac.id

Rinaldi Munir, S.T., M.T.

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi.munir@itb.ac.id

Abstract—Full-Text Search combined with access control has

a wide range of applications. Unfortunately, there are only few (if

not zero) researches that combine the two. While inverted index is

already used widely for full-text searching, we try to use

generalized suffix tree for its ability to search for any substring

within a document, not only exact word occurrence. Theoretically,

the time and memory needed to index a collection of documents is

linear in the total size of the documents. However, our

implementation requires memory more than 1200 times of the size

of documents. A further analysis shows that at least 32 times is

needed, but will require longer indexing time. In conclusion,

generalized suffix tree may not suitable for large amount of data.

In the other hand, the search using generalized suffix tree is 3 times

faster than inverted index. Suffix tree can be used only if substring

search is required (e.g. DNA processing), or where time is

significantly more important than memory (e.g. search

autocomplete system). The access control itself acts as filter after

the documents yielded from searching through the index.

Keywords—access control; full-text search; generalized suffix

tree; indexing; inverted index

I. INTRODUCTION

Full-Text Search (FTS) has a wide range of use, especially
in this era of computing. Pretty much every websites and web
applications that support searching are using FTS for using
traditional exact string matching yields less relevant results. One
good example is Google, which is doing full-text indexing for
almost all websites on the Internet.

On the other hand, combining FTS with access control will
widen the application. Access control will limit the search result
based on the user’s access right. Each document has their own
access control list (ACL), and the ACL will be compared to the
access right to determine whether a certain user has the right to
access certain document or not. Social media has applied FTS
with access control to make sure that each content that is
published by their users are not served to the unauthorized ones.
Users has full control to set the ACL of each content they own.
For example, users on Facebook can set who can see their posts
and photos. Each post can be set independently.

Although there are a lot of researches on FTS already [1],
[3], [4], there are so little (if not zero) researches about FTS
when combined with access control. The idea is simple: to use
the state-of-the-art algorithms and methods of FTS and modify
them so they can support data with access control. As FTS is
usually used for handling documents in large scale, and the users

expect the result to appear instantly, then the evaluation is
around the size of the index and the performance of search in
terms of time.

This research paper will limit the scope to only the searching
part. There are several steps that should be done in an
information retrieval (IR) system. Some of them are (1) query
refinement, (2) the document retrieval itself, and (3) ranking the
results based on relevance of the documents and the query [5].
This research will focus on the second step, therefore
transforming the whole IR problems into a string matching
problem.

II. FULL-TEXT SEARCH WITH ACCESS CONTROL

FTS can be formulated as follows. Given a set of documents
𝐷, where each document 𝑑 ∈ 𝐷 can be considered as a string,
which represents the content of the document itself. Another
representation of a document is considering them as a sequence
of words. A query 𝑄 is defined as an array of strings, where each
string represents a word in the query. A document 𝑑 is said to
match a query 𝑄 if and only if every word in the query appear in
𝑑 as a substring or as a whole word when considering document
as a sequence of words.

Formally, the abovementioned formulation can be written as
follows. 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑎, 𝑏) is a function that checks whether 𝑎 is
a substring of 𝑏 or not.

𝑆𝑒𝑎𝑟𝑐ℎ(𝑄, 𝐷) → 𝑅 ∋ ∀𝑑 ∈ 𝑅, ∀𝑞 ∈ 𝑄, 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑞, 𝑑)

Before that part is done, it involves indexing, that is
transforming the set of documents to some data structure to
make the searching faster. So, often the search is performed on
the index itself not the original set of documents. The indexing
process can be viewed as a function 𝐼𝑛𝑑𝑒𝑥(𝐷) → 𝑆 where 𝑆 is
the data structure, and the search is performed on 𝑆.

Appending access control to FTS increases the complexity
of the problem. Each document has their own access control, and
the search function includes an additional parameter, the user’s
access rights. The final result should conform with the access
right itself. The formulation is as follows, where 𝐴𝐶𝐿(𝑑) returns
the document’s ACL, and 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑(𝑎𝑟, 𝑎𝑐𝑙) determines
whether a user with access right 𝑎𝑟 is allowed to access
resources with ACL 𝑎𝑐𝑙.

𝑆𝑒𝑎𝑟𝑐ℎ(𝑄, 𝑎𝑟, 𝐷) → 𝑅 ∋ ∀𝑑 ∈ 𝑅,∀𝑞
∈ 𝑄, 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑞, 𝑑)
∧ 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑(𝑎𝑟, 𝐴𝐶𝐿(𝑑))

III. RELATED WORKS

As mentioned in the introduction, there are so little
researches about the subject. However, there are many
researches about FTS itself. There are two major algorithms that
are used for FTS: inverted index and suffix tree.

A. Inverted Index

Inverted index is the most commonly used method for FTS.
It is, for example, used by the number one open-source search
engine, Elasticsearch [2]. The idea of inverted index is to create
a map from the word to the occurrence in the documents. Table
1 shows an example of inverted index. When searching “QUICK
BROWN FOX” to the index, the result is {4,8}, the intersection
between the set of documents that is containing “QUICK”,
“BROWN”, and "FOX”.

Table 1. Inverted index example

Term Document IDs

QUICK 1, 2, 4, 8

THE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

BROWN 2, 3, 4, 6, 8

DOG 3, 5, 7

FOX 3, 4, 5, 7, 8, 10

IN 1, 2, 4, 5, 6, 8, 9

JUMP 3, 10

LAZY 2, 4, 5, 6, 8, 10

LEAP 3, 5, 7, 9, 10

OVER 1, 3, 4, 5, 6, 9

SUMMER 5, 6

Main advantage of inverted index is the size of the index
itself. On most cases, the size of the index is much smaller than
the document’s size. Elasticsearch reports that the size of index
is only 50%-130% of the whole document’s size [6]. But in
terms of complexity, it is linear with respect to the total length
of the documents.

The complexity time of the search is proportional to the time
of retrieving the document IDs and calculating the intersection
of those sets of IDs. It depends on the data structure which
implements the map. Hash map will achieve constant time of
retrieval, but will perform poorly on larger dataset. B-Tree is
preferred, with complexity logarithmic to the number of terms.
The intersection itself can be calculated linearly with respect to
the number of results.

B. Suffix Tree

Suffix tree is a prefix tree which contains all suffixes of some
string. Storing them as is will require unnecessary huge amount
of memory, since the number of nodes in the resulting tree is
quadratic of the length of string. One way to optimize it is to
squeeze a sequence of nodes which has only one child into one,
and represent the edge as a pair of index which refers to a
substring of the original string. Figure 1 shows an example for
this. The construction can be performed in time and memory
linear in the length of the string. The algorithm is explained in
[1].

Figure 1. Suffix tree of string CACAO. The left one is the raw prefix

tree of the suffixes, the middle one is the tree after compressing the

nodes, and the right one is the final representation of the tree using

reference index to the original string

Determining whether a string 𝑃 is a substring of a string 𝑇 is
easy when we already have suffix tree for 𝑇: just traverse the
tree from the root following the characters in 𝑃. The substring
exists if and only if there is some node (explicitly or implicitly)
in the tree that represents 𝑃. The time complexity is linear in the
length of 𝑃 and the memory is constant.

The plain suffix tree cannot handle FTS right away, for it can
only hold one single string. There is a workaround for this: to
append all documents into one and create a suffix tree for the
concatenated string. Each leaf should contain the position of the
suffix, and the ID of the document can be derived from the
position.

IV. PROPOSED METHOD

While inverted index is the most commonly used method for
FTS, it has one little limitation: it can only search for exact word
matches. This can be handled by normalization before indexing
the whole documents (achieve, achieved, achieving will become
achiev). But, the proposed method is to use suffix tree for its
ability to find any substring. In the other hand, searching in
suffix tree is theoretically faster than inverted index, because
searching in inverted index requires to search in map which
takes logarithmic time.

But in order for suffix tree to work with multiple documents,
we will not use concatenation, but use a more appropriate
method named generalized suffix tree (GST). GST is a suffix
tree that can store multiple strings. The construction algorithm
is very similar to the ordinary suffix tree. The differences are:

1. Edges are represented by three integers, 𝑥, 𝑘, 𝑝 which
represents substring 𝐷[𝑥][𝑘. . 𝑝] of the 𝑥-th document.

2. Each leaf has special attribute, which indicates the ID of the
document it represents.

Consider the example shown in Figure 2. When searching
for string “BC”, we traverse from the root to node “BC”, and we
find that all IDs of documents shown in the subtree of the node
are {1,3}. This means that documents 1 and 3 contain “BC” as
their common substring.

Figure 2. GST for set of strings {𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐵𝐶𝐷}. The black nodes

represent the ID of document

Some modifications of construction algorithm in [1] are
necessary. Four algorithms below show the modified algorithms
of the four procedures given in [1]. The terms used here is
equivalent to the terms in the original papers, so it should be self-
explanatory. Other modification that is made is that the auxiliary
state is omitted in this version. The complexity of time and
memory is still linear in the total length of the documents.

function GST-Construct (D)

{ Input: D is the set of documents for which the GST
will be built.

Output: GST of D }

1. root = new Node
2. S = new Set(Node)
3. S.insert(root)
4. g = new Map((Node, (integer, integer, integer)) ->

Node)
{ f denotes the suffix links. f[r] = r’ means that
r’ there is some character x such that r = xr’ }

5. f = new Map(Node -> Node)
6. for i = 1 to length(D) do

 { (x, s, k) is the active state. }
7. (x, s, k) = (i, root, 1)

 for j = 1 to length(D[i]) do
8. (x, s, k) = GST-Update(s, (x, k, j))
9. (x, s, k) = GST-Canonize(s, (x, k, j))
10. return (root, S, g, D)

Figure 3. GST-Construct algorithm

function GST-Update (s, (x, k, i))

{ Input: (s, (x, k, i - 1)) is the canonical reference
of the current active point.

Output: the new active point after i-th character
is inserted }

1. oldr = root
2. (isEndpoint, r) = GST-Test-And-Split(s, (x, k, I –

1), D[x][i])
3. while (!isEndpoint) do
4. insert new transition g(r, (x, i, ∞)) = r’
5. if (oldr != root) then
6. f[oldr] = r
7. oldr = r
8. if (r = root) then

9. k = k + 1
10. else
11. s = f[s]
12. (x, s, k) = GST-Canonize(s, (x, k, i – 1))
13. if (oldr != root) then
14. f[oldr] = s
15. return (x, s, k)

Figure 4. GST-Update algorithm

function GST-Test-And-Split (s, (x, k, p), t)

{ Input: (s, (x, k, p)) is the canonical reference of
a state that is needed to be tested to be endpoint or
not in the process of inserting t.

Output: (isEndpoint, r) where r is the new state
upon the splitting of the input state }

1. if (k <= p) then
2. (s’, (x’, k’, p’)) = D[x][k] transition from s
3. if t = D[x’][k’ + p – k + 1] then
4. return (true, s)
5. else
6. replace D[x][k] transition by g(s, (x’, k’,

 k’ + p – k)) = r and g(r, (x’, k’ + p – k +
 1, p’) = s’

7. return (false, r)
8. else if no t-transition from s then
9. return (false, s)
10. else
11. return (true, s)

Figure 5. GST-Test-And-Split algorithm

function GST-Canonize (s, (x, k, p))

{ Input: (s, (x, k, p)) is some state that is not need
to be canonical.

Output: Canonical reference of the same state. The
p value is omitted as it stays the same. }

1. if (p < k) then
2. return (x, s, k)
3. else
4. find D[x][k]-transition g(s, (x’, k’, p’)) = s’
5. while (p’ – k’ <= p – k) do
6. k = k + p’ – k’ + 1
7. s = s’
8. if k <= p then
9. find D[x][k] transition g(s, (x’, k’, p’)

 = s’
10. return (x, s, k)

Figure 6. GST-Canonize algorithm

What is left is to handle access control in the search process.
The result of the search is filtered after we find all the documents
matching documents by their content only. There are many
advantages of handling access control this way:

1. Flexibility: the access control can be implemented in any
way using any available methods.

2. Simplicity: the original string-matching algorithm itself is
not changed.

3. Efficiency: the amount of memory used to index the
documents is linear with respect to the number of documents,
not the total length of documents.

 Therefore, the index consists of two parts: the GST and the
mapping between documents (or their IDs) to the corresponding
ACL. The whole indexing process is straightforward; therefore,
the full algorithm will not be included in this paper.

V. IMPLEMENTATION AND EXPERIMENTS

The proposal of using GST is tested against inverted index.
The metrics that is took into account in the experiment is the
performance of both of them in terms of time and memory of
indexing and searching. There are some assumptions before the
implementation takes place:

1. All processes will be done in the main memory without
involving secondary memory e.g. disk (except for when the
documents are loaded for the first time). This significantly
simplifies the implementation.

2. The access control will be implemented using access control
matrix. There will be randomly generated ACLs and access
rights and the ACLs will be randomly assigned to the
documents.

The specification of the testing environment is shown in
Table 2. The algorithms will be implemented using Java. The
dataset used in the experiment is OHSUMED test collection,
which is the abstracts from 270 medical journals over a five-year
period (1987-1991). It contains 56984 documents with the total
size of around 60 MBs. However, we only use 3000 of them
because of limitation of available memory.

Table 2. Testing environment specification

Aspect Value

Processor Intel ® Core™ i7-6700HQ

CPU @ 2.60 GHz

RAM 16 GB

Operating System Windows 10 64 bit

Language Java 1.8.092

A. Indexing Performance

Inverted index performs significantly better than GST in the
indexing process. GST is 50 times slower than inverted index,
and it requires memory more than 1200 times of the size of the
original documents. Inverted index, in comparison, only requires
less than half size of the original document. The full result can
be seen in Table 3.

Table 3. Time and memory of indexing

Metrics Inverted Index GST

Document

Count

3 000

Document

Size (KB)

3 595

Time

(ms/document)

0.023 1 155

Memory

(index size /

document size)

0.420 1 224

B. Searching Performance

We generate a total of 500 random queries of length 1 to 10
words. The access controls are randomly generated. The time
shown is the average and percentiles of search times, where each
time of all queries is the median of the same search performed
25 times. It turns out that GST performs about 3 times faster than
inverted index on average.

Table 4. Search performance

Index

type

Search time (µs)

Average 10% 20% 80% 90%

Inverted

Index 14.25 2.37 3.16 17.46 27.26

GST 5.04 3.16 3.56 6.32 7.11

C. Analysis

The current implementation of GST, which requires an
incredible amount of memory, can be explained as follows. The
most memory-consuming part of GST is the mapping
𝑔[𝑠, (𝑥, 𝑘, 𝑝)]. Such mapping requires 4 × #𝑛𝑜𝑑𝑒𝑠 × #𝑐ℎ𝑖𝑙𝑑,
where #𝑛𝑜𝑑𝑒𝑠 is the maximum number of nodes, which is 2𝑁,
and #𝑐ℎ𝑖𝑙𝑑 is the maximum number of child of each node,
which is 36 (10 + 26 alphanumeric characters). From this
mapping alone, it takes us 4 × 2𝑁 × 36 = 288𝑁 32-bit
integers. It is 1152 times larger than the original document size,
assumed that each letter in the document takes 8 bits memory.

This actually can be improved. The factor 36 is not
necessary, for the size of mapping 𝑔 is equal to the number of
edges of the tree, which is not more than 2𝑁. Therefore,
theoretically it only takes us 4 × 2𝑁 = 8𝑁 32-bit integers, or 32
times the size of the original document. But, in order to achieve
this, it will take longer indexing time. Right now, the indexing
time of GST is already 50 times slower than inverted index.
Hence, such a thing is not recommended.

However, suffix tree is very good at searching once the
indexing process is done. On average, it is 3 times faster than
inverted index. This is the fundamental space-time tradeoff in
computer science. Not only space-time tradeoff, but suffix tree
allows us to search for any substring occurrence within the
document. It can be concluded that we need to use suffix tree
only if:

1. Substring search is required, e.g. DNA processing where
every substring of the DNA string is important, or

2. The system does not need to index huge number of
documents, but critically need faster amount of time, then
suffix tree is preferred. A good example for this is search
autocomplete. The size of documents not large, but it
requires very fast response time as the result is needed for
every characters typed.

VI. CONCLUSION

While perform faster than inverted index (roughly 3 times
for most of the queries), GST cannot be applied to huge number
of documents, as it requires about 1200 times of the original
document size. It, however, can be applied to some systems that

requires very fast response time and do not have large amount of
data, e.g. autocomplete in search boxes, or where substring
search is needed, e.g. DNA processing.

Access control can be applied to any search algorithms easily
using the proposed method, as it only acts as a filter after the
search is being done. The complexity is not hardly affected; it is
still linear in the amount of result when the search is not
involving access control.

VII. FUTURE WORK

The most straightforward work to do is to improve the GST
again to use as least memory as possible. An example is to use
compression method, as used by the succinct data structure
which allows suffix array to its theoretical lower bound [4]. Tree
structure or how information are stored among the nodes and
edges may differ, hence further research should be conducted.

One other limitation is that all of the process should fit into
the main memory. In order to work with larger scale of data, the
secondary memory is required. However, the proposed method
cannot be used right away, as we should design how the data is
persisted in the disk to reduce the amount of I/O.

B-Tree is a good example of efficient use of indexing using
secondary memory. Inverted index can be implemented using B-
Tree right away. A related work about this is a data structure
called String B-Tree, which can utilize B-Tree to store a

PATRICIA tree [3]. Further research may combine the work to
improve the GST to work with secondary memory.

APPENDIX

All the codes used in the experiment can be accessed at
https://github.com/azaky/FinalProject. The dataset can be
downloaded from http://disi.unitn.it/moschitti/corpora.htm.

REFERENCES

[1] Ukkonen, E, “On-line Construction of Suffix Trees” in Algorithmica,

1995, pp. 249-260.

[2] C. Gomley, Z. Tong, “Elasticsearch: The Definitive Guide”, O’Reilly
Media, Inc., 2015.

[3] P. Ferragina, R. Grossi, “The String B-Tree: A New Data Structure for
String Search in External Memory and its Applications”, ACM
Symposium of Theory of Computing, 1995.

[4] N. Tanida, M. Inaba, K. Hiraki, T. Yoshino, “Hardware Accelerator for
Full-Text Search (HAFTS) with Succinct Data Structure”, International
Conference on Reconfigurable Computing and FPGAs, 2009, pp 155-160.

[5] I.H. Witten, A. Moffat, T. C. Bell, “Managing Gigabytes: Compressing
and Indexing Documents and Images”, Academic Press, 1999.

[6] P. Kim, “The true story behind Elasticsearch storage requirements”
(https://www.elastic.co/blog/elasticsearch-storage-the-true-story), April
2015 (Accessed on September 3, 2016).

https://github.com/azaky/FinalProject
http://disi.unitn.it/moschitti/corpora.htm
https://www.elastic.co/blog/elasticsearch-storage-the-true-story

