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Abstract—Full-Text Search combined with access control has 

a wide range of applications. Unfortunately, there are only few (if 

not zero) researches that combine the two. While inverted index is 

already used widely for full-text searching, we try to use 

generalized suffix tree for its ability to search for any substring 

within a document, not only exact word occurrence. Theoretically, 

the time and memory needed to index a collection of documents is 

linear in the total size of the documents. However, our 

implementation requires memory more than 1200 times of the size 

of documents. A further analysis shows that at least 32 times is 

needed, but will require longer indexing time. In conclusion, 

generalized suffix tree may not suitable for large amount of data. 

In the other hand, the search using generalized suffix tree is 3 times 

faster than inverted index. Suffix tree can be used only if substring 

search is required (e.g. DNA processing), or where time is 

significantly more important than memory (e.g. search 

autocomplete system). The access control itself acts as filter after 

the documents yielded from searching through the index. 

Keywords—access control; full-text search; generalized suffix 

tree; indexing; inverted index 

I.  INTRODUCTION 

Full-Text Search (FTS) has a wide range of use, especially 
in this era of computing. Pretty much every websites and web 
applications that support searching are using FTS for using 
traditional exact string matching yields less relevant results. One 
good example is Google, which is doing full-text indexing for 
almost all websites on the Internet. 

On the other hand, combining FTS with access control will 
widen the application. Access control will limit the search result 
based on the user’s access right. Each document has their own 
access control list (ACL), and the ACL will be compared to the 
access right to determine whether a certain user has the right to 
access certain document or not. Social media has applied FTS 
with access control to make sure that each content that is 
published by their users are not served to the unauthorized ones. 
Users has full control to set the ACL of each content they own. 
For example, users on Facebook can set who can see their posts 
and photos. Each post can be set independently. 

Although there are a lot of researches on FTS already [1], 
[3], [4], there are so little (if not zero) researches about FTS 
when combined with access control. The idea is simple: to use 
the state-of-the-art algorithms and methods of FTS and modify 
them so they can support data with access control. As FTS is 
usually used for handling documents in large scale, and the users 

expect the result to appear instantly, then the evaluation is 
around the size of the index and the performance of search in 
terms of time. 

This research paper will limit the scope to only the searching 
part. There are several steps that should be done in an 
information retrieval (IR) system. Some of them are (1) query 
refinement, (2) the document retrieval itself, and (3) ranking the 
results based on relevance of the documents and the query [5]. 
This research will focus on the second step, therefore 
transforming the whole IR problems into a string matching 
problem. 

II. FULL-TEXT SEARCH WITH ACCESS CONTROL 

FTS can be formulated as follows. Given a set of documents 
𝐷, where each document 𝑑 ∈ 𝐷 can be considered as a string, 
which represents the content of the document itself. Another 
representation of a document is considering them as a sequence 
of words. A query 𝑄 is defined as an array of strings, where each 
string represents a word in the query. A document 𝑑 is said to 
match a query 𝑄 if and only if every word in the query appear in 
𝑑 as a substring or as a whole word when considering document 
as a sequence of words. 

Formally, the abovementioned formulation can be written as 
follows. 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑎, 𝑏) is a function that checks whether 𝑎 is 
a substring of 𝑏 or not. 

𝑆𝑒𝑎𝑟𝑐ℎ(𝑄, 𝐷) → 𝑅 ∋ ∀𝑑 ∈ 𝑅, ∀𝑞 ∈ 𝑄, 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑞, 𝑑) 

Before that part is done, it involves indexing, that is 
transforming the set of documents to some data structure to 
make the searching faster. So, often the search is performed on 
the index itself not the original set of documents. The indexing 
process can be viewed as a function 𝐼𝑛𝑑𝑒𝑥(𝐷) → 𝑆 where 𝑆 is 
the data structure, and the search is performed on 𝑆. 

Appending access control to FTS increases the complexity 
of the problem. Each document has their own access control, and 
the search function includes an additional parameter, the user’s 
access rights. The final result should conform with the access 
right itself. The formulation is as follows, where 𝐴𝐶𝐿(𝑑) returns 
the document’s ACL, and 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑(𝑎𝑟, 𝑎𝑐𝑙) determines 
whether a user with access right 𝑎𝑟 is allowed to access 
resources with ACL 𝑎𝑐𝑙. 

𝑆𝑒𝑎𝑟𝑐ℎ(𝑄, 𝑎𝑟, 𝐷) → 𝑅 ∋ ∀𝑑 ∈ 𝑅,∀𝑞
∈ 𝑄, 𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑞, 𝑑)
∧ 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑(𝑎𝑟, 𝐴𝐶𝐿(𝑑)) 



III. RELATED WORKS 

As mentioned in the introduction, there are so little 
researches about the subject. However, there are many 
researches about FTS itself. There are two major algorithms that 
are used for FTS: inverted index and suffix tree. 

A. Inverted Index 

Inverted index is the most commonly used method for FTS. 
It is, for example, used by the number one open-source search 
engine, Elasticsearch [2]. The idea of inverted index is to create 
a map from the word to the occurrence in the documents. Table 
1 shows an example of inverted index. When searching “QUICK 
BROWN FOX” to the index, the result is {4,8}, the intersection 
between the set of documents that is containing “QUICK”, 
“BROWN”, and "FOX”. 

Table 1. Inverted index example 

Term Document IDs 

QUICK 1, 2, 4, 8 

THE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

BROWN 2, 3, 4, 6, 8 

DOG 3, 5, 7 

FOX 3, 4, 5, 7, 8, 10 

IN 1, 2, 4, 5, 6, 8, 9 

JUMP 3, 10 

LAZY 2, 4, 5, 6, 8, 10 

LEAP 3, 5, 7, 9, 10 

OVER 1, 3, 4, 5, 6, 9 

SUMMER 5, 6 

  

Main advantage of inverted index is the size of the index 
itself. On most cases, the size of the index is much smaller than 
the document’s size. Elasticsearch reports that the size of index 
is only 50%-130% of the whole document’s size [6]. But in 
terms of complexity, it is linear with respect to the total length 
of the documents. 

The complexity time of the search is proportional to the time 
of retrieving the document IDs and calculating the intersection 
of those sets of IDs. It depends on the data structure which 
implements the map. Hash map will achieve constant time of 
retrieval, but will perform poorly on larger dataset. B-Tree is 
preferred, with complexity logarithmic to the number of terms. 
The intersection itself can be calculated linearly with respect to 
the number of results.  

B. Suffix Tree 

Suffix tree is a prefix tree which contains all suffixes of some 
string. Storing them as is will require unnecessary huge amount 
of memory, since the number of nodes in the resulting tree is 
quadratic of the length of string. One way to optimize it is to 
squeeze a sequence of nodes which has only one child into one, 
and represent the edge as a pair of index which refers to a 
substring of the original string. Figure 1 shows an example for 
this. The construction can be performed in time and memory 
linear in the length of the string. The algorithm is explained in 
[1]. 

 

 

Figure 1. Suffix tree of string CACAO. The left one is the raw prefix 

tree of the suffixes, the middle one is the tree after compressing the 

nodes, and the right one is the final representation of the tree using 

reference index to the original string 

Determining whether a string 𝑃 is a substring of a string 𝑇 is 
easy when we already have suffix tree for 𝑇: just traverse the 
tree from the root following the characters in 𝑃. The substring 
exists if and only if there is some node (explicitly or implicitly) 
in the tree that represents 𝑃. The time complexity is linear in the 
length of 𝑃 and the memory is constant. 

The plain suffix tree cannot handle FTS right away, for it can 
only hold one single string. There is a workaround for this: to 
append all documents into one and create a suffix tree for the 
concatenated string. Each leaf should contain the position of the 
suffix, and the ID of the document can be derived from the 
position. 

IV. PROPOSED METHOD 

While inverted index is the most commonly used method for 
FTS, it has one little limitation: it can only search for exact word 
matches. This can be handled by normalization before indexing 
the whole documents (achieve, achieved, achieving will become 
achiev). But, the proposed method is to use suffix tree for its 
ability to find any substring. In the other hand, searching in 
suffix tree is theoretically faster than inverted index, because 
searching in inverted index requires to search in map which 
takes logarithmic time. 

But in order for suffix tree to work with multiple documents, 
we will not use concatenation, but use a more appropriate 
method named generalized suffix tree (GST). GST is a suffix 
tree that can store multiple strings. The construction algorithm 
is very similar to the ordinary suffix tree. The differences are: 

1. Edges are represented by three integers, 𝑥, 𝑘, 𝑝 which 
represents substring 𝐷[𝑥][𝑘. . 𝑝] of the 𝑥-th document. 

2. Each leaf has special attribute, which indicates the ID of the 
document it represents. 

Consider the example shown in Figure 2. When searching 
for string “BC”, we traverse from the root to node “BC”, and we 
find that all IDs of documents shown in the subtree of the node 
are {1,3}. This means that documents 1 and 3 contain “BC” as 
their common substring. 



 

Figure 2. GST for set of strings {𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐵𝐶𝐷}. The black nodes 

represent the ID of document 

Some modifications of construction algorithm in [1] are 
necessary. Four algorithms below show the modified algorithms 
of the four procedures given in [1]. The terms used here is 
equivalent to the terms in the original papers, so it should be self-
explanatory. Other modification that is made is that the auxiliary 
state is omitted in this version. The complexity of time and 
memory is still linear in the total length of the documents. 

 

function GST-Construct (D) 

{ Input: D is the set of documents for which the GST 
will be built. 

Output: GST of D } 
 

1. root = new Node 
2. S = new Set(Node) 
3. S.insert(root) 
4. g = new Map((Node, (integer, integer, integer)) -> 

Node) 
{ f denotes the suffix links. f[r] = r’ means that 
r’ there is some character x such that r = xr’ } 

5. f = new Map(Node -> Node) 
6. for i = 1 to length(D) do 

 { (x, s, k) is the active state. } 
7.  (x, s, k) = (i, root, 1) 

 for j = 1 to length(D[i]) do 
8.   (x, s, k) = GST-Update(s, (x, k, j)) 
9.   (x, s, k) = GST-Canonize(s, (x, k, j)) 
10. return (root, S, g, D) 

Figure 3. GST-Construct algorithm 

function GST-Update (s, (x, k, i)) 

{ Input: (s, (x, k, i - 1)) is the canonical reference 
of the current active point. 

Output: the new active point after i-th character 
is inserted } 
 

1. oldr = root 
2. (isEndpoint, r) = GST-Test-And-Split(s, (x, k, I – 

1), D[x][i]) 
3. while (!isEndpoint) do 
4.  insert new transition g(r, (x, i, ∞)) = r’ 
5.  if (oldr != root) then 
6.   f[oldr] = r 
7.  oldr = r 
8.  if (r = root) then 

9.   k = k + 1 
10.  else 
11.   s = f[s] 
12.  (x, s, k) = GST-Canonize(s, (x, k, i – 1)) 
13. if (oldr != root) then 
14.  f[oldr] = s 
15. return (x, s, k) 

Figure 4. GST-Update algorithm 

function GST-Test-And-Split (s, (x, k, p), t) 

{ Input: (s, (x, k, p)) is the canonical reference of 
a state that is needed to be tested to be endpoint or 
not in the process of inserting t. 

Output: (isEndpoint, r) where r is the new state 
upon the splitting of the input state } 
 

1. if (k <= p) then 
2.  (s’, (x’, k’, p’)) = D[x][k] transition from s 
3.  if t = D[x’][k’ + p – k + 1] then 
4.   return (true, s) 
5.  else 
6.   replace D[x][k] transition by g(s, (x’, k’, 

  k’ + p – k)) = r and g(r, (x’, k’ + p – k + 
  1, p’) = s’ 

7.   return (false, r) 
8. else if no t-transition from s then 
9.  return (false, s) 
10. else 
11.  return (true, s) 

Figure 5. GST-Test-And-Split algorithm 

function GST-Canonize (s, (x, k, p)) 

{ Input: (s, (x, k, p)) is some state that is not need 
to be canonical. 

Output: Canonical reference of the same state. The 
p value is omitted as it stays the same. } 
 

1. if (p < k) then 
2.  return (x, s, k) 
3. else 
4.  find D[x][k]-transition g(s, (x’, k’, p’)) = s’ 
5.  while (p’ – k’ <= p – k) do 
6.   k = k + p’ – k’ + 1 
7.   s = s’ 
8.   if k <= p then 
9.    find D[x][k] transition g(s, (x’, k’, p’) 

   = s’  
10.  return (x, s, k) 

Figure 6. GST-Canonize algorithm 

What is left is to handle access control in the search process. 
The result of the search is filtered after we find all the documents 
matching documents by their content only. There are many 
advantages of handling access control this way: 

1. Flexibility: the access control can be implemented in any 
way using any available methods. 

2. Simplicity: the original string-matching algorithm itself is 
not changed. 

3. Efficiency: the amount of memory used to index the 
documents is linear with respect to the number of documents, 
not the total length of documents. 



 Therefore, the index consists of two parts: the GST and the 
mapping between documents (or their IDs) to the corresponding 
ACL. The whole indexing process is straightforward; therefore, 
the full algorithm will not be included in this paper. 

V. IMPLEMENTATION AND EXPERIMENTS 

The proposal of using GST is tested against inverted index. 
The metrics that is took into account in the experiment is the 
performance of both of them in terms of time and memory of 
indexing and searching. There are some assumptions before the 
implementation takes place: 

1. All processes will be done in the main memory without 
involving secondary memory e.g. disk (except for when the 
documents are loaded for the first time). This significantly 
simplifies the implementation. 

2. The access control will be implemented using access control 
matrix. There will be randomly generated ACLs and access 
rights and the ACLs will be randomly assigned to the 
documents. 

The specification of the testing environment is shown in 
Table 2. The algorithms will be implemented using Java. The 
dataset used in the experiment is OHSUMED test collection, 
which is the abstracts from 270 medical journals over a five-year 
period (1987-1991). It contains 56984 documents with the total 
size of around 60 MBs. However, we only use 3000 of them 
because of limitation of available memory. 

Table 2. Testing environment specification 

Aspect Value 

Processor Intel ® Core™ i7-6700HQ 

CPU @ 2.60 GHz  

RAM 16 GB 

Operating System Windows 10 64 bit 

Language Java 1.8.092 

 

A. Indexing Performance 

Inverted index performs significantly better than GST in the 
indexing process. GST is 50 times slower than inverted index, 
and it requires memory more than 1200 times of the size of the 
original documents. Inverted index, in comparison, only requires 
less than half size of the original document. The full result can 
be seen in Table 3. 

Table 3. Time and memory of indexing 

Metrics Inverted Index GST 

Document 

Count 

3 000 

Document 

Size (KB) 

3 595 

Time 

(ms/document) 

0.023 1 155 

Memory 

(index size / 

document size) 

0.420 1 224 

B. Searching Performance 

We generate a total of 500 random queries of length 1 to 10 
words. The access controls are randomly generated. The time 
shown is the average and percentiles of search times, where each 
time of all queries is the median of the same search performed 
25 times. It turns out that GST performs about 3 times faster than 
inverted index on average. 

Table 4. Search performance 

Index 

type 

Search time (µs) 

Average 10% 20% 80% 90% 

Inverted 

Index 14.25 2.37 3.16 17.46 27.26 

GST 5.04 3.16 3.56 6.32 7.11 

 

C. Analysis 

The current implementation of GST, which requires an 
incredible amount of memory, can be explained as follows. The 
most memory-consuming part of GST is the mapping 
𝑔[𝑠, (𝑥, 𝑘, 𝑝)]. Such mapping requires 4 × #𝑛𝑜𝑑𝑒𝑠 × #𝑐ℎ𝑖𝑙𝑑, 
where #𝑛𝑜𝑑𝑒𝑠 is the maximum number of nodes, which is 2𝑁, 
and #𝑐ℎ𝑖𝑙𝑑 is the maximum number of child of each node, 
which is 36 (10 + 26 alphanumeric characters). From this 
mapping alone, it takes us 4 × 2𝑁 × 36 = 288𝑁 32-bit 
integers. It is 1152 times larger than the original document size, 
assumed that each letter in the document takes 8 bits memory. 

This actually can be improved. The factor 36 is not 
necessary, for the size of mapping 𝑔 is equal to the number of 
edges of the tree, which is not more than 2𝑁. Therefore, 
theoretically it only takes us 4 × 2𝑁 = 8𝑁 32-bit integers, or 32 
times the size of the original document. But, in order to achieve 
this, it will take longer indexing time. Right now, the indexing 
time of GST is already 50 times slower than inverted index. 
Hence, such a thing is not recommended. 

However, suffix tree is very good at searching once the 
indexing process is done. On average, it is 3 times faster than 
inverted index. This is the fundamental space-time tradeoff in 
computer science. Not only space-time tradeoff, but suffix tree 
allows us to search for any substring occurrence within the 
document. It can be concluded that we need to use suffix tree 
only if: 

1. Substring search is required, e.g. DNA processing where 
every substring of the DNA string is important, or 

2. The system does not need to index huge number of 
documents, but critically need faster amount of time, then 
suffix tree is preferred. A good example for this is search 
autocomplete. The size of documents not large, but it 
requires very fast response time as the result is needed for 
every characters typed. 

VI. CONCLUSION 

While perform faster than inverted index (roughly 3 times 
for most of the queries), GST cannot be applied to huge number 
of documents, as it requires about 1200 times of the original 
document size. It, however, can be applied to some systems that 



requires very fast response time and do not have large amount of 
data, e.g. autocomplete in search boxes, or where substring 
search is needed, e.g. DNA processing. 

Access control can be applied to any search algorithms easily 
using the proposed method, as it only acts as a filter after the 
search is being done. The complexity is not hardly affected; it is 
still linear in the amount of result when the search is not 
involving access control. 

VII. FUTURE WORK 

The most straightforward work to do is to improve the GST 
again to use as least memory as possible. An example is to use 
compression method, as used by the succinct data structure 
which allows suffix array to its theoretical lower bound [4]. Tree 
structure or how information are stored among the nodes and 
edges may differ, hence further research should be conducted. 

One other limitation is that all of the process should fit into 
the main memory. In order to work with larger scale of data, the 
secondary memory is required. However, the proposed method 
cannot be used right away, as we should design how the data is 
persisted in the disk to reduce the amount of I/O. 

B-Tree is a good example of efficient use of indexing using 
secondary memory. Inverted index can be implemented using B-
Tree right away. A related work about this is a data structure 
called String B-Tree, which can utilize B-Tree to store a 

PATRICIA tree [3]. Further research may combine the work to 
improve the GST to work with secondary memory. 

APPENDIX 

All the codes used in the experiment can be accessed at 
https://github.com/azaky/FinalProject. The dataset can be 
downloaded from http://disi.unitn.it/moschitti/corpora.htm.  
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